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MetaRepair: Learning to Repair Deep Neural Networks from
Repairing Experiences

Anonymous Authors

ABSTRACT
Repairing deep neural networks (DNNs) to maintain its perfor-
mance during deployment presents significant challenges due to
the potential occurrence of unknown but common environmen-
tal corruptions. Most existing DNN repair methods only focus on
repairing DNN for each corruption separately, lacking the ability
of generalizing to the myriad corruptions from the ever-changing
deploying environment. In this work, we propose to repair DNN
from a novel perspective, i.e. Learning to Repair (L2R), where the
repairing of target DNN is realized as a general learning-to-learn,
a.k.a.meta-learning, process. In specific, observing different corrup-
tions are correlated on their data distributions, we propose to utilize
previous DNN repair experiences as tasks for meta-learning how to
repair the target corruption. With the meta-learning from different
tasks, L2R learns a meta-knowledge that summarizes how the DNN
is repaired under various environmental corruptions. The meta-
knowledge essentially serves as a general repairing prior which en-
ables the DNN quickly adapt to unknown corruptions, thus making
our method generalizable to different type of corruptions. Practi-
cally, L2R benefits DNN repair with a general pipeline yet tailoring
meta-learning for repairing DNN is not trivial. By re-designing the
meta-learning components under DNN repair context, we further
instantiate the proposed L2R strategy into a concrete model named
MetaRepair with pragmatic assumption of experience availability.
We conduct comprehensive experiments on the corrupted CIFAR-
10 and tiny-ImageNet by applying MetaRepair to repair DenseNet,
ConvNeXt and VAN. The experimental results confirmed the supe-
rior repairing and generalization capability of our proposed L2R
strategy under various environmental corruptions.

CCS CONCEPTS
• Computing methodologies→ Transfer learning.

KEYWORDS
DNN repair, meta-learning, model generalization, learning with
noise.

1 INTRODUCTION
Deep neural networks (DNNs) have shown discernible achieve-
ments in a wide range of applications [19], ranging from image
recognition [17] [35], machine translation [13, 34], to safety-critical
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domains like medical diagnosis [23] and self-driving [3]. In spite of
the excellent performance DNNs have demonstrated, applying a
well pretrained DNN for practical application is still challenging
due to the various discrepancy between experimental and deploy-
ing environments. One of the most common obstacles is the input
corruption [41], where the pretrained DNN has to serve a totally
different source of inputs that oftentimes fail DNN for correct func-
tion. In an effort to maintain the performance of DNN during model
deployment, many approaches have been proposed to repair DNN
from both software engineering [5, 30–32, 39] and machine learn-
ing [26, 37, 41, 42] perspectives.

Conventionally, as shown in Fig. 1 (a), existing repairing ap-
proaches simply utilize the collected few failure examples to repair
DNN for the target deploying environment [26, 30]. However, such
pipeline faces a crucial issue [26]: the DNN is repaired only for
this very target corruption and cannot generalize to other sit-
uations after repairing. During practical DNN deploying process,
the deploying environment keeps changing which makes there are
numerous corruptions need to be repaired. It is unrealistic and in-
efficient to carry out the repairing pipeline for each corruption one
by one. In fact, the environmental corruptions can be conceptually
categorized by their characteristics [9], e.g. blur, noise, weather, etc..
In consequence, a desired DNN repair method should be at least
generalize to corruptions of the same category. Nevertheless, gener-
alization of DNN, especially when data is scarce, is a long-standing
tough task in the research of machine learning [43].

Although the discussion on generalizable DNN repairing is scarce,
there are plenty of established generalization studies on other top-
ics [20, 24, 38, 44]. For example, in the research of few-shot learn-
ing [27], meta-learning has demonstrated its superior generalization
capability by transform the learning objective into a learning-to-
learn problem [4]. In this work, inspired by the great generalizability
that meta-learning has demonstrated in other problems [21], we
introduce meta-learning into the problem of DNN repair. As shown
in Fig. 1 (b), we propose the Learning to Repair (L2R) strategy where
the DNN repair is formalized into a learning-to-learn problem. Our
aimwith L2R is to learn the repairing capability by conductingmeta-
learning among the repairing experience of different corruptions.
Inside the meta-learning, L2R first meta-train the DNN on collected
failures of different corruptions for learning a meta-knowledge
which essentially summarizes how the DNN is updated and re-
paired under different corruptions. Later given a target corruption
needs to be repaired, the meta-knowledge serves as instructions to
repair the DNN for target corruption during meta-test. Basically,
L2R is the learning and application of the repairing ability rather
than the repairing of specific corruption, which makes the pipeline
corruption-independent. Therefore, our strategy is expected to be
generalizable for repairing DNN under various corruptions.

