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1 EXPERIMENT DETAILS

Dataset Details. In this section, we provide details of the 5 com-
monly used DG benchmarks in Table 1. The data in these datasets
originates from various sources with distinct characteristics, such
as hand-drawn illustrations, software-composited images, object-
centered photographs, and scene-centered shots.

Evaluation Protocols. Following the standard evaluation proto-
cols [3, 5, 12, 22, 25], we report the generalization performance
based on the train-domain validation, i.e., selecting one domain as
the target domain and training on the remaining domains. Each
source domain is split with an 80%/20% train/validation ratio. The
validation parts from these source domains collectively constitute
the validation set used for the model evaluation.
Hyperparameters for DomainNet. The benchmark Domain-
Net [14] presents a great challenge, containing 586575 images.
Training 10,000 iterations represents less than two complete epochs
on DomainNet, which is insufficient for the model to converge ef-
fectively. Consequently, recent state-of-the-art DG works [3, 9, 23]
increase the iterations to 15000 with a batch size of 32 for each do-
main. To make a fair comparison while considering the constraints
posed by GPU, our proposed DGMamba undergoes 80000 iterations
with a batch size of 6 for each source domain. The corresponding
initial learning rate is searched in [7e-4, 8.5e-4].

Overall Architecture. For an input image x, it undergoes initial
processing into patches x; € x utilizing a convolution neural net-
work with layer normalization. These patches are subsequently
scanned to be processed by four Mamba blocks. Down-sampling is
applied after the first three Mamba blocks to generate feature maps
with different resolutions. Finally, prediction is performed using
a linear classifier subsequent to the layer normalization, average
pooling, and flattening operations.

2 ADDITIONAL EXPERIMENTS

Comparison on More Complex dataset. To further assess the
efficacy of mitigating distribution shifts in large-scale benchmarks,
we test the proposed DGMamba on DomainNet [14] and compare
it with state-of-the-art DG methods. As indicated in Table 1, Do-
mainNet comprises 586575 images categorized into 345 classes from
six domains. As illustrated by Table 2, our proposed DGMamba
demonstrates a substantial improvement of 2.7% compared to the
state-of-the-art approach in terms of average generalization perfor-
mance across diverse domains. Remarkably, our DGMamba attains
the best performance in five out of the six domains. These findings
underscore the superiority of the proposed DGMamba in tackling
distribution shifts in real-world applications.

Comparison across Five Benchmarks. In Table 3, we present
a summary of the generalization performance results across five
DG benchmarks with training-validation selection. Notably, our
proposed DGMamba remarkably outperforms the state-of-the-art
DG approaches across all benchmarks, yielding an average gain

Table 1: Statistics of DG benchmarks.

Dataset ‘ Domain ‘ # image ‘ # image ‘ # class
| At | 2048 | \
| Photo | 1670 | \
PACS [10] 9991 7
‘ Clipart ‘ 2344 ‘ ‘
| Sketch | 3929 | \
| Caltech | 1415 | \
| LabelMe | 2656 | \
VLCS [4] 10729 5
|  SUN | 3282 | \
| PASCAL | 3376 | \
| Art | 2427 | \
| Clipart | 4365 | \
OfficeHome [18] 15588 65
| Product | 4439 | \
| Real | 4357 | \
| Lo | 4741 | \
, | L3 | 9736 | \
Terralncognita [1] 24330 10
| L43 | 3970 | \
| L4 | 5883 | \
| Clipart | 48129 | \
‘ Infograph ‘ 51605 ‘ ‘
‘ Painting ‘ 72266 ‘ ‘
DomainNet [14] 586575 345
| Quickdraw | 172500 | \
| Real | 172947 | \
| Sketch | 69128 | \

of 4.4%. The significant enhancements across diverse scenarios
from different benchmarks underscore the excellent ability of our
DGMamba to tackle distribution shifts.

