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ABSTRACT
Domain generalization (DG) aims at solving distribution shift prob-
lems in various scenes. Existing approaches are based on Convolu-
tion Neural Networks (CNNs) or Vision Transformers (ViTs), which
suffer from limited receptive fields or quadratic complexity issues.
Mamba, as an emerging state space model (SSM), possesses superior
linear complexity and global receptive fields. Despite this, it can
hardly be applied to DG to address distribution shifts, due to the
hidden state issues and inappropriate scan mechanisms. In this pa-
per, we propose a novel framework for DG, named DGMamba, that
excels in strong generalizability toward unseen domains and mean-
while has the advantages of global receptive fields, and efficient lin-
ear complexity. Our DGMamba compromises two core components:
Hidden State Suppressing (HSS) and Semantic-aware Patch Refin-
ing (SPR). In particular, HSS is introduced to mitigate the influence
of hidden states associated with domain-specific features during
output prediction. SPR strives to encourage the model to concen-
trate more on objects rather than context, consisting of two designs:
Prior-Free Scanning (PFS), and Domain Context Interchange (DCI).
Concretely, PFS aims to shuffle the non-semantic patches within
images, creating more flexible and effective sequences from images,
and DCI is designed to regularize Mamba with the combination
of mismatched non-semantic and semantic information by fusing
patches among domains. Extensive experiments on four commonly
used DG benchmarks demonstrate that the proposed DGMamba
achieves remarkably superior results to state-of-the-art models. The
code will be made publicly available.

CCS CONCEPTS
• Computing methodologies→ Image representations.

KEYWORDS
Domain generalization, State space model, Mamba

1 INTRODUCTION
Humans are easily able to recognize images with domain distribu-
tion shifts (such as background changes [4] and various lighting
conditions [53]) since the main semantic concepts are consistent.
However, this is challenging for multimedia [19, 26, 41, 43, 47, 52,
65, 89, 91] and computer vision systems [3, 15, 27, 28, 51, 56]. One
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Figure 1: Comparison of current CNN-based methods, ViT-
based methods, and our proposed DGMamba on PACS of DG.
Compared with these state-of-the-art (SOTA) methods, our
proposed DGMamba achieves the best trade-off between the
generalization performance (Accuracy) and computational
complexity (Number of parameters).

effective approach for eliminating distribution shifts is domain gen-
eralization (DG) [5, 20, 85], which attempts to encourage models
to focus on semantic factors akin to humans and overlook non-
essential features [17, 21, 38, 67, 69, 78, 83, 85].

A large amount of research in DG has concentrated on the design
of special modules to acquire robust representation [62, 74, 78, 90],
including domain alignment [16, 30, 45, 81], feature contrastive
learning [32, 46], and style augmentation [8, 65, 75, 83, 88], etc.
Nonetheless, prevailing DG methods heavily rely on CNNs as the
backbone to extract latent features, only possessing local recep-
tive fields. As a result, they tend to learn local details and over-
look global information, impeding generalization and leading to
less-desired performances on unseen domains. Recent advance-
ments in DG [35, 49, 84] have shifted the backbone architecture
from CNN [25] to ViT [11] due to its global receptive fields of self-
attention layer [22, 35, 49, 50]. However, such attention layers in
ViT introduce the challenge of quadratic complexity and lead to
unacceptable computational inefficiency and memory overhead es-
pecially when models are very large, which makes it hard to deploy
these DG methods in real-world applications.

Mamba, as an emerging state space model (SSM), possesses su-
perior linear complexity and global receptive fields. It has been
recently explored in language modeling and has a promising poten-
tial in computer vision. By employing input-dependent parameters
in SSM, Mamba has exhibited promising performance in sequence
data modeling and capturing long-range dependencies. In particu-
lar, VMamba [44] and Vision Mamba [92] propose to traverse the
spatial domain and convert any non-causal visual image into or-
der patch sequences. However, such SSM-based models inevitably

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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(a) Hidden state propagation in Mamba 

(c) Fixed patch scanning for Mamba

In fixed manual scanning order
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h(t): hidden state at time t    SSM: state space model
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SSM
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(b) Hidden state propagation in our DGMamba

(d) Patch scanning in our DGMamba

In flexible scanning order

3 2 1 0 4 5 6 7 8…
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Domain 1 Domain 2 h(t): hidden state at time t    SSM: state space model

Figure 2: (a) When directly adapting Mamba to DG, domain-
specific information captured by hidden states may be accu-
mulated or even amplified during the hidden state propaga-
tion, impeding the generalizability. (b) In contrast, Hidden
State Suppressing (HSS) is introduced in our DGMamba to
alleviate the adverse effect of domain-specific information
in hidden states. (c) Simple and fixed scanning strategies for
Mamba may result in unexpected domain-specific informa-
tion within the generated sequence data when scanning 2D
images into 1D sequences, thereby undermining the ability
of Mamba to address distribution shifts. (d) In contrast, the
proposed Prior-Free Scanning in DGMamba endeavors to
break the prior bias introduced by the fixed manual scan-
ning, offering more meaningful sequence data.

exhibit performance degradation in unseen domains due to the
lack of consideration of domain shifts and tailored designs, and
there still exist generalization performance gaps compared with the
state-of-the-art DG methods, e.g,, iDAG [30] on the PACS dataset
(87.7% vs. 88.8%). Therefore, how to improve the generalizability of
Mamba-based models and investigate what hinders Mamba from
addressing distribution shifts for DG is a very critical problem.

