
Under review as a conference paper at ICLR 2023

APPENDIX

A COMPARISON OF NASH SOLVERS FOR NORMAL-FORM GAME

In this section we show the Nash equilibrium solvers (i.e., Nash solving subroutine NASH) for
zero-sum normal-form games, which is an important subroutine for the proposed algorithms. Since
NE for zero-sum normal-form games can be solved by linear programming, some packages involving
linear programming functions like ECOS, PuLP and Scipy can be leveraged. We also implement a
solver based on an iterative algorithm–multiplicative weights update (MWU), which is detailed in
Appendix Sec. A.1.

A.1 MULTIPLICATIVE WEIGHTS UPDATE

The MWU algorithm (Bailey & Piliouras, 2018; Daskalakis & Panageas, 2018) is no-regret in online
learning setting, which can be used for solving NE in two-player zero-sum normal-form games. Given
a payoff matrix A (from the max-player’s perspective), the NE strategies will be solved by iteratively
applying MWU. Specifically, for n-th iteration, state s and actions (ai, bj) for the max-player µ and
min-player ν respectively, i, j are the entry indices of discrete action space, then the update rule of
the action probabilities for two players are:

µ(n+1)(ai|s) = µ(n)(ai|s)
eη(Aν(n)⊺(s))i∑

i′ µ
(n)(ai′ ; s)eη(Aν(n)⊺(s))i′

(15)

ν(n+1)(bj |s) = ν(n)(bj |s)
e−η(Aµ(n)⊺(s))j∑

j′ ν
(n)(bj′ ; s)e

−η(Aµ(n)⊺(s))j′
(16)

where η is the learning rate. By iteratively updating each action entry of the strategies with respect to
the payoff matrix, MWU is provably converging to NE.

A.2 COMPARISON

Table 3: Comparison of different Nash solvers for zero-sum matrix game (6× 6 random matrices).

Solver Time per Sample (s) Solvability
Nashpy (equilibria)1 0.751 all

Nashpy (equilibrium) 0.0016 not for some degenerate matrices
ECOS2 0.0015 all

MWU (single) 0.008 all (but less accurate)
MWU (parallel) fast, depends on batch size3 all (but less accurate)

CVXPY 0.009 all
PuLP 0.020 all
Scipy − not for some

Gurobipy 0.01 not for some
1 Nashpy (https://github.com/drvinceknight/Nashpy) can be adopted to achieve two versions of NE

solvers: one returns a single NE, and another returns all Nash equilibria for given payoff matrices.
2 ECOS (https://github.com/embotech/ecos) is a package for solving convex second-order cone pro-

grams.
3 MWU solver is self-implemented for solving either a single payoff matrix or solving a batch of

matrices in parallel.
4 CVXPY (https://github.com/cvxpy/cvxpy) is a Python package for convex optimization.
5 PuLP (https://github.com/coin-or/pulp) is a linear programming package with Python.
6 Scipy (scipy.optimize.linprog()) is a general package for numerical operations.
7 Gurobipy (https://www.gurobi.com/) is a package for linear and quadratic optimization.

We conduct experiments to compare different solvers for NE subroutine, including Nashpy (for single
Nash equilibrium or all Nash equilibria), ECOS, MWU (single or parallel), CVXPY, PuLP, Scipy,
Gurobipy. The test is conducted on a Dell XPS 15 laptop with only CPU computation. The code will
be released after the review process (anonymous during review process). Experiments are evaluated
on 6× 6 random matrices and averaged over 1000 samples. The zero-sum property of the generated
Markov games is guaranteed by generating each random matrix as one player’s payoff and take the
negative values as its opponent’s payoff.

12

https://github.com/drvinceknight/Nashpy
https://github.com/embotech/ecos
https://github.com/cvxpy/cvxpy
https://github.com/coin-or/pulp
https://www.gurobi.com/

Under review as a conference paper at ICLR 2023

As in Table. 3, the solvability indicates whether the solver can solve all possible randomly generated
matrices (zero-sum). Nashpy for solving all equilibria cannot handle some degenerate matrices. Scipy
and Gurobipy also cannot solve for some payoff matrices. Other solvers can solve all random payoff
matrices in our tests but with different solving speed and accuracy. The solvability is essential for the
program since the values within the payoff matrix can be arbitrary as a result of applying function
approximation. The results support our choice of using the ECOS-based solver as the default Nash
solving subroutine for the proposed algorithms, due to its speed and robustness for solving random
matrices. ECOS is originally built for solving convex second-order cone programs, which covers
linear programming (LP) problem. It tries to transform the input matrices to be Scipy sparse matrices
and speeds up the solving procedure. By formulating the NE solving as LP on normal-form game,
we can plug in the ECOS solver to get the solution. Some constraints like positiveness and constant
sum need to be handled carefully. Other solvers like Nashpy (equilibrium) and MWU (parallel) can
achieve a similar level of computational time, but less preferred due to either not being able to solve
some matrices or less accurate results. Specifically, for the case with a large batch size and a small
number of inner-loop iterations for MWU, MWU can be faster than ECOS. However, the accuracy
of MWU depends on the number of iterations for update (Bailey & Piliouras, 2018; Daskalakis &
Panageas, 2018). More iterations lead to more accurate approximation but also longer computational
time for MWU method. Empirically, we find that the accuracy of the subroutine solver is critical for
our proposed algorithms with function approximation, especially in video games with long horizons.
Moreover, although we have already selected the best solver through comparisons, the computational
time of the solvers used in each inference or update step still account for a considerable portion. This
leaves some space for improvement of running-time efficiency.