Practically, our L2R benefits DNN repair with a generalizable
pipeline but tailoring meta-learning for DNN repair is not trivial.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 1: Left: the conventional DNN Repairing pipeline. Right: our proposed Learning to Repair strategy.

In specific, there are three essential components needs to be consid-
ered when formalizing DNN repair as a meta-learning problem. ❶
The task distribution on which meta-learning is carried out, ❷ the
meta-learner and base-learner as well as the meta-knowledge that
represents repairing capability and ❸ the meta-training and test-
ing procedure designed under DNN repair context. Therefore, we
further provide a concrete instantiation of L2R named MetaRepair
to verify the proposed repairing strategy. Fundamentally, our work
benefits DNN repair research with the following contributions.
• In this work, we provide a novel perspective for DNN repair.
We redefine the conventional DNN repairing into a meta-
learning process and elaborate the new challenges as well
as the model, dataset and learning setup.
• We propose a novel Learning to Repair (L2R) strategy to
repair DNN with generalization. Our L2R learns how to
repair DNN under different corruptions with meta-learning
rather than only repairing for specific corruption, which is
desirable for practical DNN deployment.
• We show that the proposed L2R can be realized with great
flexibility by constructing the MetaRepair model which is
one of various realizations of L2R strategy.
• With extensive experiments, the results of repairing three
modern DNNs on corrupted CIFAR-10 and tiny-ImageNet
demonstrate the proposed L2R strategy has superior repair-
ing and generalization capabilities.

2 RELATEDWORK
DNN repair aims to mitigate the performance degradation at the
model deployment stage. Existing DNN repair approaches can be
roughly categorized into following two types.

Researchers from the software engineering community com-
monly take DNN as a kind of software and view the performance
degradation as a kind of software bugs [5, 32, 39]. To localize and
rectify the buggy behaviors of deployed DNN, they investigate the
DNN construction like activation function [5], model weights [39],

or network patches [32] etc. to find which part of the DNN should
be adjusted. However, the DNN is usually a black box for the con-
sideration of safety or commercial reasons [1] during practical
deployment which makes it hard for structure analysis. Moreover,
repairing DNN with structure investigation potentially leads to
sub-optimal solutions [14] since the target deploying environment
is keeping changing.

Another kind of approach consider the repairing problem as
further optimization of the DNN, i.e. repairing-by-optimization
method, under specific corruption with the supervision of a few col-
lected failure examples [26, 41, 42], which is familiar to researchers
with machine learning backgrounds as fine-tuning. Nevertheless,
correcting DNN misbehavior by further optimization is not non-
trivial due to the hard of training data accessing [41] and ease of
over-fitting [42], both of which are prone of introducing newmisbe-
haviors. One way of realizing DNN repair by further optimization
with limited failure cases and avoiding over fitting is to augment
the data with cutting-edge generation techniques [41], but they
are notoriously reported to be easy of mode collapsing [28] and
incapable of accurate distribution matching [15].

In general, existing DNN repair methods either unsuitable for
actual deploying process or lack the capability of generalizing to
different situations. Therefore, we introduce meta-learning into
DNN repair in order to realize DNN repair with promising general-
ization performance. As an established learning paradigm, meta-
learning [21, 33] is designed to be effective in data-scarce and
generalization-critical problems. Particularly, meta-learning is es-
pecially suitable for DNN repair considering it can be realized as
model-agnostic [4]. It suggests that we are not design the repairing
method for specific target environment which substantially makes
meta-learning applicable to DNN repair problem.

3 PROBLEM STATEMENT
We first introduce the conventional definition of DNN repair and
re-formalize it in Sec. 4 into a meta-learning process. For the main
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notations utilized, we refer readers to the supplemental material
for a comprehensive grasp.

