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APPENDIX

A TEXT-TO-IMAGE DIFFUSION UNLEARNING METHOD

A.1 ABLATING CONCEPT (AC)

AC (Kumari et al., 2023) uses an alternative concept c⇤ to prevent the generation of the target concept
c. The objective is defined as follows:

LAC = E✏,xt,c⇤,c,t[wtk✏✓(xt, c
⇤, t).sg() � ✏✓(xt, c, t)k22], (1)

where wt is a weight of the objective, and .sg() indicates a stop-gradient operator. ACprevents the
model from generating the target concept by behaving as if the alternative concept c⇤ is present when
the target concept is given.

A.2 SELECTIVE AMNESIA (SA)

SA (Heng & Soh, 2024) leverages techniques from continual learning, including Elastic Weight
Consolidation (EWC) (Kirkpatrick et al., 2017) and generative replay (GR) (Shin et al., 2017):

LSA = Eq(x|c)pf (c)

⇥
k✏� ✏✓(xt, t)k2

⇤
� �

X

i

Fi

2
(✓i � ✓⇤i )

2 + Ep(x|c)pr(c)

⇥
k✏� ✏✓(xt, t)k2

⇤
,

(2)

where q(x|c) is a distribution of an alternative concept, and p(x|c) represents a distribution of
remaining concepts. For MNIST and Stable Diffusion, SA uses a uniform distribution over the pixel
values and a set of samples containing the alternative concept for the q(x|c), respectively.

A.3 SALIENCY UNLEARNING (SALUN)

SalUn (Fan et al., 2023) utilizes the random labeling (Golatkar et al., 2020), which is widely used for
classifier unlearning, for the text-to-image unlearning:

LSalUn := E(x,c)⇠Df ,t,✏⇠N (0,1),c0 6=c

h
k✏✓(xt|c0)� ✏✓(xt|c)k

2
2

i
+ �`MSE(✓;Dr), (3)

where Df represents the samples of the target concept c, and Dr represents the samples of the
remaining concepts. By random forgetting, SalUn prevents the generation of the target concept.
Additionally, SalUn uses a saliency map, which is computed by the scale of gradients from the loss
LSalUn, to fine-tune a subset of weights of the diffusion model:

mS = 1

✓����r✓`MSE(✓;Df )
���
✓=✓o

���� � �

◆
, (4)

where, ✓o represents the weights of the pretrained diffusion model and � represents a threshold.

A.4 ERASED STABLE DIFFUSION (ESD)

ESD (Gandikota et al., 2023) fine-tunes the diffusion model with the following objective function:

LESD = Ext,t[k✏✓(xt, t)� (✏✓⇤ (xt, t)� ⌘ (✏✓⇤(xt, c, t)� ✏✓⇤(xt, t))) k22], (5)

where ✓ represents the trainable parameters of the diffusion model, ✓⇤ represents the fixed original
diffusion model, and c represents the target concept. The modified score function shifts the data
distribution to reduce the probability of generating images containing the target concept c.

A.5 UNIFIED CONCEPT EDITING (UCE)

UCE (Gandikota et al., 2024) edit weights of cross-attention layers for its unlearning:

min
W

X

ci2E

kWci � v⇤i k
2
2 +

X

cj2P

��Wcj �W oldcj
��2
2
, (6)
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where W , W old, E, and P represent new weights, old weights, concepts to be erased, and concepts
to be preserved, respectively. UCE finds the target value vi⇤ = W oldci⇤ of destination embedding ci⇤
that can prevent the generation of the target concept. A solution of the objective can be calculated in
close-form:

W =

0

@
X

ci2E

v⇤i c
T
i +

X

cj2P

W oldcjc
T
j

1

A

0

@
X

ci2E

cic
T
i +

X

cj2P

cjc
T
j

1

A
�1

. (7)

The destination embedding for the object unlearning is equal to a null embedding (i.e., “”).

A.6 RECELER

Receler (Huang et al., 2023) trains an adapter-based eraser E using the same objective with ESD.
Additionally, Receler utilizes masking-based regularization loss to ensure that the eraser can remove
only the target concept to be erased.

B EXPERIMENTAL SETTING DETAILS

We use Stable Diffusion v1.4 as our pretrained models for all experiments. To unlearn the Stable
Diffusion, We follow the provided code and instructions on each Github page to train their models
accordingly. All of the hyperparameters of the fine-tuning are the same as the values used in the
original implementations, except for the implementation of AC and the number of epochs of SA (Heng
& Soh, 2024). Since the original 200 epochs of SA are insufficient to achieve effective unlearning for
church, we increase the number of epochs to 300.

