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1 EXPERIMENT DETAILS
Dataset Details. In this section, we provide details of the 5 com-
monly used DG benchmarks in Table 1. The data in these datasets
originates from various sources with distinct characteristics, such
as hand-drawn illustrations, software-composited images, object-
centered photographs, and scene-centered shots.
Evaluation Protocols. Following the standard evaluation proto-
cols [3, 5, 12, 22, 25], we report the generalization performance
based on the train-domain validation, i.e., selecting one domain as
the target domain and training on the remaining domains. Each
source domain is split with an 80%/20% train/validation ratio. The
validation parts from these source domains collectively constitute
the validation set used for the model evaluation.
Hyperparameters for DomainNet. The benchmark Domain-
Net [14] presents a great challenge, containing 586575 images.
Training 10,000 iterations represents less than two complete epochs
on DomainNet, which is insufficient for the model to converge ef-
fectively. Consequently, recent state-of-the-art DG works [3, 9, 23]
increase the iterations to 15000 with a batch size of 32 for each do-
main. To make a fair comparison while considering the constraints
posed by GPU, our proposed DGMamba undergoes 80000 iterations
with a batch size of 6 for each source domain. The corresponding
initial learning rate is searched in [7e-4, 8.5e-4].
Overall Architecture. For an input image 𝑥 , it undergoes initial
processing into patches 𝑥𝑖 ∈ 𝑥 utilizing a convolution neural net-
work with layer normalization. These patches are subsequently
scanned to be processed by four Mamba blocks. Down-sampling is
applied after the first three Mamba blocks to generate feature maps
with different resolutions. Finally, prediction is performed using
a linear classifier subsequent to the layer normalization, average
pooling, and flattening operations.

2 ADDITIONAL EXPERIMENTS
Comparison on More Complex dataset. To further assess the
efficacy of mitigating distribution shifts in large-scale benchmarks,
we test the proposed DGMamba on DomainNet [14] and compare
it with state-of-the-art DG methods. As indicated in Table 1, Do-
mainNet comprises 586575 images categorized into 345 classes from
six domains. As illustrated by Table 2, our proposed DGMamba
demonstrates a substantial improvement of 2.7% compared to the
state-of-the-art approach in terms of average generalization perfor-
mance across diverse domains. Remarkably, our DGMamba attains
the best performance in five out of the six domains. These findings
underscore the superiority of the proposed DGMamba in tackling
distribution shifts in real-world applications.
Comparison across Five Benchmarks. In Table 3, we present
a summary of the generalization performance results across five
DG benchmarks with training-validation selection. Notably, our
proposed DGMamba remarkably outperforms the state-of-the-art
DG approaches across all benchmarks, yielding an average gain

Table 1: Statistics of DG benchmarks.

Dataset Domain # image # image # class

PACS [10]

Art 2048

9991 7
Photo 1670

Clipart 2344

Sketch 3929

VLCS [4]

Caltech 1415

10729 5
LabelMe 2656

SUN 3282

PASCAL 3376

OfficeHome [18]

Art 2427

15588 65
Clipart 4365

Product 4439

Real 4357

TerraIncognita [1]

L100 4741

24330 10
L38 9736

L43 3970

L46 5883

DomainNet [14]

Clipart 48129

586575 345

Infograph 51605

Painting 72266

Quickdraw 172500

Real 172947

Sketch 69128

of 4.4%. The significant enhancements across diverse scenarios
from different benchmarks underscore the excellent ability of our
DGMamba to tackle distribution shifts.
Visualization for Distribution Gaps. To visually demonstrate
that our proposed DGMamba could effectively address the dis-
tribution shifts between diverse domains, we employ the t-SNE
technique [17] to examine the representation’s distribution gaps
across domains. We conduct experiments on PACS with ‘Art’ as
the target domain. Figure 1 presents the visualization results based
on the CNN-based method iDAG [7], ViT-based method GMoE [9],
VMamba [11], and our proposed DGMamba, respectively. Notably,
our DGMamba demonstrates a reduced distribution gap between
the source and target domains compared to these state-of-the-art
methods, indicating its superiority in learning domain-invariant
features. In contrast, the representation generated by iDAG exhibits
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Table 2: Results on DomainNet with our DGMamba.

Method Backbone Params. Clipart Infograph painting Quickdraw Real Sketch Avg.(↑)
VREx [8](ICML’2021) ResNet50 23M 47.3 16.0 35.8 10.9 49.6 42.0 33.6
MTL [2] (JMLR’2021) ResNet50 23M 57.9 18.5 46.0 12.5 59.5 49.2 40.6

Mixstyle [24] (ICLR’2021) ResNet50 23M 51.9 13.3 37.0 12.3 46.1 43.4 34.0
SagNet [13](CVPR’2021) ResNet50 23M 57.7 19.0 45.3 12.7 58.1 48.8 40.3
ARM [21] (NeurIPS’2021) ResNet50 23M 49.7 16.3 40.9 9.4 53.4 43.5 35.5
SWAD [3] (NeurIPS’2021) ResNet50 23M 66.0 22.4 53.5 16.1 65.8 55.5 46.5
PCL [20] (CVPR’2022) ResNet50 23M 67.9 24.3 55.3 15.7 66.6 56.4 47.7
SAGM [19] (CVPR’2023) ResNet50 23M 64.9 21.1 51.5 14.8 64.1 53.6 45.0
iDAG [7] (ICCV’2023) ResNet50 23M 67.9 24.2 55.0 16.4 66.1 56.9 47.7

GMDG [16] (CVPR’2024) ResNet50 23M 63.4 22.4 51.4 13.4 64.4 52.4 44.6
SDViT [15] (ACCV’2022) DeiT-S 22M 63.4 22.9 53.7 15.0 67.4 52.6 45.8
GMoE [9] (ICLR’2023) DeiT-S 34M 68.2 24.7 55.7 16.3 69.1 55.4 48.3
DGMamba (ours) VMamba-T 22M 67.0 27.9 56.5 18.4 69.5 57.9 49.6

Table 3: Comparison of state-of-the-art DG methods with our DGMamba. Out-of-domain generalization performance on five
commonly used benchmarks is reported. The best results are bolded.