In this paper, our goal is to enhance the generalizability of
Mamba-likemodels toward unseen domains. Ourmotivationsmainly
lie in two aspects. Firstly, we observe that hidden states, as an essen-
tial part of Mamba, play an important role in modeling long-range
correlations by recording the historical information in sequence
data, facilitating global receptive fields. However, when dealing
with unseen images containing diverse domain-specific informa-
tion from varying domains, such hidden states may yield undesir-
able effects. The domain-specific information could potentially be
accumulated or even amplified in hidden states during propagation,

as indicated in Figure 2 (a), thereby degrading the generalization
performance. Secondly, how to effectively scan 2D images into 1D
sequence data that is suitable for Mamba in DG is still an open
problem since the pixels or patches of images do not exhibit the
necessary causal relations existed in sequence data. Although re-
cent works [37, 44, 92] have explored various scanning strategies for
vision tasks, such simple 1D traverse strategies may result in unex-
pected domain-specific information within the generated sequence
data (Figure 2(c)), thereby undermining the ability of Mamba to
address distribution shifts. Besides, these fixed scanning strategies
largely overlook domain-agnostic scanning and are highly sensitive
to various varying scenarios, making it difficult to apply to DG.

Motivated by the above facts, we propose DGMamba, a novel
State Space Model-based framework for domain generalization
that excels in strong generalizability toward unseen domains and
meanwhile has the advantages of global receptive fields, and effi-
cient linear complexity. DGMamba comprises two key modules,
Hidden State Suppressing (HSS) and Semantic-aware Patch Refin-
ing (SPR). Firstly, HSS is presented to eliminate the detrimental
effect of non-semantic information contained in hidden states by
selectively suppressing the corresponding hidden states during
output prediction. By reducing non-semantic information in SSM
layers, DGMamba learns domain invariant features. Secondly, SPR is
introduced to encourage the model to pay more attention to objects
rather than context, consisting of two key designs: Prior-Free Scan-
ning (PFS), and Domain Context Interchange (DCI). Specifically,
PFS is designed to shuffle the context patches within images that
contribute less to the label prediction. It provides an effective 2D
scanning mechanism to traverse 2D images into 1D sequence data.
As a result, PFS possesses the ability to shift the model’s attention
from the context to the object. Besides, to alleviate the influence
of diverse context information and local texture details across dif-
ferent domains, DCI replaces the context patches of images with
those from different domains. The proposed DCI brings in local
texture noise and regularizes the model on the combination of mis-
matched context and object. By leveraging both linear complexity
and heterogeneous context tokens, DCI learns more robust repre-
sentation efficiently. Aggregating all these contributions into one
architecture, our proposed DGMamba achieves strong results on
four DG benchmarks. As shown in Figure 1, compared with previ-
ous CNN-based and ViT-based methods, our DGMamba achieves
the best trade-off between accuracy and parameters. In summary,
we make the following contributions:

• We propose DGMamba, a novel State Space Model-based
framework for domain generalization that excels in strong
generalizability toward unseen domains and meanwhile has
the advantages of global receptive fields and efficient lin-
ear complexity. To the best of our knowledge, this is the
first work that studies the generalizability of the SSM-based
model (Mamba) in domain generalization.

• We present Hidden State Suppressing (HSS) and Semantic-
aware Patch Refining (SPR) to improve the generalizability
of the SSM-based model. Concretely, HSS is introduced to
mitigate the detrimental influence rising from the hidden
states, reducing the gap between hidden states across do-
mains. SPR, comprising two modules, namely PFS and DCI,
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is designed to augment the context environments to shift
the model’s attention to the object.

• Extensive experiments with analyses on widely used bench-
marks in DG show that our presented DGMamba achieves
state-of-the-art generalization performance, showcasing its
effectiveness and superiority in boosting the generalizability
toward unseen domains.