B ALGORITHMS ON TABULAR MARKOV GAMES

In this section, we provide further details on connections of our algorithms to tabular algorithms
NASH_VI and NASH_VI_EXPLOITER in Sec.B.1, and prove the theoretical guarantees of the latter
two algorithms in Sec.B.2. We then provide all the pseudo-codes for subroutines and algorithms used
in this paper. In particular, we introduce the pseudo-codes for important subroutines in Sec. B.3,
and then the pseudo-codes for several algorithms: self-play (SP, B.5), fictitious self-play (FSP,
B.6), double oracle (DO, B.7), Nash value iteration (NASH_VI, B.8) and Nash value iteration with
exploiter (NASH_VI_EXPLOITER, B.9). SP, FSP and DO are the baseline methods in experimental
comparisons, while NASH_VI and NASH_VI_EXPLOITER are the tabular version of our proposed
algorithms NASH_DQN and NASH_DQN_EXPLOITER, without function approximation.

B.1 CONNECTIONS OF NASH_DQN, NASH_DQN_EXPLOITER TO TABULAR ALGORITHMS

We first note that the ϵ-greedy version of NASH_VI and NASH_VI_EXPLOITER algorithms (as
shown in Section B.8, B.9), are simply the optimistic Nash-VI algorithm in Liu et al. (2021) and
GOLF_WITH_EXPLOITER algorithm in Jin et al. (2021b) when applied to the tabular setting, with
optimistic exploration replaced by ϵ-greedy exploitation.

Comparing our algorithms NASH_DQN (algorithm 1) and NASH_DQN_EXPLOITER (algorithm
11) with the ϵ-greedy version of NASH_VI (Algorithm 9) and NASH_VI_EXPLOITER (Algorithm
10), we notice that, besides the minor difference between episodic setting versus infinite horizon
discounted setting, the latter two algorithms are special cases of the former two algorithms when

1. specialize the neural network structure to represent a table of values for each state-action
pairs (i.e. specialize both algorithms to the tabular setting);

2. let the minibatchM to contain all previous data (i.e., use the full batch D);
3. let the number of gradient step m to be sufficiently large so that GD finds the minimizer of

the objective function;
4. let N = 1, that is update the target network at every iterations.

We remark that the use of small minibatch size, and small gradient steps are to speed up the training
in practice beyond tabular settings. The delay update of the target networks is used to stabilize the
training process.

B.2 PROOF OF THEOREM 1

The result of optimistic Nash-VI algorithm in Liu et al. (2021), and the result of
GOLF_WITH_EXPLOITER algorithm in Jin et al. (2021b) (when specialized to the tabular set-

13

Under review as a conference paper at ICLR 2023

ting) already prove that both optimistic versions of NASH_VI and NASH_VI_EXPLOITER can find
ϵ-approximate Nash equilibria for episodic Markov games in poly(S,A,B,H, ϵ−1, log(1/δ)) steps
with probability at least 1− δ. Here H is the horizon length of the episodic Markov games.

To convert the episodic results to the infinite-horizon discounted setting in this paper, we can simply
truncate the infinite-horizon games up to H = 1

1−γ ln
2

(1−γ)ϵ steps so that the remaining cumulative
reward is at most

∞∑
h=H

γh =
γH

1− γ
≤ e−(1−γ)H

1− γ
≤ ϵ

2

which is smaller than the target accuracy. To further address the non-stationarity of the value and
policy in the the episodic setting (which requires both value and policy to depends on not only the
state, but also the steps), we can augment the state space s to (s, h) to include step information (up
to the truncation point H) in the state space. Now, we are ready to apply the episodic results to
the infinite horizon discounted setting, which shows that both optimistic versions of NASH_VI and
NASH_VI_EXPLOITER can find ϵ-approximate Nash equilibria for infinite-horizon discounted
Markov games in poly(S,A,B, (1− γ)−1, ϵ−1, log(1/δ)) steps with probability at least 1− δ. Here
γ is the discount coefficient.

B.3 SUBROUTINES

Algorithm 2 META_NASH: Meta-Nash Equilibrium Solving Subroutine

1: Input two strategy sets µ, ν; evaluation iterations N
2: Initialize payoff matrix: Mi,j = 0, i ∈ [|µ|], j ∈ [|ν|]
3: for µi ∈ µ do
4: for νi ∈ ν do
5: for episodes k = 1, . . . , N do
6: Rollout policies µi, νj to get episodic reward rk
7: Mi,j =

1
N

∑N
k=1 rk

8: (ρµ, ρν) = NASH(M)
9: Return ρµ or ρν

Before introducing the pseudo-code for each algorithm, we summarize several subroutines – NASH,
META_NASH, BEST_RESPONSE and BEST_RESPONSE_VALUE – applied in the algorithms. These
subroutines are marked in magenta color in the this and the following sections.

