
Supplementary Materials for
"On Path Integration of Grid Cells:

Group Representation and Isotropic Scaling"

Ruiqi Gao1∗

ruiqigao@ucla.edu
Jianwen Xie2

jianwen@ucla.edu
Xue-Xin Wei3

weixx@utexas.edu

Song-Chun Zhu1,4,5

sczhu@stat.ucla.edu
Ying Nian Wu1

ywu@stat.ucla.edu

1Department of Statistics, UCLA 2Cognitive Computing Lab, Baidu Research
3Department of Neuroscience, UT Austin 4Department of Computer Science, UCLA

5Beijing Institute for General Artificial Intelligence (BIGAI)

Contents

1 Theoretical analysis 2

1.1 Graphical illustrations of key equations . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Proof of Theorem 1 on conformal embedding . . . . . . . . . . . . . . . . . . . . 2

1.3 Proofs of Theorem 2 and Proposition 1 on error correction . . . . . . . . . . . . . 3

1.4 Proof of Theorem 4 on hexagon grid patterns . . . . . . . . . . . . . . . . . . . . 3

1.5 From group representation to orthogonal basis functions . . . . . . . . . . . . . . 4

1.6 Decoding and re-encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.7 Connection to continuous attractor neural network (CANN) defined on 2D torus . . 5

2 Experiments 7

2.1 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Learned patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Error correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Non-linear transformation model . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Path planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.6 Integrating egocentric vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.7 Ablation studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

∗The author is now a Research Scientist at Google Brain team.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



1 Theoretical analysis

1.1 Graphical illustrations of key equations

Fig. 1 illustrates key equations in the main text as well as in the supplementary materials.

(a) physical space (b) neural space

(c) linear transformation (d) as rotation

Figure 1: Color-coded illustration. (a) In the 2D physical space, the agent moves from x to x+δx, where
δx = (δ r cosθ ,δ r sinθ), i.e., the agent moves by δ r along the direction θ . We also show a displacement of
δ r in a different direction. (b) In the d-dimensional neural space, the vector v(x) is changed to v(x+δx) =
F(v(x),δ r,θ) = v(x)+ fθ (v(x))δ r+ o(δ r), where the displacement is fθ (v(x))δ r = f0(v(x))δ r cosθ +
fπ/2(v(x))δ r sinθ . Under the isotropic condition that ‖ fθ (v(x))‖ is constant over θ , the local 2D self-motion
δx at x in the 2D physical space is embedded conformally into the neural space as a 2D subspace around v(x).
(c) Linear transformation, where fθ (v(x)) =B(θ)v(x). (d) 3D perspective view of linear transformation as a
rotation: v(x+δx) is a rotation of v(x), and the angle of rotation is µδ r, where µ = ‖B(θ)v(x)‖/‖v(x))‖
(µ may depend on x).

1.2 Proof of Theorem 1 on conformal embedding

Proof: See Fig. 1(a) and (b) for an illustration. Consider the self-motion δx= (δ r cosθ ,δ r sinθ),

v(x+δx) = F(v(x),δ r,θ) = v(x)+ fθ (v(x))δ r+o(δ r). (1)

We can decompose the self-motion δx into two steps. First move along the direction 0 by δ r cosθ ,
and then move along the direction π/2 by δ r sinθ . Then under the group representation condition:

v(x+δx) = F [F(v(x),δ r cosθ ,0),δ r sinθ ,π/2)]
= F [v(x)+ f0(v(x))δ r cosθ +o(δ r),δ r sinθ ,π/2]
= [v(x)+ f0(v(x))δ r cosθ ]+ fπ/2[v(x)+ f0(v(x))δ r cosθ +o(δ r)]δ r sinθ +o(δ r)

= v(x)+ f0(v(x))δ r cosθ + fπ/2(v(x))δ r sinθ +o(δ r), (2)

The last equation holds because assuming the derivative f ′
π/2(v(x)) exists, then by first-order Taylor

expansion,

fπ/2[v(x)+ f0(v(x))δ r cosθ +o(δ r)]δ r sinθ (3)

=[ fπ/2(v(x))+ f ′
π/2(v(x)) f0(v(x))δ r cosθ +o(δ r)]δ r sinθ (4)

= fπ/2(v(x))δ r sinθ +o(δ r). (5)

Since v(x+δx) = v(x)+ fθ (v(x))δ r+o(δ r), by Eq. (2) we have fθ (v(x)) = f0(v(x))cosθ +
fπ/2(v(x))sinθ , which is a 2D basis expansion. We are yet to prove that the two basis vectors
f0(v(x)) and fπ/2(v(x)) are orthogonal with equal norm.