2 RELATEDWORK
CNN-based models in DG employ convolution neural networks,
e.g., Alexnet [33] and ResNet [25], to extract stronger representa-
tions. These approaches specially designed submodules to regu-
larize the acquired features. The most intuitive idea for DG is to
minimize the empirical source risk [1, 29, 70, 80]. Domain align-
ment [16, 39, 63, 79, 81] constrained models to convey little domain
characteristics by an extra domain discriminative network. Feature
disentanglement methods [40, 64, 65, 73] aim to disentangle the
features to acquire task-specific information. Another significant
avenue is to augment the source data [55, 61, 86, 86, 88], thereby pro-
viding models with more samples with diverse styles. Contrastive
learning [31, 31, 31, 32, 46, 71] employed the contrastive loss func-
tion on features to reduce the gap of representation distributions
in one category. Ensemble learning [7, 9, 32] utilized stochastic
weight average to find a flatter minimum in loss spaces to enhance
generalizability. Approaches based on meta-learning [2, 12, 13, 82]
attempt to address distribution shifts during the training phase,
enabling models to learn to tackle domain shifts. Despite their re-
markable progress in DG and the linear complexity, the lack of
global receptive fields hinders further developments of CNN-based
models for boosting generalization performance [35, 44].
ViT-based models in DG leverage ViT [11] as the backbone to
learn high-quality representations [49, 72], harnessing the merit
of global receptive fields inherent in ViT. Discovering that the ar-
chitecture of ViT aligns better with the invariant correlations than
CNN [35], GMoE [35] utilized a generalizable mixture of experts
to capture diverse attributes with different experts effectively. SD-
ViT [57] attempted to tackle the overfitting in source domains by
guaranteeing better prediction results from the tokens in intermedi-
ate ViT layers. TFS-ViT [49] augmented the feature styles by token
replacement. Despite the inherent advantages in global receptive
fields, ViT-based models suffer from the quadratic complexity with
respect to the image resolution rising from the attentionmechanism,
leading to extra overhead of computation and memory.
Mamba has been widely explored in vision task [24, 37, 42, 44, 66,
68, 77, 92] to integrate both excellence of global receptive fields
and linear complexity. VMamba [44] and Vim [92] proposed visual
state space models to deploy Mamba for vision tasks. PCM [77]
employed Mamba in point cloud analysis by introducing merged
point prompts. Unfortunately, rare research has been conducted on
the generalization performance of Mamba in vision tasks. To our
knowledge, this is the first time that the SSM-based model Mamba
has boosted the model generalization performance.

3 METHOD
In this section, we begin by introducing the concepts related to
Mamba [18], i.e., the State Space Model (SSM), and the selective

scan mechanism. Based on this, we propose DGMamba to enhance
the model generalization performance. As shown in Figure 3, DG-
Mamba includes two core modules: Hidden State Suppressing (HSS),
and Semantic-aware Patch Refining (SPR). HSS serves to suppress
the domain-specific information conveyed in the hidden states by
reducing the corresponding weighting factors. SPR encourages the
model to focus more on the object instead of the context. SPR in-
cludes two core elements: Prior-Free Scanning (PFS), and Domain
Context Interchange (DCI). PFS augments the range of the scan-
ning mechanism of Mamba by randomly shuffling the non-semantic
patches within images, and DCI attempts to distort images by sub-
stituting context patches with those in other domains.

3.1 Preliminaries
State Space Model (SSM). Derived from linear time-invariant
systems, SSM-based models endeavor to establish a correlation
between signals 𝑥 (𝑡) ∈ R𝐿 and the resultant response 𝑦 (𝑡) ∈ R𝐿
via the hidden state ℎ(𝑡) ∈ R𝑁 . Mathematically, these models can
be represented as linear ordinary differential equations (ODEs), as
denoted by Eq. (1):

ℎ′ (𝑡) = 𝐴ℎ(𝑡) + 𝐵𝑥 (𝑡), 𝑦 (𝑡) = 𝐶ℎ(𝑡), (1)

where the parameters encompass 𝐴 ∈ R𝑁×𝑁 , 𝐵,𝐶 ∈ R𝑁 , with 𝑁

denoting the state size.
When applied to deep learning, time-continuous SSMs require

adjustment through discretization to align with the input sample
rate. Based on the discretization methodology in [23], the ODE
depicted in Eq. (1) can be discretized as following:

ℎ𝑡 = 𝐴ℎ𝑡−1 + 𝐵𝑥𝑡 , 𝑦𝑡 = 𝐶ℎ𝑡 ,

𝐴 = 𝑒Δ𝐴, 𝐵 = (Δ𝐴)−1
(
𝑒Δ𝐴 − 𝐼

)
· Δ𝐵,

(2)

where Δ represents the sample parameter of the inputs, facilitating
the discretization process.
2D Selective ScanMechanism. In addition to the challenge posed
by the inconsistency between the time-continues system and dis-
cretized signals, the characteristics of multi-media signals, such as
images and videos, mismatch the architecture of the SSM-based
models, which are designed to capture information within temporal
signals or sequence data. As a different modal from language, im-
ages contain ample spatial information, including local texture and
global shape, which may not exhibit causal correlations in sequence
data. To tackle this problem, the selective scan mechanism becomes
imperative. Existing methods [37, 44, 92] tend to scan images into
sequence data in a fixed manner. For instance, in VMamba [44], im-
ages are flattened into two patch sequences along row and column,
respectively. VMamba models these two sequences by scanning
forward and backward, respectively.
Shortcomings of Mamba for DG. However, the naive Mamba
network encounters challenges when confronted with distribution
shifts in DG, achieving a generalization performance of 87.7% on
PACS dataset, inferior to the existing DG method iDAG [30] (88.8%).
In the following section, we will delve into the reason behind this
performance gap and propose effective strategies to assist Mamba
in tackling distribution shifts for DG.
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Figure 3: The framework of our DGMamba. Before passing the patches into Mamba layers, the proposed Semantic-aware Patch
Refining (SPR) is employed. Concretely, for the samples not in the top percentage of prediction confidence, we apply Prior-Free
Scanning to randomly shuffle the background patches that exhibit low Grad-CAM scores, providing DGMamba with a more
flexible and effective 2D scanning mechanism. For the remaining samples, we substitute their background patches with those
from diverse domains, introducing texture noise and context confusion to avoid overfitting. In addition, the Hidden State
Suppressing (HSS) is introduced to reduce the importance of hidden states that comprise domain-specific information.