NASH: As a NE solving subroutine for normal-form games, it returns the NE strategy given the
payoff matrix as the input. Specifically it uses the solvers introduced in Appendix Sec. A, and ECOS
is the default choice in our experiments.

META_NASH: As a meta-Nash solving subroutine (Algorithm 2), it returns the one-side meta NE
strategy given two strategy sets: µ = {µ1, · · · , µi, · · · }, ν = {ν1, · · · , νi, · · · }. A one-by-one
matching for each pair of polices (µi, νj), i ∈ [|µ|], j ∈ [|ν|] is evaluated in the game to get an
estimated payoff matrix, with the average episodic return as the estimated payoff values of two
players for each entry in the payoff matrix. The NASH subroutine is called to solve the meta-Nash
strategies. It is applied in DO algorithm, which is detailed in Sec. B.7.

BEST_RESPONSE: As a best response subroutine, it returns the best response strategy of the given
strategy, which satisfies Eq. (4). To be noticed, the best response we discuss here is the best
response of a meta-distribution ρµ over a strategy set {µ0, µ1, . . . , µn}, which covers the case of
best response against a single strategy by just making the distribution one-hot. We use this setting
for the convenience of being applied in SP, FSP, DO algorithms. Here we discuss two types of best
response subroutine that are used at different positions in the algorithms: (1) BEST_RESPONSE I (as
Algorithm 3) is a best response subroutine with oracle transition and reward function of the game,
which is used for evaluating the exploitability of the model after training; (2) BEST_RESPONSE II (as
Algorithm 4) is a best response subroutine with Q-learning agent for approximating the best response,
without knowing the true transition and reward function of the game. It is used in the procedure of
methods based on iterative best response, like SP, FSP, DO. We claim here for the following sections,
by default, BEST_RESPONSE will use BEST_RESPONSE II, and BEST_RESPONSE_VALUE will use
BEST_RESPONSE I.

BEST_RESPONSE_VALUE: It has the same procedure as BEST_RESPONSE as a best response
subroutine, but returns the average value of the initial states as V µ̂,†1 (s1) in Eq. (7) with the given

14

Under review as a conference paper at ICLR 2023

strategy µ̂. Since the best response value estimation is used in evaluating the exploitability of a certain
strategy, it by default adopts BEST_RESPONSE I (Algorithm 3) as an oracle process, which returns
the ground-truth best response values because of knowing the transition and reward functions.

Algorithm 3 BEST_RESPONSE I: Best Response Subroutine in Markov Game (known transition,
reward functions)

1: Input mixture policy ρµ as a distribution over {µ0, µ1, . . . , µn}
2: Initialize non-Markovian policies µ̂ = {µ̂h}, ν̂ = {ν̂h}, h ∈ [H], µh : (S ×A× B)(h−1)×S ×
A → [0, 1], νh : (S ×A× B)(h−1) × S × B → [0, 1]

3: Initialize Q table for non-Markovian policies µ̂, ν̂, Q = {Qh}, h ∈ [H], Qh : (S ×A× B)h →
[0, 1]

4: Initialize V table for non-Markovian policies µ̂, ν̂, V = {Vh}, h ∈ [H], Vh : (S×A×B)(h−1)×
S → [0, 1]

5: for h = 1, . . . ,H do
6: For all τh−1:

Qµ,†h (τh−1, sh, ah, bh) =
∑
s′∈S

Ph(sh+1|sh, ah, bh)[rh(sh, ah, bh) + V µ̂,†h+1(τh, sh+1)] (17)

V µ̂,†h (τh−1, sh) = min
νh

µ̂h(·|τh−1, sh)Q
µ̂,†
h (τh−1, sh, ·, ·)ν⊺h(·|τh−1, sh) (18)

ν̂h(τh−1, sh) = argmin
νh

µ̂h(·|τh−1, sh)Q
µ̂,†
h (τh−1, sh, ·, ·)ν⊺h(·|τh−1, sh) (19)

where

µ̂h(ah|τh−1, sh) :=

∑
i µ

i
h(ah|sh)ρ(i)Π

h−1
t′=1µ

i
t′(at′ |st′)∑

j ρ(j)Π
h−1
t′=1µ

j
t′(at′ |st′)

7: Return ν̂ or V µ̂,†1 (s1)
% µ̂ is the posterior policy of non-Markovian mixture µ, ν̂ is the best response of it

Algorithm 4 BEST_RESPONSE II: Best Response Subroutine in Markov Game (Q-learning based,
unknown transition, reward functions)

1: Input mixture policy ρµ as a distribution over {µ0, µ1, . . . , µn}; best response Q-learning
iterations N ; soft update coefficient α

2: Initialize the Q = {Qh|h ∈ [H]} ∈ R|S|×|B| table for the best response player,
3: for episodes k = 1, . . . , N do
4: Sample policy µk ∼ ρµ
5: for t = 1, . . . ,H do
6: % collect data
7: Sample greedy action at ∼ µk(·|st)
8: With ϵ probability, sample random action bt;
9: Otherwise, sample greedy action bt ∼ ν(·|st) according to Q

10: Rollout environment to get sample (st, at, bt, rt, done, st+1) (rt is for the learning player)

11: % update best response Q-value
12: if not done then
13: Qtarget

t (st, bt) = rt + Vt+1(st+1)
14: where Vt+1(st+1) = maxb′ Qt+1(st+1, b

′)
15: else
16: Qtarget

t (st, bt) = rt
17: Qt(st, bt)← α ·Qtarget

t (st, bt) + (1− α) ·Qt(st, bt)
18: if done then
19: break
20: Represent Q as a greedy policy ν̂
21: Return ν̂

B.4 NASH Q-LEARNING

15

Under review as a conference paper at ICLR 2023

The pseudo-code for Nash Q-Learning is shown in Algorithm.5 below.