Typically, a DNN 𝐹𝜃 (·) parameterized with 𝜃 is learned with
some training dataD𝑡𝑟𝑎𝑖𝑛 and evaluated on the corresponding test-
ing data D𝑡𝑒𝑠𝑡 , where D𝑡𝑟𝑎𝑖𝑛/D𝑡𝑒𝑠𝑡 ∼ P𝑐𝑙𝑒𝑎𝑛 . When deploying
the pretrained DNN 𝐹𝜃 (·) into a target real-world environment, we
preconceive the data encountered also comes from P𝑐𝑙𝑒𝑎𝑛 . How-
ever, such assumption is almost not the truth in reality [9] and it
always fails the DNN for correct functioning [40]. In fact, disturbed
by the environmental corruption, the data of the target deploy-
ing environment D𝑐𝑜𝑟𝑟𝑢𝑝𝑡 usually follows a different distribution
D𝑐𝑜𝑟𝑟𝑢𝑝𝑡 ∼ P𝑐𝑜𝑟𝑟𝑢𝑝𝑡 .

To maintain the DNN performance under the environmental
corruptions, DNN repair [26, 30] is proposed to rectify DNN mis-
behaviour by utilizing a few failure cases D𝑐𝑜𝑙𝑙𝑒𝑐𝑡 ⊂ D𝑐𝑜𝑟𝑟𝑢𝑝𝑡
collected from the target deploying environment. After repair-
ing, the repaired DNN 𝐹

𝜃
(·) is expected to perform correctly on

D𝑓 𝑎𝑖𝑙 ⊂ D𝑐𝑜𝑟𝑟𝑢𝑝𝑡 , where D𝑓 𝑎𝑖𝑙 ∩ D𝑐𝑜𝑙𝑙𝑒𝑐𝑡 = ∅. Mathematically,
the above DNN repair process can be formulated as

maxE(𝑋,𝑦) ∈D𝑓 𝑎𝑖𝑙
M(𝐹

𝜃
(𝑋 ), 𝑦) (1)

𝑠 .𝑡 .

𝜃 = argmin
𝜃

E(𝑋,𝑦) ∈D𝑐𝑜𝑙𝑙𝑒𝑐𝑡
L(𝐹𝜃 (𝑋 ), 𝑦) (2)

whereM is the performance metric adopted and L is the loss for
DNN optimization. However, as the notation indicated above, this
objective is only the repairing for one specific corruption P𝑐𝑜𝑟𝑟𝑢𝑝𝑡 .
Without consideration of the correlation between corruptions, the
DNN repaired by such strategy can only be applicable for the tar-
get environment and incapable of generalizing to other similar
deploying environments.

4 METHODOLOGY
To the end of repairing DNN with generalizability, we propose to
formalize DNN repair into a meta-learning process which can be
elaborated with following two aspects.
• We first redefine DNN repair into a meta-learning problem
with Learning to Repair (L2R) strategy in Sec. 4.1,
• then in Sec. 4.2, we consider the implementation of L2R and
design the MetaRepair model for experiments.

4.1 Learning to Repair
As illustrated in Fig. 1 (b), the general idea of L2R is that the ability of
repairing DNN for target corruption is learned from the experiences
of repairing DNN for other corruptions. Essentially, such a learning
to repair capability is acquired with a basic hypothesis:

Hypothesis The data distribution of 𝐾 different deploying envi-
ronments {P𝑘𝑐𝑜𝑟𝑟𝑢𝑝𝑡 }𝐾𝑘=1 are correlated in a sense that similar deploy-
ing environments match better on their data distributions.

This hypothesis has been implicitly applied to various noise-
related machine learning researches [43], and we also demonstrate
its genuineness with experiments in Sec. 5.3. Fundamentally, the
hypothesis provides us a premise for realizing generalizable DNN
repairing. Making use of the repairing experience of correlated
corruptions, we can expect the repairing of target corruption will
be facilitated when they share similar data distribution.

Practically, given 𝐾 deploying environments {P𝑘𝑐𝑜𝑟𝑟𝑢𝑝𝑡 }𝐾𝑘=1 and
the corrupted data {D𝑘𝑐𝑜𝑟𝑟𝑢𝑝𝑡 = (D𝑘

𝑐𝑜𝑙𝑙𝑒𝑐𝑡
,D𝑘

𝑓 𝑎𝑖𝑙
)}𝐾
𝑘=1, we setup

the DNN repairing process for each corruption

𝜃𝑘 = argmin
𝜃

E(𝑋,𝑦) ∈D𝑘
𝑐𝑜𝑙𝑙𝑒𝑐𝑡

L(𝐹𝜃 (𝑋 ), 𝑦) (3)

where L refers to the loss of DNN repairing. To facilitate the repair-
ing of target corruption with these𝐾 repairing experiences, we take
them as meta-learning tasks and meta-train the DNN to learn how
it should be repaired under different corruptions. Accordingly, we
further setup a meta-learning objective which can be formulated as