3.2 Hidden State Suppressing
Domain-specific information poses a great challenge for deep learn-
ing models, including the SSM-based models [23, 44, 77]. In these
SSM-based models, the hidden states ℎ(𝑡) play an essential role
in capturing long-range correlations by propagating historical in-
formation along the sequence data. It accumulates and propagates
information from previous time steps, allowing the model to re-
member past states and information and thereby endowing the
model with global receptive fields.

Despite the significant role of hidden states in Mamba, the work-
ing mechanism of hidden states could bring about negative influ-
ences when facing distribution shifts. As shown in Figure 2, when
confronted with images from diverse domains, domain-specific in-
formation could also be accumulated or even be increased in hidden
states, impeding model generalizability. To mitigate the influence
of accumulated domain-specific information in hidden states when
predicting 𝑦, we propose to suppress the corresponding parts in the
hidden states ℎ(𝑡), which may carry domain-specific information.

In order to suppress the unexpected domain-specific informa-
tion conveyed in the hidden states, the initial task is to recognize
the hidden states that hold these adverse factors. According to the
propagation rule of hidden states in Eq. (2), Δ𝐴 (showing a posi-
tive correlation with 𝐴) dominates the transition of hidden states.
While the hidden states ℎ𝑡 serve a pivotal role when predicting the
output 𝑦𝑡 . Thus, hidden states that show stronger correlations with

the genuine label should be preserved more prominently during
the propagation of hidden states. Consequently, they necessitate
larger propagation coefficients in 𝐴, while less associated hidden
states require comparatively smaller coefficients in 𝐴. As a result,
the value of Δ𝐴 is utilized to determine which hidden states will
undergo suppression. Mathematically, the proposed Hidden State
Suppressing (HSS) strategy can be formulated as follows:

𝑦𝑡 = 𝐶ℎ𝑡 , 𝐶 = 𝐶 ⊙ 𝑀,

𝑀 = (Δ𝐴 > 𝛼) + (1 − (Δ𝐴 > 𝛼)) ⊙ Δ𝐴,
(3)

where𝛼 ∈ [0, 0.5] represents the threshold for determiningwhether
the hidden states should be suppressed. In this way, the hidden
states, whose coefficient parameters Δ𝐴 <= 𝛼 will be suppressed
by Δ𝐴, while the remaining hidden states remain the same.

3.3 Semantic-aware Patch Refining
In addition to the proposed HSS in eliminating the adverse effect
of domain-specific information, enforcing the model to pay more
attention to the object rather than the context can also be an effective
way to facilitate the generalization performance.

From the perspective of domain-invariant learning, context and
object are two basic elements. The object corresponds to the fore-
ground, which contributes most to the classification results, re-
maining stationary in diverse scenarios. The context is related to
domain-specific information, such as background and image style,
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Table 1: Results on PACS with our DGMamba.

Method Params. Art Cartoon Photo Sketch Avg.(↑)
ResNet50

VREx [34] 23M 86.0 79.1 96.9 77.7 84.9
MTL [6] 23M 87.5 77.1 96.4 77.3 84.6

Mixstyle [87] 23M 86.8 79.0 96.6 78.5 85.2
SagNet [48] 23M 87.4 80.7 97.1 80.0 86.3
ARM [76] 23M 86.8 76.8 97.4 79.3 85.1
SWAD [7] 23M 89.3 83.4 97.3 82.5 88.1
PCL [71] 23M 90.2 83.9 98.1 82.6 88.7
SAGM [62] 23M 87.4 80.2 98.0 80.8 86.6
iDAG [30] 23M 90.8 83.7 98.0 82.7 88.8
GMDG [58] 23M 84.7 81.7 97.5 80.5 85.6

DeiT-S
SDViT [57] 22M 87.6 82.4 98.0 77.2 86.3
GMoE [35] 34M 89.4 83.9 99.1 74.5 86.7

VMamba-T
DGMamba (ours) 22M 91.3 87.0 99.0 87.3 91.2

which varies dramatically across domains. Therefore, directing
the model’s focus toward the object could assist in mitigating the
domain-specific information. As a result, we propose Semantic-
aware Patch Refining (SPR) to assist the model in better focusing
on the object. SPR consists of two core modules: Prior-Free Scan-
ning (PFS) andDomain Context Interchange (DCI). SPR is devoted to
constructing a sufficient and random context environment, thereby
breaking the adverse effect of the domain-specific information im-
plied by the context in the input and enhancing generalizability.