Algorithm 5 Nash Q-Learning

Initialize Q : S ×A× B → R, given ϵ, γ, α.
for k = 1, . . . ,K do

for t = 1, . . . ,H do
% collect data
With ϵ probability, sample random actions at, bt;
Otherwise, at ∼ µ(·|st), bt ∼ ν(·|st), (µ(·|st), ν(·|st)) = NASH(Q(st, ·, ·))
Rollout environment to get sample (st, at, bt, rt, done, st+1)
% update Q-value
if not done then

Compute (µ̂, ν̂) = NASH(Q(st+1, ·, ·))
Set Qtarget(st, at, bt) = rt + γµ̂⊤Q(st+1, ·, ·)ν̂.

else
Set Qtarget(st, at, bt) = rt

Q(st, at, bt)← α ·Qtarget(st, at, bt) + (1− α) ·Q(st, at, bt)
if done then

break

B.5 SELF-PLAY

The pseudo-code for self-play is shown in Algorithm 6.

Algorithm 6 Self-play for Markov Game

1: Initialize policies µ0 = {µh}, ν0 = {νh}, h ∈ [H]
2: Initialize policy sets: µ = {µ0}, ν = {ν0}
3: Initialize meta-strategies: ρµ = [1.], ρν = [1.]
4: for t = 1, . . . , T do
5: if t%2 == 0 then
6: νt = BEST_RESPONSE(ρµ, µ)
7: ν = ν

⋃
{νt}

8: ρν = (0, . . . , 1) as a one-hot vector with only 1 for the last entry
9: else

10: µt = BEST_RESPONSE(ρν , ν)
11: µ = µ

⋃
{µt}

12: ρµ = (0, . . . , 1) as a one-hot vector with only 1 for the last entry
13: exploitability = BEST_RESPONSE_VALUE(ρµ, µ) + BEST_RESPONSE_VALUE(ρν , ν)
14: Return µ, ν

B.6 FICTITIOUS SELF-PLAY

The pseudo-code for fictitious self-play is shown in Algorithm.7. We use uniform(·) to denote a
uniform distribution over the policy set.

B.7 DOUBLE ORACLE

The pseudo-code for double oracle is shown in Algorithm.8.

B.8 NASH_VI

The pseudo-code for Nash value iteration (NASH_VI) is shown in Algorithm 9. Different from
NASH_DQN (as Algorithm 1), for tabular Markov games, the Q network is changed to be the Q
table and updated in a tabular manner (as Algorithm 9 line 13), given the estimated transition function
P̃ and reward function r̃. The target Q is not used. Since NASH_VI is applied for tabular Markov
games, here we write the pseudo-code in an episodic setting without the reward discount factor, which
is slightly different from Sec. 3.1.

16

Under review as a conference paper at ICLR 2023

Algorithm 7 Fictitious Self-play for Markov Game

1: Initialize policies µ0 = {µh}, ν0 = {νh}, h ∈ [H]
2: Initialize policy sets: µ = {µ0}, ν = {ν0}
3: Initialize meta-strategies: ρµ = [1.], ρν = [1.]
4: for t = 1, . . . , T do
5: if t%2 == 0 then
6: νt = BEST_RESPONSE(ρµ, µ)
7: ν = ν

⋃
{νt}

8: ρν = Uniform(ν)
9: else

10: µt = BEST_RESPONSE(ρν , ν)
11: µ = µ

⋃
{µt}

12: ρµ = Uniform(µ)
13: exploitability = BEST_RESPONSE_VALUE(ρµ, µ) + BEST_RESPONSE_VALUE(ρν , ν)
14: Return µ, ρµ, ν, ρν

Algorithm 8 Double Oracle for Markov Game

1: Initialize policies µ0 = {µh}, ν0 = {νh}, h ∈ [H]
2: Initialize policy sets: µ = {µ0}, ν = {ν0}
3: Initialize meta-strategies: ρµ = [1.], ρν = [1.]
4: for t = 1, . . . , T do
5: if t%2 == 0 then
6: νt = BEST_RESPONSE(ρµ, µ)
7: ν = ν

⋃
{νt}

8: ρν = META_NASH(ν, µ)
9: else

10: µt = BEST_RESPONSE(ρν , ν)
11: µ = µ

⋃
{µt}

12: ρµ = META_NASH(ν, µ)
13: exploitability = BEST_RESPONSE_VALUE(ρµ, µ) + BEST_RESPONSE_VALUE(ρν , ν)
14: Return µ, ρµ, ν, ρν

Algorithm 9 Nash Value Iteration (NASH_VI, ϵ-greedy sample version)

1: Initialize Q = {Qh}, h ∈ [H], Qh : Sh ×Ah ×Bh → R, buffer D = ϕ, given ϵ, update interval
p.