2



For notational simplicity, let v1 = f0(v(x)) and v2 = fπ/2(v(x)). Then under the isotropic scaling
condition, ‖v1‖= ‖v2‖= ‖ fθ (v(x))‖= s, and fθ (v(x)) = v1 cosθ +v2 sinθ for any θ . Then we
have that for any θ ,

s2 = ‖ fθ (v(x))‖2 = ‖v1 cosθ +v2 sinθ‖2 = s2 +2〈v1,v2〉cosθ sinθ . (6)

Thus 〈v1,v2〉= 0, i.e., f0(v(x))⊥ fπ/2(v(x)). This leads to the conformal embedding of the local
2D polar system in the physical space as a 2D polar system in the d-dimensional neural space, with a
scaling factor s (which may depend on x). �

1.3 Proofs of Theorem 2 and Proposition 1 on error correction

Proof of Theorem 2: By Theorem 1, for a fixed self-position x, we embed the 2D local neighborhood
around x as a local 2D plane around v(x) in the d-dimensional neural space. A local perturbation in
self-position, δx, is translated into a local perturbation in v(v+δx), so that

‖δv‖2 = ‖ fθ (v(x))δ r+o(δ r)‖2 = s2‖δx‖2, (7)

where δv = v(x+δx)−v(x).

Suppose the agent infers its 2D position x̂ by x̂ = argminx′ ‖v−v(x′)‖2, which amounts to pro-
jecting v onto the local 2D plane around v(x). The projected vector v(x̂) on the local 2D plane is
v(x)+δv, where δv is the projection of ε onto the 2D plane. More specifically, let (v1,v2) be an
orthonormal basis of the local 2D plane centered at v(x). Then δv can be written as e1v1 + e2v2,
where

e= (e1,e2)
> = (v1,v2)

>
ε ∼N (0,τ2I2). (8)

Let δx= x̂−x. Due to isotropic scaling and conformal embedding, the `2 squared error translate
according to

‖δx‖2 = ‖δv‖2/s2 = (e2
1 + e2

2)/s2, (9)

whose expectation is 2τ2/s2. Thus E‖x̂−x‖2 = 2τ2/s2.�

Proof of Proposition 1: It is reasonable to assume τ2 = α2(‖v(x)‖2/d), where α2 measures the
variance of noise relative to ‖v(x)‖2/d, which is the average of (vi(x)

2, i = 1, ...,d). In other words,
α2 measures the noise level.

In the linear case, the metric is

µ = ‖ fθ (v(x))‖/‖v(x)‖= ‖B(θ)v(x))‖/‖v(x)‖= s/‖v(x)‖, (10)

which measures how fast v(x) rotates in the neural space as x changes. Then

E‖δx‖2 = 2α
2/(µ2d). (11)

The above scaling shows that error correction depends on two factors. One is the metric µ , and the
other is the dimensionality d, i.e., the number of neurons. These correspond to two phases of error
correction. One is to project the d-dimensional ε to the 2-dimensional δv. The bigger d is, the better
the error correction. The other is to translate ‖δv‖2 to ‖δx‖2. The bigger µ is, the better the error
correction. �

1.4 Proof of Theorem 4 on hexagon grid patterns

Proof: Let e(x) = (exp(i〈a j,x〉), j = 1,2,3)>, where (a j, j = 1,2,3) are three 2D vectors of equal
norm, and the angle between every pair of them is 2π/3. Let v(x) = Ue(x), where U is an
arbitrary unitary matrix, i.e., U ∗U = I . Then ‖v(x)‖2 = ‖e(x)‖2 = 3, ∀x, and e(x) =U ∗v(x).
For self-motion δx= (δ r cosθ ,δ r sinθ) = q(θ)δ r, let

Λ(δx,θ) = diag(exp(〈a j,δx〉), j = 1,2,3)
= diag(exp(〈a j,q(θ)〉δ r), j = 1,2,3)
= I+diag(i〈a j,q(θ)〉), j = 1,2,3)δ r+o(δ r)
= I+D(θ)δ r+o(δ r). (12)

3



Then

v(x+δx) =Ue(x+δx)
=UΛ(δx,θ)e(x)

=UΛ(δx,θ)U ∗v(x)

= (I+UD(θ)U ∗v(x)δ r)v(x)+o(δ r)
= (I+B(θ)δ r)v(x)+o(δ r), (13)

where B(θ) =UD(θ)U ∗, and B(θ) =−B(θ)∗. For isotropic condition,

‖B(θ)v(x)‖2 = ‖D(θ)e(x)‖2

=
3

∑
j=1
〈a j,q(θ)〉2

= const‖a j‖2‖q(θ)‖2 = const‖a j‖2, (14)

which is independent of θ , because (a j, j = 1,2,3) forms a tight frame in 2D.

One example of U is the following matrix:

1√
3

(1 1 1
1 exp(i2π/3) exp(−i2π/3)
1 exp(−i2π/3) exp(i2π/3)

)
(15)

The resulting (vi(x), i = 1,2,3) have the same orientation but different phases, i.e., they are spatially
shifted versions of each other. �

The limitation of Theorem 4 is that we only show v(x) =Ue(x) satisfies the linear model and the
isotropic scaling condition, but we did not show that linear model with isotropic condition only has
solutions that are hexagon grid patterns.

1.5 From group representation to orthogonal basis functions

Group representation is a central theme in modern mathematics and physics. In particular, it leads to
a deep understanding and generalization of Fourier analysis or harmonic analysis.