Prior-Free Scanning. Although SSM-based models [44, 92] have
demonstrated excellent performance in vision tasks, a diverse and
random context environment is still essential to deploy Mamba in
DG. This conclusion manifests that an effective scanning mecha-
nism is still required to tackle the challenge posed by the non-causal
correlations between image pixels or patches. Suitable scanning
mechanisms [44, 77, 92] should possess the ability to break unex-
pected spurious correlations caused by the manually created se-
quences of images. Nevertheless, existing SSM-based methods [44,
77, 92] are limited to scanning images into patches in a fixed unfold-
ing approach, as indicated in Figure 2(c). These subjective traverse
strategies could result in domain-specific information in the gener-
ated sequence, making it difficult for these models to address the
distribution shifts in DG.

To break the spurious correlations between patches and pro-
vide an effective scanning mechanism for DG tasks, we propose
Prior-Free Scanning (PFS) to address the direction-sensitive issue in
Mamba. As depicted in Figure 3, PFS attempts to randomly shuffle
the context patches that may contribute to domain-specific infor-
mation in the unfolded sequence, while keeping the object patches
unchanged. In particular, for the representation 𝑧 = 𝑧𝑐 + 𝑧𝑜 ∈
R𝐻×𝑊 ×𝐶 , where 𝑧𝑐 and 𝑧𝑜 represent the context information and
object information, respectively, the shuffled representation 𝑧𝑝𝑓 𝑠
after the PFS strategy can be formulated as follows:

𝑧𝑝𝑓 𝑠 = 𝑧𝑠𝑐 + 𝑧𝑜 , 𝑧𝑠𝑐 = 𝑆ℎ𝑢𝑓 𝑓 𝑙𝑒 (𝑧𝑐 ), (4)

where 𝑧𝑠𝑐 denotes the shuffled context information by employing the
𝑆ℎ𝑢𝑓 𝑓 𝑙𝑒 (·) function in the spatial dimension. This operation could

Table 2: Results on VLCS with our DGMamba.

Method Params. Caltech LabelMe SUN PASCAL Avg.(↑)
ResNet50

VREx [34] 23M 98.4 64.4 74.1 76.2 78.3
MTL [6] 23M 97.8 64.3 71.5 75.3 77.2

Mixstyle [87] 23M 98.6 64.5 72.6 75.7 77.9
SagNet [48] 23M 97.9 64.5 71.4 77.5 77.8
ARM [76] 23M 98.7 63.6 71.3 76.7 77.6
SWAD [7] 23M 98.8 63.3 75.3 79.2 79.1
PCL [71] 23M 99.0 63.6 73.8 75.6 78.0
SAGM [62] 23M 99.0 65.2 75.1 80.7 80.0
iDAG [30] 23M 98.1 62.7 69.9 77.1 76.9
GMDG [58] 23M 98.3 65.9 73.4 79.3 79.2

DeiT-S
SDViT [57] 22M 96.8 64.2 76.2 78.5 78.9
GMoE [35] 34M 96.9 63.2 72.3 79.5 78.0

VMamba-T
DGMamba (ours) 22M 98.9 64.3 79.2 80.8 80.8

provide Mamba with sequence data exhibiting flexible scanning
direction by generating context disturbance or noise while keep-
ing the consistent object information. As a result, it mitigates the
domain-specific information brought by the manual fixed scanning
strategy and breaks the spurious correlations.

Domain Context Interchange. The proposed PFS facilitates the
model to pay more attention to the object instead of the context
within images. However, the context information is heterogeneous
across varying domains in DG. The context patch shuffling in PFS
is limited in the given scenarios, inadequate to provide sufficient
diverse context information for removing the domain-specific infor-
mation. Besides, the heterogeneous context patches from different
domains not only exhibit diverse context information but also en-
compass distinct local texture characteristics.

To sufficiently tackle the adverse influence of heterogeneous
context and diverse local texture details, we propose to create am-
ple context scenarios and introduce local texture noise by Domain
Context Interchange (DCI). As shown in the Domain Context In-
terchange module in Figure 3, DCI substitutes the image context
patches with those from different domains. This operation regular-
izes the model on the counterfacture samples [8, 69], i.e., the com-
bination of semantic information in one domain and non-semantic
features from different domains. This strategy further forces models
to focus on the generalizable features while discarding the textual
details or other domain-specific features.

In implementation, DCI only performs on samples with high
confidence in the classification results, while other samples remain
unchanged. As the samples exhibiting high classification confidence
may result in overfitting in their scenarios, replacing their context
patches with those from different domains could introduce chal-
lenging context noise to generate heterogeneous context and local
texture noise. While remaining samples may struggle to recognize
the object from the context, conducting DCI on them could fur-
ther increase the difficulty in learning generalizable presentations.
Specifically, we only apply DCI to the top 20% of batch samples
according to the classification confidence based on the negative
cross-entropy loss. These samples with high negative cross-entropy
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Table 3: Results on OfficeHome with our DGMamba.