2: for k = 1, . . . ,K do
3: for t = 1, . . . ,H do
4: % collect data
5: With ϵ probability, sample random actions at, bt;
6: Otherwise, at ∼ µt(·|st), bt ∼ νt(·|st), (µt(·|st), νt(·|st)) = NASH(Qt(st, ·, ·)).
7: Rollout environment to get sample (st, at, bt, rt, done, st+1) and store in D.
8: % update Q-value
9: if |D|%p = 0 then

10: for ∀(s, a, b, s′) ∈ Sh ×Ah × Bh × Sh+1, h ∈ [H] do
11: Estimate P̃h(sh+1 = s′|sh = s, ah = a, bh = b) = 1

n

∑n
i=1 1(sh+1 =

s′i), (s, a, b, s
′
i) ∈ D.

12: Estimate r̃h(sh = s, ah = a, bh = b) = 1
m

∑m
i=1 ri(s, a, b), (s, a, b, ri) ∈ D.

13: Qh(s, a, b) = r̃h(s, a, b) + (P̃hV
µ̂h+1,ν̂h+1

h+1)(s, a, b) · I[s′ is non-terminal],
14: where (µ̂h+1, ν̂h+1) = NASH(Qh+1).
15: if done then
16: break

17

Under review as a conference paper at ICLR 2023

B.9 NASH_VI_EXPLOITER

The pseudo-code for Nash value iteration with Exploiter (NASH_VI_EXPLOITER) is shown in
Algorithm.10. Different from NASH_DQN_EXPLOITER (as Algorithm 11), for tabular Markov
games, the Q network and exploiter Q̃ network are changed to be Q tables and updated in a tabular
manner (as Algorithm 10 line 14 and line 16), given the estimated transition function P̃ and reward
function r̃. The target Q and target Q̃ are not used. Since NASH_VI_EXPLOITER is applied for
tabular Markov games, here we write the pseudo-code in an episodic setting without the reward
discount factor, which is slightly different from Sec. 3.2.

Algorithm 10 Nash Value Iteration with Exploiter (NASH_VI_EXPLOITER, ϵ-greedy sample version)

1: Initialize Q = {Qh}, Q̃ = {Q̃h}, h ∈ [H], Q̃h, Qh : Sh ×Ah × Bh → R, buffer D = ϕ, given
ϵ, update interval p.

2: for k = 1, . . . ,K do
3: for t = 1, . . . ,H do
4: % collect data
5: With ϵ probability, sample random actions at, bt;
6: Otherwise, at ∼ µt(·|st), bt ∼ ν̃t(·|st),
7: (µt(·|st), νt(·|st)) = NASH(Q(st, ·, ·)), ν̃t(·|st) = argminν µ

⊺
t (·|st)Q̃t(st, ·, ·)ν.

8: Rollout environment to get sample (st, at, bt, rt, done, st+1) and store in D.
9: % update Q-value

10: if |D|%p = 0 then
11: for ∀(s, a, b, s′) ∈ Sh ×Ah × Bh × Sh+1, h ∈ [H] do
12: Estimate P̃h(sh+1 = s′|sh = s, ah = a, bh = b) = 1

n

∑n
i=1 1(sh+1 =

s′i), (s, a, b, s
′
i) ∈ D.

13: Estimate r̃h(sh = s, ah = a, bh = b) = 1
m

∑m
i=1 ri(s, a, b), (s, a, b, ri) ∈ D.

14: Qh(s, a, b) = r̃h(s, a, b) + (P̃hV
µ̂h+1,ν̂h+1

h+1)(s, a, b) · I[s′ is non-terminal],
15: where (µ̂h+1, ν̂h+1) = NASH(Qh+1).
16: Q̃h(s, a, b) = r̃h(s, a, b) + (P̃hV Exploit

h+1)(s, a, b),

17: where V Exploit
h+1 (s′) =

{
minb′∈Bh+1

µ̂h+1(s
′)⊺Q̃h+1(s

′, ·, b′) for non-terminal s′

0 for terminal s′
.

18: if done then
19: break

B.10 NASH_DQN_EXPLOITER

The pseudo-code for double oracle is shown in Algorithm.11.

B.11 COMPARISONS OF NASH_VI, NASH Q-LEARNING, GOLF_WITH_EXPLOITER AND
NASH_DQN

We will detail the essential similarities and differences of the four algorithms NASH_VI, Nash Q-
Learning, GOLF_WITH_EXPLOITER and NASH_DQN from four aspects: model-based/model-free,
update manner, replay buffer, and exploration method.

• NASH_VI: model-based; update using full batch, no soft update; there is a buffer containing
all samples so far; ϵ-greedy exploration.

• Nash Q-Learning: model-free; update using stochastic gradient for each sample, using soft
update Q← (1− α)Q+ αQtarget;no replay buffer; ϵ-greedy exploration.

• GOLF_WITH_EXPLOITER: model-based; using an optimistic way of updating policy and
exploiter within a confidence set; there is a buffer containing all samples so far; a different
behavior policy for exploration compared with ϵ-greedy exploration.