B.1 IMPLEMENTATION OF AC

In the original implementation of AC, the authors evaluate AC only on adjective-like concepts, such
as “Grumpy” from “Grumpy cat”. We extend the settings of the AC to enable object unlearning.
Specifically, given a target concept c, we select an alternative concept c⇤ from a different object
and train the diffusion models using the objective function described in Appendix A.1. Although
this approach has not been explored in the original research, AC can be effectively applied to object
unlearning and is categorized as a mapping-based method, similar to SA and SalUn.

B.2 EXPERIMENTAL SETTINGS ON MNIST

To evaluate the bias arising from unlearning, we train a conditional diffusion model on the MNIST
dataset. following the work of SA (Heng & Soh, 2024). The conditional diffusion model uses a UNet
architecture and is trained with an objective used in classifier-free guidance (Ho & Salimans, 2022),
also applied in Stable Diffusion. This setup enables both unconditional and conditional generation
with the same network.

Unlearning settings. We fine-tune the DDPM trained on the MNIST dataset using the unlearning
methods, including SA, SalUn, ESD, and AC. For SA and SalUn, we adopt the objective functions
and hyperparameters from their original implementations on CIFAR-10, which still perform well on
the MNIST dataset. For ESD and AC, we fine-tune the trained DDPM using the same objective as in
Stable Diffusion. Specifically, ESD is trained for 20,000 iterations with a batch size of 128, similar
to SA. AC is trained for 1,000 iterations with the same batch size, as we observe rapid convergence.
Note that we confirm that all methods effectively unlearn the diffusion model.

Alternative class. SA, SalUn, and AC requires an alternative class for unlearning. We follow the
setting from their original implementation for SA and SalUn. SA uses a uniform distribution over
the pixel values. SalUn uses a random forgetting algorithm. We observe that SalUn generates a
single alternative class after unlearning. For AC, we select one as the alternative class, as it can be
distinguished clearly. When one is the target class, the alternative class is set to zero. Samples of
conditional generation of the target class are provided in Appendix F.2.
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C EFFECTIVENESS ON TARGET CONCEPT

C.1 CLASSIFICATION USING GPT-4O

In most of our experiments, we use GPT-4o to classify whether an image contains the specified
concept. The instructions used for classification are provided in Fig. 8.

You will be shown an AI-generated image. Your task is to determine whether the bird is clearly
visible and accurately depicted.

1. If the {concept} is clearly visible and depicted correctly, respond with “Yes.”
2. If the {concept} is not visible, unclear, or inaccurately depicted, respond with “No.”

Figure 8: Instructions used to classify images with GPT-4o, where “concept” is replaced by the
specific concept being classified.

C.2 DETAIL OF PROMPT CURATION

For the prompt curation process, we use GPT-4o to generate prompts. We explicitly ask GPT-4o to
generate prompts in multiple languages, including French, Spanish, and Italian. The instruction used
to generate diversified prompts is shown in Fig. 9. Finally, we manually inspect the quality of the
collected candidates and curate the final 100 prompts for each concept. Randomly sampled prompts
from the final curated set are shown in Table 9. Roughly 15% of the final prompts are written in a
language other than English.

Write 20 Stable Diffusion prompts to generate images depicting {concept}. Consider the
following requirements:

1. You may use synonyms for {concept}
2. The prompt should be clear, high-quality, and depict the exterior of the {concept} (you

can use various trigger words like 8k, HD, hyper-detailed, 35mm film grain, etc.).
3. You may write the prompt in different languages.
4. The prompts should vary in terms of length and expression.

Figure 9: Instruction used to generate prompts for the target concept.

Compare the diverse prompt with other methods. We compare the variety of prompts used in
our approach with those generated by other methods. As shown in Table 8, our approach generates a
larger number of prompts while also incorporating multiple languages. Furthermore, our prompts are
longer on average, as indicated by the mean prompt length, suggesting that they are more complex
and sophisticated than those generated by other methods.