For the set of (∆x) that form a group, a matrix representation M(∆x) is equivalent to another
representation M̃(∆x) if there exists an invertible matrix P such that M̃(∆x) = PM(∆x)P−1

for each x. A matrix representation is reducible if it is equivalent to a block diagonal matrix
representation, i.e., we can find a matrix P , such that PM(∆x)P−1 is block diagonal for every
∆x. Suppose the group is a finite group or a compact Lie group, and M is a unitary representation,
i.e., M(∆x) is a unitary matrix. If M is block-diagonal, M = diag(Mk,k = 1, ...,K), with non-
equivalent blocks, and each block Mk cannot be further reduced, then the matrix elements (Mki j(∆x))
are orthogonal basis functions of ∆x. Such orthogonality relations are proved by Schur [15] for
finite group, and by Peter-Weyl for compact Lie group [13]. For our case, theoretically the group
of displacements ∆x in the 2D domain is R2, but we learn our model within a finite range, and we
further discretize the range into a lattice. Thus the above orthogonal relations hold.

In our model, we also assume block diagonal M , and we call each block a module. However, we do
not assume each module is irreducible, i.e., each module itself may be further diagonalized into a
block diagonal matrix of irreducible sub-blocks. Thus the elements within the same module vk(x)
may be linear mixings of orthogonal basis functions of the irreducible sub-blocks, and the linear
mixings themselves are not necessarily orthogonal.

Fig. 2 visualizes the correlation between pairs of the learned vi(x) and v j(x), i, j = 1, ...,d. For
different i and j, the correlations between different vi(x) and v j(x) are close to zero; i.e., they
are nearly orthogonal to each other. The average absolute value of correlation is 0.09, and the
within-block average value is about the same as the between-block average value.

Unlike previous work on learning basis expansion model (or PCA-based model [6]), we do not
constrain the basis functions v(x) = (vi(x), i = 1, ...,d) to be orthogonal to each other. Instead,
we constrain them by our path integration model via the loss term L1. Nonetheless, the learned vi(x)
are close to being orthogonal in our experiments.

4



Figure 2: Correlation heatmap for each pair of the learned vi(x) and v j(x). The correlations are computed over
40×40 lattice of x.

1.6 Decoding and re-encoding

In the above analysis, the projection of v onto the local 2D plane around v(x) is x̂= argminx′ ‖v−
v(x′)‖2, which, for the linear model, amounts to decoding v to x̂ via

x̂= argmax
x′
〈v,v(x′)〉, (16)

because ‖v(x′)‖2 is constant. We project v to v(x̂), which is an re-encoding of v.

We can also perform decoding via the learned u(x′):

x̂= argmax
x′
〈v,u(x′)〉, (17)

and re-encoding v← v(x̂). For the above decoding, the heat map

h(x′) = 〈v,u(x′)〉= 〈v(x),u(x′)〉+ 〈ε,u(x′)〉= A(x,x′)+e(x′), (18)

where e(x′) = 〈ε,u(x′)〉 ∼ N (0,α2‖v(x)‖2‖u(x′)‖2/d). For A(x,x′) = exp(−‖x −
x′‖2/(2σ2)) = 〈v(x),u(x′)〉, if σ2 is small, A(x,x′) decreases to 0 quickly, i.e., if ‖x′−x‖> c,
then A(x,x′) < exp(−c2/(2σ2)), and the chance for the maximum of h(x′) to be achieved at an
x′ so that ‖x′−x‖ > c can be very small. The above analysis also provides a justification for
regularizing ‖u(x′)‖2 in learning.

For error correction, we want to use small σ2. However, for path planning, we need large σ2 so that
we can assess the adjacency as well as the change of the adjacency between the position on the path
and the target position even if they are far apart.

In the experiments in the main text, we use Eq. (17) for decoding. In Fig. 3, we also show the results
of path integration using Eq. (16) for decoding, whose performance is even better than Eq. (17).
Especially the error would remain 0 over 300 time steps and 1,000 episodes using Eq. (16) with
re-encoding. The advantage of (16) is that error correction is achieved within the grid cells system
itself without interacting with the place cells.

1.7 Connection to continuous attractor neural network (CANN) defined on 2D torus

The CANN models [2, 4, 5, 9, 1] assume that the grid cells v(x) = (vi(x), i = 1, ...,d) are placed on
a finite 2D square lattice with periodic boundary condition, i.e., a 2D torus T. If the lattice is N×N,
then d = N2. Let z ∈ T be the 2D coordinate of a pixel in T, then each grid cell vi is placed on a
unique zi ∈ T.

A CANN model hand-crafts the non-linear recurrent transformation v(x+∆x) = F(v(x),∆x) for
some parametric form of F , and the coding manifold (v(x),∀x) consists of the attracting fixed
points of F(·,0). In CANN, the recurrent connection weights between a pair of grid cells (vi,v j) only
depend on the relative positions of the two cells on the 2D torus, zi−z j, i.e., the connection weights

5



Figure 3: Path integration error over number of time steps. The mean and standard deviation band is computed
over 1,000 episodes. “v” means decoding by Eq. (16), and “u” means decoding by Eq. (17). The squared
domain is 1m × 1m.

are convolutional. Such a topographical arrangement may be physically realized on the 2D surface
of the cortex in the brain, but it may also be the conceptual interpretation of the connection weights
between the grid cells that are not necessarily placed on a physical 2D torus in the brain.