Method Params. Art Clipart Product Real Avg.(↑)
ResNet50

VREx [34] 23M 60.7 53.0 75.3 76.6 66.4
RSC [29] 23M 60.7 51.4 74.8 75.1 65.5
MTL [6] 23M 61.5 52.4 74.9 76.8 66.4

Mixstyle [87] 23M 51.1 53.2 68.2 69.2 60.4
SagNet [48] 23M 63.4 54.8 75.8 78.3 68.1
ARM [76] 23M 58.9 51.0 74.1 75.2 64.8
SWAD [7] 23M 66.1 57.7 78.4 80.2 70.6
PCL [71] 23M 67.3 59.9 78.7 80.7 71.6
SAGM [62] 23M 65.4 57.0 78.0 80.0 70.1
iDAG [30] 23M 68.2 57.9 79.7 81.4 71.8
GMDG [58] 23M 68.9 56.2 79.9 82.0 70.7

DeiT-S
SDViT [57] 22M 68.3 56.3 79.5 81.8 71.5
GMoE [35] 34M 69.3 58.0 79.8 82.6 72.4

VMamba-T
DGMamba (ours) 22M 76.2 61.8 83.9 86.1 77.0

loss are easy samples for the model, leading to inflated confidence in
their classification, which may, in turn, result in overfitting issues.
Context Patch Identifying. To distinguish the context and object
patches, we take advantage of Grad-CAM [54] as the metric to
measure the contributions of different regions of images. As the
regions containing the object would activate the Grad-CAM greatly,
while the patches exhibiting the context possess a low value in
the Grad-CAM, we split the image patches into context and object
according to their values in the activation map generated by Grad-
CAM. Specifically, the patches with the smallest 25% Grad-CAM
values are determined as the context information 𝑧𝑐 , while the
remaining are used as object information 𝑧𝑜 .

4 EXPERIMENTS
Dataset. Following standard protocol in DG [7, 20], we evaluate the
effectiveness of our proposed DGMamba and compare it with state-
of-the-art methods in DG on four commonly used benchmarks:
(1) PACS [36] includes 9991 images categorized into 7 classes ex-
hibiting 4 styles. (2) VLCS [14] involves four datasets, totaling 10729
images distributed in 5 categories. (3) OfficeHome [60] comprises
15588 images in 65 classes from 4 datasets. (4) TerraIncognita [4]
encompasses 24330 photographs of 10 kinds of animals taken at 4
diverse locations.
ImplementationDetails.Our proposedmodel employsMamba [18]
as the backbone, which is pretrained on ImageNet [10]. Following
VMamba [44], the network comprises 4 blocks, each consisting
of 2, 2, 4, and 2 Mamba layers, respectively. Down-sampling is in-
corporated before each block. Additionally, bidirectional Mamba
is utilized to enable each patch to gather information from any
other patches. Following the training configuration in existing DG
approaches [7, 20, 35] and considering the limitations of the GPU,
the model undergoes training for 10000 iterations, with a batch
size of 16 for each source domain. For optimization, we employ the
AdamW optimizer with betas of (0.9, 0.999) and a momentum of 0.9.
We incorporate a cosine decay learning rate scheduler. The initial
learning rate is searched in [3e-4, 4.5e-4].

Table 4: Results on TerraIncognita with our DGMamba.

Method Params. L100 L38 L43 L46 Avg.(↑)
ResNet50

VREx [34] 23M 48.2 41.7 56.8 38.7 46.4
RSC [29] 23M 50.2 39.2 56.3 40.8 46.6
MTL [6] 23M 49.3 39.6 55.6 37.8 45.6

Mixstyle [87] 23M 54.3 34.1 55.9 31.7 44.0
SagNet [48] 23M 53.0 43.0 57.9 40.4 48.6
ARM [76] 23M 49.3 38.3 55.8 38.7 45.5
SWAD [7] 23M 55.4 44.9 59.7 39.9 50.0
PCL [71] 23M 58.7 46.3 60.0 43.6 52.1
SAGM [62] 23M 54.8 41.4 57.7 41.3 48.8
iDAG [30] 23M 58.7 35.1 57.5 33.0 46.1
GMDG [58] 23M 59.8 45.3 57.1 38.2 50.1

DeiT-S
SDViT [57] 22M 55.9 31.7 52.2 37.4 44.3
GMoE [35] 34M 59.2 34.0 50.7 38.5 45.6