𝜉𝑚𝑒𝑡𝑎 = argmin
𝜉
𝜃→𝜃𝑘

E(𝑋,𝑦) ∈D𝑘
𝑓 𝑎𝑖𝑙

L𝑚𝑒𝑡𝑎 (𝐹𝜃𝑘 (𝑋 ), 𝑦, 𝜉𝜃→𝜃𝑘 ) (4)

where 𝜉 is the meta-knowledge that represents the repairing capa-
bility, L𝑚𝑒𝑡𝑎 is the meta-training loss and 𝜃 → 𝜃𝑘 summarizes the
repairing process of Eq. 3.

Intuitively, Eq. 4 learns an optimal representation of repairing
ability by evaluating the repaired DNN on the failure data of differ-
ent corruptions. Following the hypothesis, such repairing capability
𝜉𝑚𝑒𝑡𝑎 is also applicable to the target corruption when it has correla-
tion to the 𝐾 repairing experiences. Therefore, the repairing of the
target deploying environment P𝑡𝑐𝑜𝑟𝑟𝑢𝑝𝑡 is expected to be facilitated
by further applying 𝜉𝑚𝑒𝑡𝑎 for meta-testing

𝜃 = argmin
𝜃

E(𝑋,𝑦) ∈D𝑡
𝑐𝑜𝑙𝑙𝑒𝑐𝑡

L(𝐹𝜃 (𝑋 ), 𝑦, 𝜉𝑚𝑒𝑡𝑎) (5)

where 𝜉𝑚𝑒𝑡𝑎 performs as a repairing prior for Eq. 3 to facilitate the
repairing process. Note the final performance is calculated with

E(𝑋,𝑦) ∈D𝑡
𝑓 𝑎𝑖𝑙
M(𝐹

𝜃
(𝑋 ), 𝑦) (6)

and D𝑡𝑐𝑜𝑟𝑟𝑢𝑝𝑡 = (D𝑡𝑐𝑜𝑙𝑙𝑒𝑐𝑡 ,D
𝑡
𝑓 𝑎𝑖𝑙
) are the collected and failure ex-

amples of the target deploying environment.

4.2 MetaRepair
We now further design a model dubbed MetaRepair by fleshing L2R
out with consideration of critical meta-learning components under
DNN repair context. Briefly, ❶ we first clarify the challenges and
our designing of meta-learning task distribution for DNN repair.
❷ Then we setup the base- & meta-learner and meta-knowledge
within L2R strategy. ❸ Finally, all the components are integrated
into a comprehensive meta-learning procedure.

Task Distribution Traditionally, meta-learning is commonly
formalized into the few-shot learning paradigm [4] where the tasks
are assembled as class-level learning problems. For example [33],
a few-shot learning task T = {𝐷𝑡𝑟𝑎𝑖𝑛, 𝐷𝑡𝑒𝑠𝑡 ,LT } consists of the
training and testing data as well as a task-specific loss, where the
samples composed of𝐷𝑡𝑟𝑎𝑖𝑛 and𝐷𝑡𝑒𝑠𝑡 are of the same class. During
the meta-learning, the tasks are uniformly sampled over classes and
themodel is meta-trained and -tested with those tasks in an episodic
manner [22]. Different from conventional meta-learning sce-
nario, our L2R conducts meta-learning among the repairing
experiences of different corruptions rather than classes. As
a result, the tasks in our L2R are defined as corruption-level
learning problems.

Specifically, given the data D𝑐𝑜𝑟𝑟𝑢𝑝𝑡 = (D𝑐𝑜𝑙𝑙𝑒𝑐𝑡 ,D𝑓 𝑎𝑖𝑙 ) of spe-
cific corruption, we use the same format T = {𝐷𝑡𝑟𝑎𝑖𝑛, 𝐷𝑡𝑒𝑠𝑡 ,LT }
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to represent a corruption-level task where 𝐷𝑡𝑟𝑎𝑖𝑛 ⊂ D𝑐𝑜𝑙𝑙𝑒𝑐𝑡 and
𝐷𝑡𝑒𝑠𝑡 ⊂ D𝑓 𝑎𝑖𝑙 . The main difference is that 𝐷𝑡𝑟𝑎𝑖𝑛 and 𝐷𝑡𝑒𝑠𝑡 are
of the same corruption rather than the same class. However, such
task construction faces two critical issues. ❶ The classes composed
of 𝐷𝑡𝑟𝑎𝑖𝑛 and 𝐷𝑡𝑒𝑠𝑡 may be totally disjoint, which is catastrophic
for adaptation during meta-learning. Moreover, ❷ different tasks
have different correlations to the target corruption according to
the hypothesis in Sec. 4.1, which indicates the uniform sampling of
tasks is inappropriate for DNN repair problem.