If we place the grid cells v = (vi, i = 1, ...,d) on the d = N ×N lattice of the 2D torus, either
physically or conceptually, then their activities v(x) = (vi(x), i = 1, ...,d) form an N×N “image”
defined on the 2D torus. The pattern of the “image” may be a localized “bump”, i.e., only a local
subset of the pixels of the N×N lattice have non-zero activities. Suppose each self-position x of
the agent can be mapped to a “bump” on the 2D torus centered at a corresponding z ∈ T. When
the agent moves in the 2D physical space, i.e., when x changes to x+∆x, then the “bump” formed
by v(x) = (vi(x), i = 1, ...,d = N2) moves on the 2D torus from z to z+∆z, while the shape of
the “bump” remains the same. The connection weights of the CANN are hand-crafted so that the
recurrent transformation of CANN realizes such a “mirroring” movement of the “bump”.

If each displacement ∆x of the agent in the 2D physical space can be mapped to a displacement ∆z of
the “bump” on the 2D torus T, then the recurrent transformation of the CANN forms a representation
of the 2D Euclidean group R2. If the local movement of the “bump” δz on the 2D torus is furthermore
conformal to the local movement δx of the agent in the 2D physical space, then the local movement
of the d = N2 dimensional vector v(x) = (vi(x), i = 1, ...,d = N2) formed by the grid cells in the
d-dimensional neural space, i.e., v(x+δx)−v(x), is also conformal to the movement δx of the
agent in the 2D physical space, and the isotropic scaling condition also holds.

In the above understanding, there are three types of movements. (1) The movement ∆x of the agent
in the 2D physical space R2. (2) The movement ∆z of the “bump” on the N×N lattice of 2D torus T.
(3) The movement v(x+∆x)−v(x) in the d = N2-dimensional neural space.

Our model on either the general transformation or the linear transformation does not assume a 2D
torus topography. In fact, no 2D topographical structure whatsoever is assumed in our model. The
topographical arrangement is not part of our model. Instead, it may be treated as an implementation
issue after the model is learned, i.e., how to arrange the grid cells physically on a 2D surface of cortex
so that a pair of grid cells with strong connection weights are placed close to each other. It may
also be treated as an interpretation issue after the model is learned, i.e., how to interpret the learned
connection weights.

Even though our model does not make topographical assumptions, our linear transformation model
appears to learn the torus topography automatically. Specifically, in our learned model, the response
maps of the grid cells within each module are spatially shifted versions of the same hexagon periodic
pattern. Therefore we can identify two directions in the 2D physical space that are 2π/3 apart, so that
v(x) rotates back to itself as x moves along these two directions for a certain distance. This implies
that the codebook manifold (v(x),∀x) forms a 2D torus as assumed by CANN models. Moreover,
the fact that the learned response maps of the grid cells within each module are spatially shifted
versions of the same hexagon periodic pattern also agrees with the CANN model that moves the
“bump” on the 2D torus by “mirroring” the motion in the 2D physical space. The learned hexagon

6



periodic patterns and the spatial shifts of the response maps may be related to the optimality of the
hexagon grid in terms of sampling, interpolation and packing.

Even though the CANN model realizes the movement of the “bump” on the 2D torus by a non-linear
recurrent model, such movement is a cyclic permutation of the activities of the grid cells, and the
permutation can be realized by a permutation matrix, which is an orthogonal matrix. Thus the v(x)
that satisfies the non-linear CANN model also satisfies our linear transformation model, where the
linear rotation matrix is a cyclic permutation matrix.

The torus topology is hardly surprising, even for the general transformation model. The Lie group
formed by (F(·,∆x),∀∆x) is abelian as it is a representation of the 2D additive Euclidean group R2.
If a connected abelian Lie group is compact, then the group is automatically a torus. See [7].

Furthermore, if the scaling factor s is globally a constant for all x, then the position embedding
(v(x),∀x) is an isometric embedding up to a global scaling factor, and its intrinsic geometry remains
Euclidean. It thus is a flat torus.

2 Experiments

2.1 Implementation details

Monte Carlo samples. The expectations in loss terms are approximated by Monte Carlo samples.
Here we detail the generation of Monte Carlo samples. For (x,x′) used in L0 = Ex,x′ [A(x,x′)−
〈v(x),u(x′)〉]2, x is first sampled uniformly within the entire domain, and then the displacement
dx between x and x′ is sampled from a normal distribution N (0,σ2I2), where σ = 0.48. This
is to ensure that nearby samples are given more emphasis. We let x′ = x+ dx, and those pairs
(x,x′) within the range of domain (i.e., 1m × 1m, 40×40 lattice) are kept as valid data. For (x,∆x)
used in L1 = Ex,∆x|v(x+∆x)− exp(B(θ)∆r)v(x)|2, ∆x is sampled uniformly within a circular
domain with radius equal to 3 grids and (0,0) as the center. Specifically, ∆r2, the squared length of
∆x, is sampled uniformly from [0,3] grids, and θ is sampled uniformly from [0,2π]. We take the
square root of the sampled ∆r2 as ∆r and let ∆x= (∆r cosθ ,∆r sinθ). Then x is uniformly sampled
from the region such that both x and x+∆x are within the range of domain. For (θ ,∆θ) used
in L2 = ∑

K
k=1Ex,θ ,∆θ [‖Bk(θ +∆θ)vk(x)‖−‖Bk(θ)vk(x)‖]2, we uniformly sample θ and θ +∆θ

from discretized angles, i.e., 144 directions discretized for circle [0,2π]. We will study sampling only
small ∆θ in the future.