VMamba-T
DGMamba (ours) 22M 62.7 48.3 61.1 46.4 54.6

4.1 Main Results
Results on PACS Dataset. Table 1 reports the generalization per-
formance on PACS, indicating the best generalization performance
of our DGMamba across almost all these domains. Notably, DG-
Mamba surpasses the SOTA methods by 2.7% in average generaliza-
tion performance. Besides, on the hard-to-transfer domains, such as
‘Cartoon’ and ‘Sketch,’ our approach beats the second-best method
by 3.9% and 5.6%, respectively, demonstrating the effectiveness of
our DGMamba in enhancing generalization capacity.
Results on VLCS Dataset. As shown in Table 2, our DGMamba
demonstrates superior average generalization performance com-
pared to SOTAmethods. In addition, our method consistently ranks
among the top three performers in three out of the four scenarios,
indicating its efficacy in improving the model’s generalizability.
Results on OfficeHome Dataset. The results on OfficeHome are
shown in Table 3. The proposed DGMamba has achieved a signifi-
cant enhancement in generalization performance in all scenarios.
Remarkably, DGMamba outperforms the SOTA method by 6.4% in
average generalization performance. These findings showcase the
superiority of DGMamba in acquiring robust representations.
Results on TerraIncognita Dataset. We provide the experiment
results on TerraIncognita in Table 4. Our proposed DGMamba at-
tains the best generalization performance across all environments.
Notably, our proposed approach achieves a 4.8% gain over the
SOTA method in average generalization performance. These out-
comes highlight DGMamba’s outstanding ability to obtain domain-
invariant representations.

4.2 Ablation Study and Analysis
Effectiveness of Each Component.We conduct an ablation study
on PACS to disclose the contributions of our proposed modules
on the generalization performance. As indicated in Table 5, the
proposed HSS, PFS, and DCI consistently facilitate the enhance-
ment of generalizability across almost all scenarios, demonstrating
their effectiveness in capturing genuine correlations and removing
domain-specific information. Specifically, in the hardest-to-transfer
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Table 5: Ablation study on PACS with our
proposed modules.

Method Art Cartoon Photo Sketch Avg.(↑)
VMamba [44] 88.2 86.2 98.4 84.9 89.4

w/ HSS 90.4 86.8 98.8 87.1 90.8
w/ PFS 91.8 85.9 98.7 85.4 90.5
w/ DCI 91.8 85.8 99.0 85.3 90.4

DGMamba 91.3 87.0 99.0 87.3 91.2

Table 6: Effectiveness of our proposed SPR
when inserting at different state space blocks
of DGMamba on PACS.

Block Art Cartoon Photo Sketch Avg.(↑)
None 88.2 86.2 98.4 84.9 89.4
Block 3 91.7 86.8 98.9 82.7 90.0
Block 2 91.7 86.5 98.9 83.9 90.2
Block 1 92.3 86.3 99.1 85.4 90.8

Table 7: Comparison of the pro-
posed Hidden State Suppress-
ing (HSS) with Hidden State
Masking (HSM) on PACS.

Threshold 0 0.15 0.2 0.25

HSM 89.4 90.2 90.3 90.1
HSS 89.4 90.1 90.5 90.8

0 0.05 0.1 0.15 0.2 0.25 0.30 0.35
Suppressing threshold 

89.5

90.0

90.5

A
cc

ur
ac
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(%
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Figure 4: Effect of 𝛼 in the proposed HSS on PACS.

domainwhere VMamba behaves poorly, i.e., ‘Sketch’, HSS shows the
greatest enhancement, with an increase of 2.6%. This underscores
the superiority of HSS in mitigating the domain-specific informa-
tion carried in hidden states. The proposed PFS could also enhance
the performance in the remaining domains, underscoring that of-
fering a more effective scanning strategy and directing the model’s
focus on the object are beneficial to improving generalizability. In
addition, the heterogeneous context and texture noise introduced
by DCI can also promote the model to shift attention to domain
invariant features. Moreover, the combination of these proposed
modules reaches the highest performance, indicating the necessity
of these modules in yielding optimal performance enhancement.
SPR at Different Layers.We insert the SPR module at different
layers of DGMamba and showcase diverse performance gains in
Table 6. The shallow layers contain more spurious correlations, and
thereby, should benefit more from our SPR module than the deeper
layers, which hold more correlations with the prediction results.
This inference is also supported by the generalization performance
in Table 6. The highest gains in generalization performance have
been achieved when inserting the SPR module before Block 1.
Effect of 𝛼 in HSS. The threshold 𝛼 in HSS controls the number of
hidden states to be suppressed. Intuitively, more suppressed hidden
states would eliminate more domain-specific information, thereby
enhancing generalization performance. Figure 4 reports the gen-
eralization performance of our HSS by varying 𝛼 , indicating that
the best performance can be obtained by HSS when the threshold
𝛼 is set to 0.25. This observation demonstrates the effectiveness of
HSS in mitigating the detrimental effect of domain-specific features
on generalization. However, it is noteworthy that a relatively large
𝛼 would also mitigate the positive influences of hidden states as-
sociated with the valuable features for predictions, consequently
degrading the generalization performance.
Hidden State Suppressing (HSS) vs.Hidden StateMasking (HSM).
In practice, we also experiment with a hidden state masking strategy
to eliminate the adverse effect of domain-specific information. HSM

Table 8: Comparison of the computational efficiency of exist-
ing SOTAmethods in DG and our DGMamba on PACS. Tested
with an image size of 224× 224 on one NVIDIA Tesla V100.