• NASH_DQN: model-free; minibatch stochastic gradient update, using Mean Squared
Error(Q,Qtarget) for gradient-based update; there is a buffer containing all samples so
far; ϵ-greedy exploration.

18

Under review as a conference paper at ICLR 2023

Algorithm 11 Nash Deep Q-Network with Exploiter (NASH_DQN_EXPLOITER)

1: Initialize replay buffer D = ∅, counter i = 0, Q-network Qϕ, exploiter network Q̃ψ .
2: Initialize target network parameters: ϕtarget ← ϕ, ψtarget ← ψ.
3: for episode k = 1, . . . ,K do
4: reset the environment and observe s1.
5: for t = 1, . . . ,H do
6: % collect data

7: sample actions (at, bt) from
{

Uniform(A× B) with probability ϵ
(µt, νt) computed according to (12) otherwise.

8: execute actions (at, bt), observe reward rt, next state st+1.
9: store data sample (st, at, bt, rt, st+1) into D.

10: % update Q-network and exploiter network
11: randomly sample minibatchM⊂ {1, . . . , |D|}.
12: for all j ∈M do
13: compute (µ̂, ν̂) = NASH(Qϕtarget(sj+1, ·, ·))
14: set yj = rj + γµ̂⊤Qϕtarget(sj+1, ·, ·)ν̂.
15: set ỹj = rj + γminb∈B µ̂

⊤Q̃ψtarget(sj+1, ·, b)
16: Perform m1 steps of GD on loss

∑
j∈M(yj −Qϕ(sj , aj , bj))2 to update ϕ.

17: Perform m2 steps of GD on loss
∑
j∈M(ỹj − Q̃ψ(sj , aj , bj))2 to update ψ.

18: % update target network
19: i = i+ 1; if i%N = 0: ϕtarget ← ϕ, ψtarget ← ψ.

From these similarities and differences, we can see that three theoretical algorithms Nash-VI, Nash
Q-learning and GOLF-with-exploiter have slight differences in details, Nash-DQN can be viewed as
practical approximation of both Nash-VI and Nash Q-learning.

C HYPERPARAMETERS FOR TABULAR MARKOV GAME.

Table 4: Hyperparameters in Tabular Markov Game.

Hyperparameter Values

Common

Learning rate 1× 10−4

Optimizer Adam
Batch size 640

Replay Buffer Size 105

Episodes 50000
Episode Length 3 for I / 6 for II

Hidden Dimension 128
Hidden Activation ReLU

Hidden Layers 3
Target Update Interval 1000

γ 1.0
ϵ Exponential Decay ϵ0 = 1.0, ϵ1 = 0.0, p = 8000

SP δ 1.5 for I / 2.0 for II

FSP δ 1.5 for I / 2.0 for II

NFSP η 0.1

PSRO δ 1.5 for I / 2.0 for II

Nash DQN Exploiter Exploiter Update Ratio m2/m1 1

This section provides detailed hyperparameters of methods with function approximation on the
tabular Markov games, as shown in Table 4. Methods such as SP, FSP, NFSP, PSRO all use DQN
as the basic RL agent, and the “Common” hyperparameters are applied on the DQN algorithm. For
NASH_DQN and NASH_DQN_EXPLOITER, since the algorithms follows a similar routine as DQN
in general (value-based, off-policy), they also adopt the same hyperparameters.

19

Under review as a conference paper at ICLR 2023

In the common hyperparameters, the basic agent applies a network with 3 hidden layers and 128
as hidden dimension. The target update interval is the delayed update of the target network, and it
updates once per n times of standard network updates. n is specified by the target update interval
value, and γ is the reward discounting coefficient, and it’s set to be one in tabular Markov games since
the episode length (3 for I or 6 for II) is small in the experiments. ϵ is the factor in ϵ-greedy exploration
and it follows an exponential decay schedule. Specifically, its value follows ϵ(t) = ϵ1+(ϵ0−ϵ1)e−t/p
in our experiments, where t is the timestep in update.

Since SP, FSP, PSRO algorithms follow an iterative best response procedure in the learning process,
the margin for determining whether the current updating side achieves an approximate best response
is set according to the average episodic reward. Once a learning agent wins over its opponent by a
average reward threshold δ (depending on games), it saves the approximate best-response strategy
and transfers the role to its opponent. The values of δ are different for the two tabular environments
I and II, since the ranges of the return are different for the two environments. The longer horizon
indicates a potentially larger range of return.

For NFSP, since actions can be sampled from either ϵ-greedy policy or the average policy, η is a
hyperparameter representing the ratio of choosing actions from ϵ-greedy policy.

For NASH_DQN_EXPLOITER, the exploiter update ratio is the times of GD for the exploiter over
the times GD for updating the Nash Q network, which is m2/m1 as in Algorithm 11.

The exploiter for exploitation test after model training is a DQN agent with exactly the same
“Common” hyperparameters for the tabular Markov game test.