Training details. The model is trained for 14,000 iterations. At each iteration, the samples are
generated online. For the first 8,000 iterations, we update all learnable parameters, while for the
following iterations, we fix the learned v(x) and update the other learnable parameters. The initial
learning rate is set as 0.003 and is decreased by a factor of 0.5 every 500 iterations after 8,000
iterations. We use Adam [8] optimizer. The model is trained on a single Titan XP GPU. We apply the
maximum batch size that can fit into the single GPU, which is 90,000. It takes about 3.5 hours to
train the model on a single Titan XP GPU.

Baseline methods. In Table 1 of the main text, we compare the learned neurons with the ones from
other two optimization-based learning methods [3, 11]. For [3], we run the code released by the
authors (https://github.com/deepmind/grid-cells) to learn the model and compute gridness
scores for the learned neurons. For [11], we use the pre-trained weights released by the authors
(https://github.com/ganguli-lab/grid-pattern-formation) to get the learned neurons
and compute the gridness scores. Both the code of [3] and pre-trained weights of [11] use Apache
License V2.

Usage of data. In this paper, we mainly use simulated trajectories as training data, and thus we do
not think that the data contain any personally identifiable information or offensive content. The only
existing data we use is the pre-trained weights of the baseline method [11]. Under Apache License
V2, we believe it is fully approved by the authors to use the pre-trained weights.

7

https://github.com/deepmind/grid-cells
https://github.com/ganguli-lab/grid-pattern-formation


2.2 Learned patterns

Fig. 4 displays the autocorrelograms of learned patterns of v(x).

Figure 4: Autocorrelograms of the learned patterns of v(x).

Fig. 5 shows the learned patterns of u(x) with 16 blocks of 12 cells in each block. Regular hexagon
patterns also emerge.

Figure 5: Learned patterns of u(x) with 16 blocks of size 12 cells in each block. Every row shows the learned
patterns within the same block.

For learned firing patterns of v(x), we also display the histogram of grid orientations in Fig. 6, where
we do not observe clear clusters.

Figure 6: Histogram of grid orientations of the learned firing patterns of v(x).

In Fig. 7, we show the learned patterns of a block of B(θ). Each element shows significant
sine/cosine tuning over θ . For the other blocks, the patterns are all similar.

Gaussian kernel. Because A(x,x′) is a sharp Gaussian kernel, it contains a whole range of
frequencies in the 2D Fourier domain. The learned response maps of the grid cells span a range
of frequencies or scales too. Each module or block focuses on a certain frequency band, which
corresponds to the metric of the module. We assume individual place field A(x,x′) to exhibit a
Gaussian shape, rather than a Mexican-hat pattern (with balanced excitatory center and inhibitory

8



Figure 7: Learned patterns of a block of B(θ). Each subfigure shows the value of an element in B(θ) (vertical
axis) over θ (horizontal axis).

surround) as assumed in previous basis expansion models [6, 11] of grid cells. The Mexican-hat or
difference of Gaussians pattern occupies a ring in the 2D Fourier domain. It corresponds to a module
in our model. But we use isotropic condition to enforce each module to be within a ring in the Fourier
domain, and we use different modules to pave the whole Fourier domain.

2.3 Error correction

We begin by assessing the ability of error correction of the learned system following the setting in
Proposition 1. Specifically, for a given location x, suppose the neurons are perturbed by Gaussian
noise: v = v(x)+ ε , where ε ∼N (0,τ2Id) and τ2 = α2(‖v(x)‖2/d), so that α2 measures the
variance of noise relative to the average magnitude of (vi(x)

2, i = 1, ...,d) and α measures the
relative standard deviation. We infer the 2D position x̂ from v by x̂= argminx′ ‖v−v(x′)‖2. Fig.
8 displays the inference error over the relative standard deviation α of the added Gaussian noise. We
also show the results using the learned u(x′) for inference (Eq. (17)). The system works remarkably
well even if α = 2.

We further assess the ability of error correction in long distance path integration. Specifically,
along the way of path integration, at every time step t, two types of errors are introduced to vt : (1)
Gaussian noise or (2) dropout masks, i.e., certain percentage of units are randomly set to zero. Fig.
9 summarizes the path integration performance with different levels of injected errors for T = 100,
using v(x′) (Eq. (16)) or u(x′) (Eq. (17)) for decoding. The results show that re-encoding at each
step helps error correction, especially for dropout masks. For Gaussian noise, even without decoding
and re-encoding at each step, decoding at the final step alone is capable of removing much of the
noise. Notably, with re-encoding, the path integration works well even if Gaussian noise with α = 1
is added or 50% units are randomly dropped out at each step, indicating that the learned system is
robust to different sources of errors.

9



Figure 8: Error correction results following the setting in Proposition 1. The error bar stands for the standard
deviation over 1,000 trials. “v” means decoding by Eq. (16), and “u” means decoding by Eq. (17). The squared
domain is 1m × 1m.

Figure 9: Path integration results with different levels of injected errors. Left: Gaussian noise. The magnitude
of noise is measured using the average of the squared magnitudes of the units in v(x) as the reference. Right:
dropout masks. Certain percentage of units are randomly set to zero at each step. “v” means decoding by Eq.
(16), and “u” means decoding by Eq. (17). The squared domain is 1m × 1m.