Visualization for Distribution Gaps. To visually demonstrate
that our proposed DGMamba could effectively address the dis-
tribution shifts between diverse domains, we employ the t-SNE
technique [17] to examine the representation’s distribution gaps
across domains. We conduct experiments on PACS with ‘Art’ as
the target domain. Figure 1 presents the visualization results based
on the CNN-based method iDAG [7], ViT-based method GMoE [9],
VMamba [11], and our proposed DGMamba, respectively. Notably,
our DGMamba demonstrates a reduced distribution gap between
the source and target domains compared to these state-of-the-art
methods, indicating its superiority in learning domain-invariant
features. In contrast, the representation generated by iDAG exhibits

59
60

61

63

64

65

66

67

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

106

107

108

109

110

111

112

114

115

116



ACM MM, 2024, Melbourne, Australia Anonymous Authors

117 Table 2: Results on DomainNet with our DGMamba. 175
118 176
19 Method Backbone |Params. | Clipart Infograph painting Quickdraw Real Sketch | Avg.(T) 177
120 VREx [8](ICML’2021) ResNet50 23M 47.3 16.0 35.8 10.9 49.6 42.0 33.6 178
121 MTL [2] (JMLR’2021) ResNet50 23M 57.9 18.5 46.0 12.5 595 49.2 40.6 179
122 Mixstyle [24] (ICLR’2021) | ResNet50 23M 51.9 13.3 37.0 12.3 46.1 434 34.0 180
123 SagNet [13](CVPR’2021) | ResNet50 23M 57.7 19.0 45.3 12.7 58.1 48.8 40.3 181
124 ARM [21] (NeurIPS’2021) | ResNet50 23M 49.7 16.3 40.9 9.4 53.4 435 35.5 182
125 SWAD [3] (NeurIPS’2021) | ResNet50 | 23M | 66.0 22.4 535 16.1 658 555 | 465 183
126 PCL [20] (CVPR’2022) ResNet50 23M 67.9 243 55.3 15.7 66.6 56.4 47.7 184
127 SAGM [19] (CVPR’2023) | ResNet50 23M 64.9 21.1 51.5 14.8 64.1 53.6 45.0 185
128 iDAG [7] (ICCV’2023) | ResNet50 | 23M | 67.9 24.2 55.0 164 661 569 | 477 186
129 GMDG [16] (CVPR’2024) | ResNet50 23M 63.4 224 514 13.4 644 524 44.6 187
130 SDVIiT [15] (ACCV’2022) | DeiT-S 22M | 634 22.9 537 150 674 526 | 458 188
151 GMOoE [9] (ICLR’2023) DeiT-S 34M 68.2 24.7 55.7 16.3 69.1 554 483 189
132 DGMamba (ours) VMamba-T| 22M | 67.0 27.9 56.5 184  69.5 57.9 | 49.6 190

133 191

134 Table 3: Comparison of state-of-the-art DG methods with our DGMamba. Out-of-domain generalization performance on five 192

135 commonly used benchmarks is reported. The best results are bolded.

193

136 194
137 195
138 Method ‘ Backbone ‘Params.‘ Dataset ‘Avg.(T) 196
139 ‘ ‘ ‘ PACS VLCS OfficeHome Terralncognita DomainNet ‘ 197
1o VREx [8] ICML'2021) | ResNet50 | 23M | 849 783 66.4 46.4 33.6 61.9 e
" RSC [6] (ECCV’2020) | ResNet50 | 23M | 852 77.1 65.5 46.6 38.9 62.7 v
1 MTL [2] JMLR’2021) | ResNet50 | 23M | 84.6 77.2 66.4 45.6 40.6 62.9 20
1 Mixstyle [24] (ICLR’2021) | ResNet50 | 23M | 85.2  77.9 60.4 44.0 34.0 60.3 o
h SagNet [13] (CVPR’2021) | ResNet50 | 23M | 863 77.8 68.1 48.6 403 64.2 o
e ARM [21] (NeurIPS’2021) | ResNet50 | 23M | 851 77.6 64.8 455 35.5 61.7 0
e SWAD [3] (NeurIPS’2021) | ResNet50 | 23M | 88.1  79.1 70.6 50.0 46.5 66.9 o
H PCL [20] (CVPR’2022) | ResNet50 | 23M | 88.7 78.0 71.6 52.1 477 67.6 w0
e SAGM [19] (CVPR’2023) | ResNet50 | 23M | 86.6 80.0 70.1 48.8 45.0 66.1 20
e iDAG [7] ICCV’2023) | ResNet50 | 23M | 88.8 76.9 71.8 46.1 477 66.3 w7
:‘; GMDG [16] (CVPR’2024) | ResNet50 | 23M | 85.6 79.2 70.7 50.1 44.6 66.0 jgi
152 SDVIT [15] (ACCV’2022) | DeiT-S | 22M | 863 78.9 715 443 45.8 65.4 210
153 GMOoE [9] (ICLR’2023) | DeiT-S | 34M | 867 78.0 72.4 45.6 483 66.2 -
154 DGMamba (ours) | VMamba-T| 22M | 912 80.8 77.0 54.6 49.6 | 70.6 212
155 213
:: @ source domain @ target domain ji:

216

158 i”
159
160 ‘ '

161

217
218
219
162 220

163 221

164 & 222
165 223
166 224
167 g " 225
168 (a) iDAG (ResNet50) (b) GMOE (DeiT-S) (c) VMamba (d) DGMamba (ours) 226
169 227

170 Figure 1: Visualizations with t-SNE embeddings [17] illustrating features’ distribution gaps between the source and target

domains generated by (a) iDAG [7], (b) GMoE [9], (c¢) VMamba [11], and (d) DGMamba (ours), respectively. Our proposed

DGMamba displays the superior feature alignment.
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Table 4: Comparison of state-of-the-art DG methods with our DGMamba with diverse backbones. The best results are bolded.

Method ‘ Backbone | Params. | Art Cartoon Photo Sketch ‘ Avg.(T)
iDAG [7] (ICCV’2023) ResNet50 23M 90.8 83.7 98.0 82.7 88.8
iDAG [7] (ICCV’2023) | ResNet101 | 41M | 89.0  84.9 983 847 89.2
GMOoE [9] (ICLR’2023) DeiT-S 34M 89.4 83.9 99.1 74.5 86.7
GMOoE [9] (ICLR’2023) | DeiT-B 133M | 91.0 840 993 827 89.2
DGMamba (ours) VMamba-T 22M 91.3 87.0 99.0 87.3 91.2
DGMamba (ours) VMamba-S 47M 94.1 87.8 99.6 89.0 92.6
DGMamba (ours) VMamba-B 83M 95.1 89.2 99.8 87.9 93.0
a noticeable distinction between the source and target domains, [8] David Krueger, Ethan Caballero, Joern-Henrik Jacobsen, Amy Zhang, Jonathan

indicating its weakness in tackling distribution shifts. For GMoE,
there exist target features that are away from the source features, as
indicated by the black circles. Besides, the representations produced
by GMoE exhibit poor intra-class compactness. For VMamba, the
ability to align features is inferior to our DGMamba, manifesting
by the distant target features marked by the black circle, and the
distinction between classes is not as clear as that in DGMamba.
Performance with Diverse Backbones. To fully unleash the
potential of our proposed DGMamba, we investigate the impact
of utilizing larger backbones, i.e., stacking more Mamba layers or
increasing the embedding dimension to facilitate capturing genuine
features. Specifically, we conduct experiments on PACS utilizing
VMamba-S and VMamba-B. VMamba-S comprises 4 blocks, each in-
cluding 2, 2, 15, and 2 Mamba layers, with an embedding dimension
of 96. VMamba-B maintains the same Mamba blocks and layers as
VMamba-S, with an increased embedding dimension of 128. The
generalization performances are concluded in Table 4, demonstrat-
ing that deeper Mamba architectures or larger embedding dimen-
sions could enhance the model generalizability. Furthermore, our
proposed DGMamba demonstrates superior generalization perfor-
mance compared to CNN-based or ViT-based models, while main-
taining comparable or fewer parameters. These results underscore
the effectiveness of DGMamba in mitigating domain shifts.
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