D RESULTS FOR TABULAR MARKOV GAMES

Table 5 shows the exploiter rewards in the exploitation test on two tabular Markov games. The
exploiter reward is an approximation of −V µ̂,†(s1) by Eq. (7). The last column “Nash V” is the
true value of V µ

∗,ν∗
(s1). V µ

∗,ν∗
(s1) − V µ̂,†(s1) gives the true exploitability for µ̂. Due to the

randomly generated payoff matrix, it is asymmetric for the two players: V µ
∗,ν∗

(s1) ≈ −0.296 for
environment I and V µ

∗,ν∗
(s1) ≈ −0.131 for environment II. For example, in Table 5 the mean of

approximate exploitability of Oracle Nash is 0.269 − 0.296 = −0.027, and the theoretical value
should be zero since it is the ground truth Nash equilibrium strategy. Also, since the transition and
reward is assumed to be unknown and the exploitability is approximated with a DQN agent, the
stochasticity of the results is larger than the tabular method test. Table 6 shows the exploitation results
at different training stages for environment I. At step 0, some methods have common results since the
initialized models are the same for them.

Table 5: Exploiter rewards in tabular case: the reward means and standard deviations are derived over
1000 episodes in exploitation test.

Env / Method SP FSP NFSP PSRO Nash DQN Nash DQN Exploiter Oracle Nash Nash V
Tabular Env I 0.744± 0.711 0.675± 0.811 0.613± 0.858 0.430± 1.110 0.392± 1.044 0.316± 0.998 0.269± 1.029 −0.296
Tabular Env II 1.370± 1.323 0.825± 1.343 0.510± 1.408 0.700± 1.337 0.148± 1.341 0.202± 1.425 0.049± 1.365 −0.131

Table 6: Exploiter rewards in tabular Markov game I after training for 0, 10k, 20k, 30k, 40k, 50k
episodes and exploitation for 30k episodes. The reward means and standard deviations are derived
over 1000 episodes in exploitation test.

Method Exploiter Reward
0 10k 20k 30k 40k 50k

SP

1.114± 0.776

1.133± 0.764 1.002± 0.786 0.749± 0.907 0.885± 0.837 0.744± 0.711
FSP 0.724± 0.890 0.698± 0.808 0.690± 0.783 0.709± 0.801 0.675± 0.811

NFSP 0.607± 0.982 0.604± 0.887 0.610± 0.951 0.500± 0.933 0.613± 0.858
PSRO 0.669± 0.873 0.650± 0.829 0.714± 0.790 0.712± 0.913 0.430± 1.110

Nash DQN
1.214± 0.860

0.405± 1.003 0.392± 1.040 0.387± 1.003 0.411± 1.040 0.392± 1.044
Nash DQN Exploiter 0.301± 0.978 0.297± 1.056 0.273± 1.034 0.291± 0.945 0.316± 0.998

Oracle Nash 0.269± 1.029

E HYPERPARAMETERS FOR TWO-PLAYER VIDEO GAMES.

This section provides detailed hyperparameters of methods with function approximation on the
tabular Markov games, as shown in Table 7 for SlimeVolley environment and Table 8 for two-player

20

Under review as a conference paper at ICLR 2023

Table 7: Hyperparameters in SlimeVolley.

Hyperparameter Values

Common

Learning rate 1× 10−4

Optimizer Adam
Batch size 128

Replay Buffer Size 105

Episodes 50000
Episode Length ≤ 300

Hidden Dimension 128
Hidden Layers 3

Hidden Activation ReLU
Target Update Interval 1000

γ 0.99
ϵ Exponential Decay ϵ0 = 1.0, ϵ1 = 1× 10−3, p = 1× 105

SP δ 3.0

FSP δ 3.0

NFSP η 0.1

PSRO δ 3.0

Nash DQN ϵ Exponential Decay ϵ0 = 1.0, ϵ1 = 1× 10−3, p = 5× 106

Nash DQN Exploiter ϵ Exponential Decay ϵ0 = 1.0, ϵ1 = 1× 10−3, p = 5× 106

Exploiter Update Ratio m2/m1 1

Table 8: Hyperparameters in two-player Atari games.

Hyperparameter Values

Common

Learning rate 1× 10−4

Optimizer Adam
Batch size 128

Replay Buffer Size 105

Episodes 50000
Episode Length ≤ 300

Hidden Dimension 128
Hidden Layers 4

Hidden Activation ReLU
Target Update Interval 1000

γ 0.99
ϵ Exponential Decay ϵ0 = 1.0, ϵ1 = 1× 10−3, p = 1× 105

SP δ 80/15/10/7/3

FSP δ 80/15/10/7/3

NFSP η 0.1

PSRO δ 80/15/10/7/3

Nash DQN ϵ Exponential Decay ϵ0 = 1.0, ϵ1 = 1× 10−3, p = 5× 106

Nash DQN Exploiter ϵ Exponential Decay ϵ0 = 1.0, ϵ1 = 1× 10−3, p = 5× 106

Exploiter Update Ratio m2/m1 3

21

Under review as a conference paper at ICLR 2023

Atari games. For Table 7 and 8, the meaning of each hyperparameter is the same as in Appendix
Sec. C. For Table 8, the threshold value δ for iterative best response procedure has multiple values,
which correspond in order with environments Boxing-v1, Double Dunk-v2, Pong-v2, Tennis-v2,
Surround-v1, respectively.