2.4 Non-linear transformation model

We test our method with a non-linear transformation model:

F(v(x),∆r,θ) = ReLU(exp(B(θ)∆r)v(x)), (19)

where we insert ReLU(a) = max(0,a) into the linear transformation model.

We use numerical differentiation to define directional derivative

fθ (v(x)) = [v(x+δx)−v(x)]/δ r, (20)

where δx = (δ r cosθ ,δ r sinθ), with pre-defined δ r. The reason for numerical differentiation is
because the derivative of ReLU is an indicator function, which is not differentiable. fθ (v(x)) needs
to be differentiable for minimizing the loss function (an alternative to numerical differentiation is to
use sigmoid function to approximate the indicator function).

We continue to use the same loss function except with the above two changes. Interestingly, regular
hexagon patterns continue to emerge (average gridness score 0.83, percentage of grid cells 70.21%).
See Fig. 10 for the learned patterns of v(x).

2.5 Path planning

Our grid cells model can be applied to path planning. Specifically, according to [12], the adjacency
kernel can be modeled by

Aγ(x,x
′) = E

[
∞

∑
t=0

γ
t1(xt = x′)|x0 = x)

]
= 〈v(x),uγ(x

′)〉, (21)

10



Figure 10: Learned patterns of v(x) with the non-linear transformation model (Eq. (19)). Every row shows the
learned patterns within the same block.

where γ is the discount factor that controls the temporal and spatial scales, E is with respect to a
random walk exploration policy, and 1(·) is the indicator function. For random walk in open field,
Aγ(x,x

′) ∝ exp(−‖x−x′‖2/2σ2
γ ), where σ2

γ depends on γ .

To enable path planning, we need kernels of both big and small spatial scales to account for long and
short distance planning respectively. To this end, we discretize γ into a finite list of scales, and learn a
list of corresponding uγ(x

′) together with v(x) and B(θ) using the loss function in Section 5 of the
main text.

With the learned model, path planning can be accomplished by steepest ascent on the adjacency to
the target position. Specifically, let x̂ be the target or destination. Let x(t) be the current position in
the path planning process, encoded by v(x(t)). The agent plans the next displacement by steepest
ascent on

Aγ(x
(t)+∆x, x̂) = 〈v(x(t)+∆x),uγ(x̂)〉= 〈M(∆x)v(x(t)),uγ(x̂)〉, (22)

over allowed ∆x within a single step, where M(∆x) = exp(B(θ)∆r), with ∆x= (∆r cosθ ,∆r sinθ).
We plan

∆x(t+1) = argmax
∆x

Aγ(x
(t)+∆x, x̂), (23)

and let x(t+1) = x(t)+∆x(t+1).

The scale γ is selected as the smallest one that satisfies max∆x〈M(∆x)v(x(t)),uγ(x̂)〉> .2. We can
also use maxγ max∆x〈M(∆x)v(x(t)),uγ(x̂)〉 for scale selection.

We test path planning in the open field environment. The model is first learned using a single-scale
kernel function Aγ(x,x

′) = exp(−‖x−x′‖2/2σ2
γ ) where σγ = 0.07. Then we assume a list of

three scales: σγ = [0.07,0.14,0.28] and learn the corresponding list of uγ(x
′). The pool of allowed

displacements for a single step is defined as: dr can be 1 or 2 grids, while θ can be chosen from 200
discretized angles over [0,2π]. Fig. 11 demonstrates several examples of path planning in the open
field environment, where the agent is able to plan straight path to the target. When x(t) is far from the
target, kernel with large σγ is chosen, and as x(t) approaches the target, the chosen kernel gradually
switches to the one with small σγ . A planning episode is treated as a success if the distance between
x(t) and target is smaller than 0.5 grid within 40 time steps. The agent achieves a success rate of
100% (tested for 10,000 episodes).

For a field with obstacles or rewards, we can learn the deformed Aγ(x,x
′) and (v(x),uγ(x

′)) by
temporal difference learning with a random walk exploration policy as suggested in [12]. After
learning Aγ(x,x

′) and (v(x),uγ(x
′)), we can continue to use Eq. (23) for path planning. We shall

further study it in future work.

11



Figure 11: Examples of path planning results in an open field environment. The target is shown as a red star.

2.6 Integrating egocentric vision

When the agent moves in darkness, it can infer its self-position by integrating self-motion, as
illustrated by our experiments on path integration. If there is visual input, the agent can infer its
self-position (as well as head direction) from the visual image alone. We extend our grid cells model
to study this problem of egocentric vision, which is important in computer vision.

Specifically, suppose the agent navigates in a 3D scene such as a room, and the height of the eye
(or camera) remains fixed. Suppose at 2D self-position x and with head direction θ , the agent sees
an image I , which is called a posed image. We use the vector representation v(x) in our original
grid cells model to represent the 2D self-position x, and use another vector representation h(θ) to
represent the head direction θ . If the agent changes its head direction from θ to θ +∆θ , h(θ) is
transformed to

h(θ +∆θ) = exp(C∆θ)h(θ). (24)

We assume that there are K modules or blocks in h(θ) and C is skew-symmetric. This is similar to
the transformation of v(x) in our grid cells model.

(x,θ) is called the pose of the camera (or eye), and we call (v(x),h(θ)) the pose embedding.