# of prompt LLM Other language Mean prompt length

AC 10 4 7.35
Receler 50 4 14.81
Ours 100 4 4 20.25

Table 8: Comparison of prompt for each method
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concept prompt

church “Church Surrounded by Cherry Blossoms in Spring: A traditional church with a cross on
its roof, surrounded by cherry blossom trees in full bloom. Rendered in 4k with vibrant
pinks and whites, capturing the delicate flowers in the foreground.”
“Under a clear, starry sky, a small rural church glows softly from within, surrounded
by fields of tall grass that sway gently in the night breeze. Ultra HD 8k, with intricate
details of the church.”
“Majestuosa catedral que se alza sobre una metrópolis en expansión”, detalles góticos
intrincados, el corazón y alma de la ciudad, Canon EOS-1D X Mark III, hora dorada
con sombras contrastantes, estilo arquitectónico en ultra alta definición.”

parachute “Parachutist drifting above an alpine landscape, snow-capped peaks in the background,
ultra-realistic, richly textured”
“Skydiver descending with an open parachute, sharp details and vivid sky, no clouds in
sight.”
“Un parachute s’ouvrant à haute altitude, tissu gonflé, cordes détaillées, perspective
dynamique, hyper-réaliste, ultra HD.”

gas pump “8k hyper-detailed image of a gas station during sunset, orange hues casting long
shadows, gas pumps reflecting the warm light, a calm atmosphere.”
“A modern gas pump with an integrated charging port for electric vehicles, hyper-
detailed, HD, clean and futuristic design.”
“Imagen ultra-detallada en 8K de una gasolinera con múltiples bombas de gasolina en
fila, sus columnas metálicas brillando bajo un sol brillante del mediodı́a.”

English springer “With a stick in its mouth, the English Springer bounds through tall grass, ultra HD,
dynamic fur movement, richly textured meadow.”
“English Springer Spaniel sitting calmly in a field of daisies, highly detailed fur, bright
sunlight, clear blue sky in the background.”
“Primer plano de la oreja y el pelaje de un Springer Spaniel Inglés, HD, textura muy
detallada, enfoque intenso, iluminación natural.”

Table 9: Examples of diverse prompts for each concept.
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C.3 QUALITATIVE RESULT

Original ESDAC UCESA SalUn Receler

Figure 10: church images generated from simple prompt.

Original ESDAC UCESA SalUn Receler

“Gothic Revival Church Surrounded by Fallen Autumn Leaves: A Gothic Revival church with towering spires, 
surrounded by a carpet of vivid orange and red autumn leaves. Ultra HD 8k render capturing the rich colors and intricate architectural details.”

“Monochrome Image of a Modest Chapel: A high-definition, black-and-white photograph of a quaint, weathered chapel with a cross-topped steeple, 
surrounded by minor renovation work, under a sky filled with dramatic stratus clouds. Captured with a Leica camera for sharp, nuanced contrasts and deep shadows”

“A snowglobe with a one-tower gothic church (tower is on the right face of the building inside of it, on a tartan fabric, unreal engine rend er, 8k”

“Catedral barroca com detalhes ornamentais, iluminada pela luz da lua, fotografia em alta definição.”

Figure 11: church images generated from diverse prompt.
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Original ESDAC UCESA SalUn Receler

Figure 12: parachute images generated from simple prompt.

Original ESDAC UCESA SalUn Receler

“Skydiver releasing a bright orange parachute mid-fall, high-definition, ultra-detailed, photorealistic clouds in the background, 8K”

“Paragliders riding thermals over a vast canyon, extreme detail, sharp textures, 4K, crystal-clear lighting, realistic shadows”

“Parachutist descending with an open parachute, sharp contrast with the clear sky, hyper-detailed, 8k.”

“Une personne en parapente avec un parachute à motifs sur un paysage vallonné, ultra-clair, richement détaillé, couleurs vives, 8k.”

Figure 13: parachute images generated from diverse prompt.
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Original ESDAC UCESA SalUn Receler

Figure 14: gas pump images generated from simple prompt.

Original ESDAC UCESA SalUn Receler

“A futuristic robotic gas pump refueling a vehicle, ultra-realistic, 4k, metallic textures, sci-fi style.”

“A busy gas station with neatly arranged pumps, shot in ultra-high definition 8K.”

“Ultra-HD, richly detailed scene of an expansive gas station with multiple gas pumps, 
each with colorful hoses, a car wash visible in the background.”

“Une pompe à carburant moderne avec un écran numérique, dans une station lumineuse et propre.”

Figure 15: gas pump images generated from diverse prompt.
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Original ESDAC UCESA SalUn Receler

Figure 16: English springer images generated from simple prompt.

Original ESDAC UCESA SalUn Receler

“Close-up of an English Springer Spaniel with its head tilted, ultra HD, richly detailed eyes, soft background blur, bright and natural light.”

“English Springer Spaniel standing in front of a wooden fence, HD, richly textured wood and fur, natural light, serene expression.”