Method Backbone Params. Dataset Avg.(↑)
PACS VLCS OfficeHome TerraIncognita DomainNet

VREx [8] (ICML’2021) ResNet50 23M 84.9 78.3 66.4 46.4 33.6 61.9
RSC [6] (ECCV’2020) ResNet50 23M 85.2 77.1 65.5 46.6 38.9 62.7
MTL [2] (JMLR’2021) ResNet50 23M 84.6 77.2 66.4 45.6 40.6 62.9

Mixstyle [24] (ICLR’2021) ResNet50 23M 85.2 77.9 60.4 44.0 34.0 60.3
SagNet [13] (CVPR’2021) ResNet50 23M 86.3 77.8 68.1 48.6 40.3 64.2
ARM [21] (NeurIPS’2021) ResNet50 23M 85.1 77.6 64.8 45.5 35.5 61.7
SWAD [3] (NeurIPS’2021) ResNet50 23M 88.1 79.1 70.6 50.0 46.5 66.9
PCL [20] (CVPR’2022) ResNet50 23M 88.7 78.0 71.6 52.1 47.7 67.6
SAGM [19] (CVPR’2023) ResNet50 23M 86.6 80.0 70.1 48.8 45.0 66.1
iDAG [7] (ICCV’2023) ResNet50 23M 88.8 76.9 71.8 46.1 47.7 66.3

GMDG [16] (CVPR’2024) ResNet50 23M 85.6 79.2 70.7 50.1 44.6 66.0

SDViT [15] (ACCV’2022) DeiT-S 22M 86.3 78.9 71.5 44.3 45.8 65.4
GMoE [9] (ICLR’2023) DeiT-S 34M 86.7 78.0 72.4 45.6 48.3 66.2

DGMamba (ours) VMamba-T 22M 91.2 80.8 77.0 54.6 49.6 70.6

(a) iDAG (ResNet50) (b) GMoE (DeiT-S) (c) VMamba (d) DGMamba (ours) 

source domain                       target domain

Figure 1: Visualizations with t-SNE embeddings [17] illustrating features’ distribution gaps between the source and target
domains generated by (a) iDAG [7], (b) GMoE [9], (c) VMamba [11], and (d) DGMamba (ours), respectively. Our proposed
DGMamba displays the superior feature alignment.
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Table 4: Comparison of state-of-the-art DG methods with our DGMamba with diverse backbones. The best results are bolded.

Method Backbone Params. Art Cartoon Photo Sketch Avg.(↑)
iDAG [7] (ICCV’2023) ResNet50 23M 90.8 83.7 98.0 82.7 88.8
iDAG [7] (ICCV’2023) ResNet101 41M 89.0 84.9 98.3 84.7 89.2

GMoE [9] (ICLR’2023) DeiT-S 34M 89.4 83.9 99.1 74.5 86.7
GMoE [9] (ICLR’2023) DeiT-B 133M 91.0 84.0 99.3 82.7 89.2

DGMamba (ours) VMamba-T 22M 91.3 87.0 99.0 87.3 91.2
DGMamba (ours) VMamba-S 47M 94.1 87.8 99.6 89.0 92.6
DGMamba (ours) VMamba-B 83M 95.1 89.2 99.8 87.9 93.0

a noticeable distinction between the source and target domains,
indicating its weakness in tackling distribution shifts. For GMoE,
there exist target features that are away from the source features, as
indicated by the black circles. Besides, the representations produced
by GMoE exhibit poor intra-class compactness. For VMamba, the
ability to align features is inferior to our DGMamba, manifesting
by the distant target features marked by the black circle, and the
distinction between classes is not as clear as that in DGMamba.
Performance with Diverse Backbones. To fully unleash the
potential of our proposed DGMamba, we investigate the impact
of utilizing larger backbones, i.e., stacking more Mamba layers or
increasing the embedding dimension to facilitate capturing genuine
features. Specifically, we conduct experiments on PACS utilizing
VMamba-S and VMamba-B. VMamba-S comprises 4 blocks, each in-
cluding 2, 2, 15, and 2 Mamba layers, with an embedding dimension
of 96. VMamba-B maintains the same Mamba blocks and layers as
VMamba-S, with an increased embedding dimension of 128. The
generalization performances are concluded in Table 4, demonstrat-
ing that deeper Mamba architectures or larger embedding dimen-
sions could enhance the model generalizability. Furthermore, our
proposed DGMamba demonstrates superior generalization perfor-
mance compared to CNN-based or ViT-based models, while main-
taining comparable or fewer parameters. These results underscore
the effectiveness of DGMamba in mitigating domain shifts.
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