To associate the pose embedding (v(x),h(θ)) with the posed image I , we use a vector representation
or scene embedding s to represent the 3D scene which is shared across different posed images of the
same scene, and we learn a generator network Gβ that maps the embeddings s and (v(x),h(θ)) to
the posed image I:

I = Gβ (s,v(x),h(θ))+ ε, (25)

where the generator Gβ is parametrized by a multi-layer deconvolutional neural network with
parameters β , and ε is the residual error.

Given the above assumptions, we introduce two extra loss terms in addition to the loss function
described in Section 5 of the main text.

L3 =
K

∑
k=1

Eθ ,∆θ‖hk(θ +∆θ)− exp(Ck∆θ)hk(θ)‖2, (26)

L4 = E‖I−Gβ (s,v(x),h(θ))‖2. (27)

L3 is to model the head rotation, and L4 is to model the generation of the posed image.

During training, we alternatively update (Gβ ,s) and (v(x),B(θ),u(x′),h(θ),C) by gradient
descent on the overall loss function that is a linear combination of L0, L1 and L2 in the main text, as
well as L3 and L4 introduced above.

The learned model enables two useful applications:

(a) Novel view synthesis. Given an unseen pose (x,θ), the model can predict the corresponding
posed image by Gβ (s,v(x),h(θ)).

(b) Inference of pose, i.e., self-position x and head direction θ , from posed image I alone. Specifi-
cally, after training the model, we can learn an additional inference network Fξ that maps an observed
posed image I to its pose embedding v(x) and h(θ). The inference network is learned by minimizing
the `2 distance between the predicted and true pose embeddings: E‖(v(x),h(θ))−Fξ (I)‖2. Then

12



Table 1: Average error of pose inference.

x1 x2 θ

Error .0225m .0230m 1.37o

given an unseen posed image I , we can infer the pose by argminx,θ ‖(v(x),h(θ))−Fξ (I)‖2. In this
task, Fξ (I) is the estimate of (v(x),h(θ)), and it is likely that this estimate contains error. This error
will translate to the error in the estimated (x,θ). Thus our theoretical analysis of error translation in
the main text is highly relevant, and the isotropic scaling condition is motivated by the analysis of
error translation.

We conduct experiments on a dataset generated by the Gibson Environment [14], which provides
tools for rendering images of different poses in 3D rooms. Specifically, we select 20 areas of size 2m
× 2m from different rooms and render about 28k 64 × 64 RGB posed images for each area. The
camera height is fixed and the camera can only rotate horizontally. The scene embedding vector s is
of 512 dimensions. Both v(x) and h(θ) are of 192 dimensions, partitioned into K = 16 modules.

Hexagon patterns still emerge in the learned v(x) (average gridness score 0.71). For novel view
synthesis, we evaluate the performance on 374k testing posed images. The resulting peak signal-to-
noise ratio (PSNR) between synthesized images and ground truth images is 25.17, indicating that the
model can generate reasonable unseen posed images. Fig. 12 demonstrates several examples of the
novel view synthesis results.

Figure 12: Examples of synthesizing novel views. Left: Ground truth unseen posed images. Right: synthesized
unseen posed images.

For inference of pose (self-position x= (x1,x2) and head direction θ ), we evaluate the performance
on the same 374k testing posed images and report the average inference error in Table 1. The
estimates are reasonably accurate.

2.7 Ablation studies

Isotropic scaling condition is necessary for hexagon grid patterns. A natural question is whether
the isotropic scaling condition (condition 2) is important for learning hexagon grid patterns. To
verify this, we learn the model by removing the loss term L2 (Eq. (19) in the main text) from the
loss function, which constrains the model to meet condition 2. As shown in Fig. 13, more strip-like
patterns emerge without L2, indicating that condition 2 is important for hexagon grid patterns to
emerge.

Assumption of u(x′)≥ 0 is not necessary for hexagon grid patterns. During training, we make
an assumption of u(x′)≥ 0 to make sure the connections from grid cells to place cells are excitatory
[16, 10]. However, we want to emphasize this is not a key assumption in our model. Fig. 14
demonstrates the learned neurons in the network without assuming u(x′) ≥ 0, where hexagonal
grid firing patterns also emerge. The average gridness score is 0.82 and the percentage of grid
cells is 87.50%. However, the grid activations can be either positive/excitatory (in red color) or
negative/inhibitory (in blue color).

13



Figure 13: Learned neurons without loss term L2, which is the constraint on isotropic scaling condition. More
strip-like firing patterns emerge.

Figure 14: Learned neurons without the assumption of u(x′)≥ 0. Hexagonal grid firing patterns also emerge,
with the grid activations being either positive/excitatory (in red color) or negative/inhibitory (in blue color).

Skew-symmetric assumption of B(θ) is not important for hexagon grid patterns. To make
the linear transformation a rotation, we have assumed that B(θ) is skew-symmetric, i.e., B(θ) =
−B(θ)>. Nonetheless, this assumption is not important for the emergence of hexagon grid patterns.
Fig. 15 demonstrates the learned neurons without assuming that B(θ) is skew-symmetric. Hexagon
grid firing patterns emerge in most of the neurons, with only one block of square grid firing patterns.