It can be noticed that NASH_DQN and NASH_DQN_EXPLOITER use a different ϵ decay schedule
from other methods including SP, FSP, NFSP and PSRO. Since the Nash-based methods follow a
single model update routine, the slow decaying ϵ (larger p) is more proper to be applied. Other
baseline methods follow the iterative best response procedure, which learns new models in each
period of update iteratively. Each period within the overall training process is much shorter, therefore
the model with a faster decaying ϵ will learn better. In between two periods, the ϵ is re-initialized as
the starting value ϵ0 during the whole training process.

The exploiter for exploitation test after model training is a DQN agent with exactly the same common
hyperparameters for the two-player video game test.

F COMPLETE RESULTS FOR VIDEO GAMES

Table 9 shows the means and standard deviations of exploitation results over different runs and
exploiters. The experiments are the same as in Table 2. Notice that the mean values of Table 9 are
different from the values in Table 2. This is because in Table 2 the models with best unexploitable
performance are reported, while in Table 9 it’s averaged over all runs and exploitation tests.

Table 9: Approximate exploitability (lower is better) for six two-player video games: mean±std.

Env
Method SP FSP NFSP PSRO Nash DQN Nash DQN Exploiter

SlimeVolley 0.155 ± 0.269 0.620 ± 0.190 0.380 ± 0.386 3.490 ± 4.612 0.514 ± 0.810 −0.149 ± 0.587
Boxing 46.930±47.502 88.069 ± 9.300 34.107±29.232 81.078±17.983 −67.411 ± 25.124 19.790±22.412

Double Dunk 7.537 ± 1.125 6.314 ± 0.801 3.874 ± 0.878 8.087 ± 1.363 0.025 ± 0.888 1.679 ± 0.888
Pong 4.877 ± 1.211 5.019 ± 0.770 4.342 ± 1.119 5.171 ± 0.241 −2.016 ± 1.890 −1.758±1.891

Tennis 3.773 ± 1.142 2.950 ± 1.065 3.580 ± 0.913 2.793 ± 1.823 −0.418 ± 0.393 2.622 ± 2.168
Surround 1.567 ± 0.407 1.642 ± 0.244 1.721 ± 0.247 1.665 ± 0.177 1.028 ± 0.307 1.300 ± 0.258

All results for three runs and each with three exploitation tests are shown in Fig. 6 and 7, which
corresponding to the exploitation of the first and second player in games respectively. The
NASH_DQN_EXPLOITER method is asymmetric and the second player side is not the NE strategy, so
in Fig. 7 there is no exploitation results for NASH_DQN_EXPLOITER. All experiments are conducted
on a 8-GPU (Nvidia Quadro RTX A6000 48GB) server with 192 CPU cores. The exploitation test is
evaluated with non-greedy DQN agent for one episode every 20 training episodes during the whole
training period. All curves are smoothed with a window size of 100.

Notice that in above experiments the exploitability value can be negative sometimes, however Eq. 7
tells the exploitability for symmetric games should always be non-negative. This is because Eq. 7
shows the theoretical best response, which is not tractable for large-scale games like Atari. The data
we reported tables are exploitability results approximated with single-agent RL (DQN). We expect
these exploiters to be weaker than the theoretically optimal ones, therefore negative values could
appear, which also indicates that the learned Nash-DQN agents are extremely difficult to be exploited.

22

Under review as a conference paper at ICLR 2023

Figure 6: The exploitation tests on the first-player side on all six two-player zero-sum video games,
for three runs and three exploitation for each run. The vertical axis is the episodic exploiter reward.

23

Under review as a conference paper at ICLR 2023

Figure 7: The exploitation tests on the first-player side on all six two-player zero-sum video games,
for three runs and three exploitation for each run. The vertical axis is the episodic exploiter reward.

24

Under review as a conference paper at ICLR 2023

G EXPERIMENTS FOR FULL LENGTH ENVIRONMENTS

Figure 8: Comparison of the exploiter learning curves for a full-length setting on Boxing-v1.

In Fig.8, we show the exploitability experimentation with the full-length environment Boxing-v1
(no truncation to 300 steps), and also the experiments with the same settings as in Sec. 4.3 except
for the episode length. As shown in the figure, our methods (yellow for NASH_DQN and blue for
NASH_DQN_EXPLOITER) show the best exploitability performance, which are less exploited in the
exploitation tests. Specifically, even in this full length experimentation, the best performance method
NASH_DQN achieves non-exploitable strategies.

25

	Comparison of Nash Solvers for Normal-Form Game
	Multiplicative Weights Update
	Comparison

	Algorithms on Tabular Markov Games
	Connections of Nash_DQN, Nash_DQN_Exploiter to tabular algorithms
	Proof of Theorem 1
	Subroutines
	blackNash Q-Learning
	Self-play
	Fictitious Self-play
	Double Oracle
	Nash_VI
	Nash_VI_Exploiter
	Nash_DQN_Exploiter
	blackComparisons of Nash_VI, Nash Q-Learning, Golf_with_Exploiter and Nash_DQN

	Hyperparameters for Tabular Markov Game.
	Results for Tabular Markov Games
	Hyperparameters for Two-Player Video Games.
	Complete Results for Video Games
	Experiments for Full Length Environments