Model Backbone Params GFlops Time Acc (%)

iDAG [30] ResNet50 23M 8G 94ms 88.8
iDAG [30] ResNet101 41M 15G 495ms 89.2

GMoE-S [35] DeiT-S 34M 5G 136ms 88.1
GMoE-B [35] DeiT-B 133M 19G 361ms 89.2
VMamba [44] VMamba-T 22M 5G 225ms 89.4

DGMamba (ours) VMamba-T 22M 5G 233ms 91.2

just attempts to discard the hidden states associated with domain-
specific information, assuming these hidden states contribute little
to the predictions. However, as indicated in Table 7, although ex-
hibiting the ability to enhance generalization performance, HSM
is less competitive than our HSS. The result demonstrates that
these hidden states deserve to be suppressed and may also convey
essential semantic information to capture long-range correlations.
Computation Efficiency. To assess the computational efficiency
of our proposed DGMamba, we conduct experiments on PACS to
compare it with SOTA methods from different perspectives, includ-
ing model parameters, float-point-operations per second (Flops),
inference time and their generalization performance on PACS. It
is worth noting that iDAG [30] requires multiple samples in the
training phase, thus we create a tensor with batch size 2 to evalu-
ate its GFlops. For the remaining methods, the dimension of batch
size for evaluating Flops is set to 1. The inference time is averaged
over 100 experiments. As indicated in Table 8, while our proposed
DGMamba exhibits relatively fewer parameters and GFlops than
existing SOTA methods based on CNN or ViT, it still achieves the
highest generalization performance.
Feature Visualization. To visually demonstrate the impact of our
proposed DGMamba, we adopt t-SNE embeddings [59] to investi-
gate the feature characteristics. Concretely, we conduct experiments
on PACS with ‘Photo’ as the target domain. Figure 5 depicts the
feature visualizations based on the CNN-based method iDAG [30],
ViT-based method GMoE [35], VMamba [44], and our proposed
DGMamba, respectively. Remarkably, DGMamba acquires supe-
rior representations, exhibiting enhanced intra-class compactness
and inter-class discrimination, especially in comparison with iDAG
and GMoE. Besides, the enhancement of DGMamba relative to
VMamba is also obvious. Firstly, the distinction between features of
‘dog’ (blue) and ‘horse’ (purple) in DGMamba is more pronounced.
Secondly, the features within the same category in DGMamba man-
ifest increased compactness. These findings confirm the superiority
of DGMamba in boosting model generalization capacity.
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Figure 5: Visualizations with t-SNE embeddings [59] illustrating various classes’ representations produced by (a) iDAG [30], (b)
GMoE [35], (c) VMamba [44], and (d) DGMamba (ours), respectively. DGMamba demonstrates the superior clustering effect.
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Figure 6: Visualization for the activation maps of the last state space layer on PACS with ‘Art’ as the target domain. For each
sample, the first row represents the original image, the middle row is the activation map generated by VMamba without any
domain generalization techniques, and the last row denotes the activation map captured by our proposed DGMamba.

Activation Map Visualization. To further visually verify the out-
standing prediction mechanism of our proposed DGMamba, we
provide visualizations for the activation maps of the last state space
layer with Grad-CAM techniques [54]. The results are reported
in Figure 6, demonstrating that our proposed DGMamba can still
capture the semantically related information, i.e., the global shape
and the object itself, when confronted with hard samples exhibit-
ing significant disparity from the real world. Taking the ‘dog’ for
instance, our proposed DGMamba is able to focus on the entire dog
face, while the baseline VMamba suffers from recognizing these
critical features. In addition, VMamba can be easily interfered by
the background and the texture details, exampled by the ‘house’
and ‘person’. While our DGMamba can still comprehensively learn
the object information even with such complex domain-specific
information. These findings highlight the excellence of our method
in improving model generalization capacity.

5 CONCLUSION
This work is the first endeavor to explore the generalizability of the
SSM-based model (Mamba) in DG. We propose a novel framework
named DGMamba, that contains two pivotal techniques. Firstly, we
design a novel Hidden State Suppressing to alleviate the adverse
effect of domain-specific information conveyed in hidden states. Sec-
ondly, we propose Semantic-aware Patch Refining, which consists
of Prior-Free Scanning and Domain Context Interchange. Both aim
to direct the model’s focus toward the object rather than the con-
text. Extensive experiments on four widely used DG benchmarks
show the superiority of DGMamba compared with state-of-the-art
DG methods based on CNN or ViT. We believe our work builds a
solid baseline for exploiting SSMs for the DG community. In the
future, we would like to investigate the feature prompt or domain
prompt to facilitate SSM-based models learning more powerful
representations for enhancing the model generalizability.
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