Figure 15: Learned neurons without skew-symmetric assumption of B(θ). Hexagonal grid firing patterns
emerge in most of the neurons, with a block of square grid firing patterns.

Number and sizes of blocks do not matter. It is worthwhile to mention that the emergence of
hexagonal grid firing patterns in the learned neurons are not due to specific design of the block size
or the number of blocks. Fig. 16 visualizes the learned neurons by fixing the total number of neurons
at 192 and altering the block size and number of blocks. Hexagon patterns emerge in all the settings.

14



Multiple blocks or modules are necessary for learning grid patterns of multiple scales. We
further try to fully remove the assumption of blocks or modules; i.e., we learn a single block of B(θ).
Fig. 17 shows the learned neurons and the corresponding autocorrelograms. All the learned neurons
share similar large scales, which indicates that the high frequency part of A(x,x′) may not be fitted
very well.

References
[1] Haggai Agmon and Yoram Burak. A theory of joint attractor dynamics in the hippocampus

and the entorhinal cortex accounts for artificial remapping and grid cell field-to-field variability.
eLife, 9:e56894, 2020.

[2] Daniel J Amit and Daniel J Amit. Modeling brain function: The world of attractor neural
networks. Cambridge university press, 1992.

[3] Andrea Banino, Caswell Barry, Benigno Uria, Charles Blundell, Timothy Lillicrap, Piotr
Mirowski, Alexander Pritzel, Martin J Chadwick, Thomas Degris, Joseph Modayil, et al. Vector-
based navigation using grid-like representations in artificial agents. Nature, 557(7705):429,
2018.

[4] Yoram Burak and Ila R Fiete. Accurate path integration in continuous attractor network models
of grid cells. PLoS computational biology, 5(2):e1000291, 2009.

[5] Jonathan J Couey, Aree Witoelar, Sheng-Jia Zhang, Kang Zheng, Jing Ye, Benjamin Dunn,
Rafal Czajkowski, May-Britt Moser, Edvard I Moser, Yasser Roudi, et al. Recurrent inhibitory
circuitry as a mechanism for grid formation. Nature neuroscience, 16(3):318–324, 2013.

[6] Yedidyah Dordek, Daniel Soudry, Ron Meir, and Dori Derdikman. Extracting grid cell charac-
teristics from place cell inputs using non-negative principal component analysis. Elife, 5:e10094,
2016.

[7] William Gerard Dwyer and CW Wilkerson. The elementary geometric structure of compact lie
groups. Bulletin of the London Mathematical Society, 30(4):337–364, 1998.

[8] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[9] Hugh Pastoll, Lukas Solanka, Mark CW van Rossum, and Matthew F Nolan. Feedback inhibition
enables theta-nested gamma oscillations and grid firing fields. Neuron, 77(1):141–154, 2013.

[10] David C Rowland, Horst A Obenhaus, Emilie R Skytøen, Qiangwei Zhang, Cliff G Kentros,
Edvard I Moser, and May-Britt Moser. Functional properties of stellate cells in medial entorhinal
cortex layer ii. Elife, 7:e36664, 2018.

[11] Ben Sorscher, Gabriel Mel, Surya Ganguli, and Samuel A Ocko. A unified theory for the origin
of grid cells through the lens of pattern formation. 2019.

[12] Kimberly L Stachenfeld, Matthew M Botvinick, and Samuel J Gershman. The hippocampus as
a predictive map. Nature neuroscience, 20(11):1643, 2017.

[13] Michael Taylor. Lectures on lie groups. Lecture Notes, available at http://www. unc.
edu/math/Faculty/met/lieg. html, 2002.

[14] Fei Xia, Amir R Zamir, Zhiyang He, Alexander Sax, Jitendra Malik, and Silvio Savarese. Gibson
env: Real-world perception for embodied agents. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 9068–9079, 2018.

[15] Anthony Zee. Group theory in a nutshell for physicists. Princeton University Press, 2016.
[16] Sheng-Jia Zhang, Jing Ye, Chenglin Miao, Albert Tsao, Ignas Cerniauskas, Debora Ledergerber,

May-Britt Moser, and Edvard I Moser. Optogenetic dissection of entorhinal-hippocampal
functional connectivity. Science, 340(6128), 2013.

15



(a) Block size = 16

(b) Block size = 24

(c) Block size = 32

(d) Block size = 64

Figure 16: Learned patterns of v(x) with different block sizes. The total number of units is fixed at 192. Every
row shows the learned patterns within the same block.

16



Figure 17: Left: learned neurons with a single block of B(θ). The firing patterns has a single large scale,
meaning that the high frequency part of A(x,x′) is not fitted very well. Right: autocorrelograms of the learned
neurons. Some exhibit clear hexagon grid patterns, while the other do not, probably because the scale of those
grid patterns are beyond the scope of the whole area.

17


	Theoretical analysis
	Graphical illustrations of key equations
	Proof of Theorem 1 on conformal embedding
	Proofs of Theorem 2 and Proposition 1 on error correction
	Proof of Theorem 4 on hexagon grid patterns
	From group representation to orthogonal basis functions
	Decoding and re-encoding
	Connection to continuous attractor neural network (CANN) defined on 2D torus

	Experiments
	Implementation details
	Learned patterns
	Error correction
	Non-linear transformation model
	Path planning
	Integrating egocentric vision
	Ablation studies