“A dark english spaniel dog as god of the forest, detailed face, clean lines, atmospheric lighting, amazing, full body, flowers, intricate, 
highly detailed, digital painting, artstation, concept art, sharp focus, illustration, art by greg rutkowski and alphonse mucha”

“Gros plan du visage d'un Springer Spaniel anglais avec un nez mouillé et la langue sortie,
 hyper-détaillé, résolution 8k, texture naturelle de la peau, expression joyeuse et brillante.”

Figure 17: English springer images generated from diverse prompt.
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D SELECTIVE ALIGNMENT TASK

We propose a selective alignment task to assess whether the unlearned model can accurately generate
the remaining concepts within a given prompt. To do this, we curate ten distinct background concepts
and generate corresponding images. We provide the prompt that is used in the selective alignment
tasks in Table 10.

Prompt

“A {concept} with cherry blossoms.”
“A {concept} with a star-field night sky.”

“A {concept} with a beach.”
“A {concept} with snow.”

“A {concept} with a sunset.”
“A {concept} with fallen leaves.”

“A {concept} with a desert.”
“A {concept} with a meadow.”

“A {concept} with a flower field.”
“A {concept} with a forest.”

Table 10: Prompts used in the selective alignment task, where {concept} is replaced by the target
concept.

D.1 QUALITATIVE RESULTS

cherry
blossoms

snow

meadow

forest

Original ESDAC UCESA SalUn Receler

Figure 18: Samples of generated images with background from church-erased model for selective
alignment task
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cherry
blossoms

snow

meadow

forest

Original ESDAC UCESA SalUn Receler

Figure 19: Samples of generated images with background from parachute-erased model for selective
alignment task

fallen
leaves

dessert

beach

flower
field

Original ESDAC UCESA SalUn Receler

Figure 20: Samples of generated images with background from gas pump-erased model for selective
alignment task
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fallen
leaves

dessert

beach

flower
field

Original ESDAC UCESA SalUn Receler

Figure 21: Samples of generated images with background from English springer-erased model for
selective alignment task

E OVER-ERASING EFFECT

E.1 RELATED CONCEPTS

In Section 5.1, we discuss the issue of over-erasing, where the unlearned model removes the target
concept and fails to generate its related concepts. To evaluate this effect, we select five related concepts
for each target concept. The categories and their corresponding related concepts are provided in
Table 11.

Concept Category Related concept

church Christian cross, alter, pulpit, rosary, bible
parachute Flying object air balloon, jet, kite, drone, aircraft
gas pump Machine vending machine, ATM, slot machine, gumball machine, coffee machine
English springer Dog breed Saint Bernard, Beagle, Chihuahua, Shiba Inu, Samoyed

Table 11: Related concept and its category for each target concept.
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E.2 QUALITATIVE RESULTS

Cross

Altar

Pulpit

Rosary

Bible

Original ESDAC UCESA SalUn Receler

Figure 22: Samples of generated images that related to church.

Air
ballon

Kite

Drone

Rocket

Airplane

Original ESDAC UCESA SalUn Receler

Figure 23: Samples of generated images that related to parachute.
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Vending
machine

ATM

Slot
machine

Gumball
machine

Coffee
machine

Original ESDAC UCESA SalUn Receler

Figure 24: Samples of generated images that related to gas pump.

Saint
Bernard

Beagle

Chihuahua

Shiba
Inu

Samoyed

Original ESDAC UCESA SalUn Receler

Figure 25: Samples of generated images that related to English springer.
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F BIAS: UNCONDITIONAL GENERATION

F.1 BIAS IN STABLE DIFFUSION

In Section 5.2, we observe that unlearning could cause bias. This raises a question of whether bias
also occurs in Stable Diffusion. We find that the mapping-based methods, AC and SA, also introduce
bias when these methods unlearn the Stable Diffusion. To check the bias on Stable Diffusion, we
generate 500 images from Stable Diffusion unlearned with AC and SA, and we calculate the proportion
of generated images containing target concept (i.e., Bird) using GPT-4o. We also calculate the target
concept proportion of the original Stable Diffusion.

Table 12 shows the proportion of the target concept unconditionally generated from Stable Diffusion.
Roughly 64.5% and 7.6% of images generated from SA and AC, respectively, belong to the alternative
class. The feature space of Stable Diffusion is vast, indicating that the models unlearned using SA and
AC are significantly biased. The images of the alternative concepts generated through unconditional
generation can be found in the Fig. 28.

Original AC SA

Replacement 0.002 0.076 0.645

Table 12: Proportion of images containing the target concept unconditionally generated from Stable
Diffusion. The target concept of AC and SA is bird.

F.2 QUALITATIVE RESULTS OF CONDITIONAL GENERATION ON MNIST

ESD

AC

SA

SalUn

0 1 2 3 4 5 6 7 8 9

Figure 26: Samples generated with the target concept on the MNIST dataset. Each column shows the
target class.
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F.3 QUALITATIVE RESULTS OF UNCONDITIONAL GENERATION ON MNIST

ESD

AC

SA

SalUn

0 1 2 3 4 5 6 7 8 9

Figure 27: Samples of unconditional generation with an unlearned diffusion model on the MNIST
dataset. Each column shows the target class for unlearning, with each image representing a sample
classified into that class.

F.4 QUALITATIVE RESULTS OF UNCONDITIONAL GENERATION IN STABLE DIFFUSION

AC

SA

Figure 28: Samples unconditionally generated from Stable Diffusion unlearned with AC and SA. This
samples contains the object bird, which is a target concept of both AC and SA.

G APPLICATION

G.1 EXPERIMENTAL SETTINGS.

We employ ControlNet (Zhang et al., 2023a) with HED (Xie & Tu, 2015) and ControlNet reference-
only (Zhang et al., 2023a). We use the ControlNet v1.12 for the sketch-to-image generation. Although
the ControlNet is trained with Stable Diffusion v1.5, we find that the ControlNet also works well with
Stable Diffusion v1.4. For the ControlNet reference-only, we use the implementation of Diffusers (von
Platen et al., 2022)3.

For each concept, we select 50 reference images. We also extract edges from the reference images to
convert them into sketches. We generate five images for each condition and evaluate the presence
of the target concept in the generated images using GPT-4o. For this experiment, we additionally
use a negative prompt with words that specify the quality of generated images. Specifically, we use
“a photo of {concept}, best quality, HD, extremely detailed, realistic” for the positive prompt and
“monochrome, lowres, bad quality, bad anatomy, worst quality, low quality, low res, blurry, distortion”
for the negative prompt. We use a UniPC scheduler (Zhao et al., 2024) with a step size of 20.

2https://huggingface.co/lllyasviel/control_v11p_sd15_softedge
3https://github.com/huggingface/diffusers/blob/main/examples/community/

stable_diffusion_controlnet_reference.py
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G.2 QUALITATIVE RESULTS.
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Figure 29: church images generated with additional conditions. The first row consists of images
generated with HED, and the second row consists of images generated with an reference image.
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Figure 30: parachute images generated with additional conditions. The first row consists of images
generated with HED, and the second row consists of images generated with an reference image.
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Figure 31: gas pump images generated with additional conditions. The first row consists of images
generated with HED, and the second row consists of images generated with an reference image.
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Figure 32: English springer images generated with additional conditions. The first row consists of
images generated with HED, and the second row consists of images generated with an reference
image.
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H CONCEPT RESTORATION

H.1 EXPERIMENTAL SETTINGS

To restore the images from noisy reference images, we use original or unlearned Stable Diffusion.
First, we add noise to the reference images with a predefined diffusion timestep t⇤. And then, we
perform the denoising process with PNDM scheduler (Liu et al., 2022) and a step size of 0.02.
The number of steps in the denoising process can vary depending on the diffusion timestep t⇤ with
intervals of 0.1. We use a simple prompt “a photo of a {concept}” for the text condition during the
denoising process.

For evaluation, we first classify the recovered images with a pretrained classifier, and we compute
the proportion of images containing the target concept. Then, we plot the proportion measured
for different t⇤ values, the same unlearning method, and the same target concept as a curve, and
we calculate the area under the curve (AUC) of this curve. We use 1,000 images per concept for
the reference images, and we use a pretrained ImageNet classifier with resnet-50 architecture. We
conduct the same experiment for all unlearning methods and target concepts.

H.2 AUCS OF CONCEPT RESTORATION

Figure 33: Area under the curves of the concept restoration.
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H.3 QUALITATIVE RESULTS.

Original AC SA SalUn UCE ESD Receler

𝑡∗ = 1

0.8

0.6

0.4

0.2

Figure 34: Concept restoration results when the target concept is church. Each row represents the
start diffusion timestep t⇤.
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Figure 35: Concept restoration results when the target concept is parachute. Each row represents the
start diffusion timestep t⇤.
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Figure 36: Concept restoration results when the target concept is gas pump. Each row represents the
start diffusion timestep t⇤.
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Figure 37: Concept restoration results when the target concept is English springer. Each row
represents the start diffusion timestep t⇤.
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