To tailor the meta-learning task for DNN repair, we propose
to design it as semantic-cover and confidence-aware task to ad-
dress the above issues. In general, the task for L2R is set as T =

{𝐷𝑡𝑟𝑎𝑖𝑛, 𝐷𝑡𝑒𝑠𝑡 ,LT , 𝑝𝑐𝑜𝑟𝑟𝑢𝑝𝑡 }, where the examples in 𝐷𝑡𝑟𝑎𝑖𝑛 now
cover all classes and 𝑝𝑐𝑜𝑟𝑟𝑢𝑝𝑡 is the corruption-wise probability for
task sampling. Particularly, we choose Fréchet Inception Distance
(FID) [11] as the empirical correlation measurement for corruptions
which is given by

𝑞𝑘𝑡𝑐𝑜𝑟𝑟𝑢𝑝𝑡 =| |𝜇𝑘𝑐𝑜𝑟𝑟𝑢𝑝𝑡 − 𝜇𝑡𝑐𝑜𝑟𝑟𝑢𝑝𝑡 | |22+

𝑡𝑟 (Σ𝑘𝑐𝑜𝑟𝑟𝑢𝑝𝑡 + Σ𝑡𝑐𝑜𝑟𝑟𝑢𝑝𝑡

−
√︃
2(Σ𝑘𝑐𝑜𝑟𝑟𝑢𝑝𝑡Σ𝑡𝑐𝑜𝑟𝑟𝑢𝑝𝑡 )) (7)

where N(𝜇𝑐𝑜𝑟𝑟𝑢𝑝𝑡 , Σ𝑐𝑜𝑟𝑟𝑢𝑝𝑡 ) is the normal distribution estimated
with Inception v3 [36] feature of the collected examples. 𝑘, 𝑡 refer
to the 𝑘-th and target corruption respectively.

Note that themore similar of two deploying situations the smaller
the computed FID score, where the same corruption has a FID score
of 0. To apply it as confidence of repairing experience, we adopt
the exponential function for converting the score into probability

𝑝𝑘𝑡𝑐𝑜𝑟𝑟𝑢𝑝𝑡 =
𝑒
−𝛼∗(𝑞𝑘𝑡𝑐𝑜𝑟𝑟𝑢𝑝𝑡 −𝛽 )∑

𝑘,𝑡 𝑒
−𝛼∗(𝑞𝑘𝑡𝑐𝑜𝑟𝑟𝑢𝑝𝑡 −𝛽 )

(8)

where 𝛼 , 𝛽 are threshold hyper-parameters of FID score.
Base- & Meta-learner and Meta-knowledge While the meta-

learning task for DNN repair requires careful designing, we focus on
the designing of repairing strategy rather than the tricky learning
algorithm. Thus, we adopt the well-known MAML [4] algorithm
to train our L2R. Within MAML algorithm, the base- and meta-
learner are basically the same model which is exactly the DNN
under repairing in our situation. Such designing makes the learning
algorithm model-agnostic which is desirable for repairing different
DNNs during deployment.

Simultaneously, the meta-knowledge in Eq. 4 is set to the param-
eters of DNN itself according to MAML. Although there are various
choices to summarize the repairing process, e.g. learning rate [29],
loss function [7] or manual hyper-parameters [2], the DNN itself is
the most straightforward solution to both summarize the learning
process and represent the repairing capability. In summary, the
optimization of meta-knowledge, i.e. Eq. 4, now formulated as

𝜃𝑚𝑒𝑡𝑎 = argmin
𝜃→𝜃𝑘

E(𝑋,𝑦) ∈D𝑘
𝑓 𝑎𝑖𝑙

L𝑚𝑒𝑡𝑎 (𝐹𝜃𝑘 (𝑋 ), 𝑦, 𝜃 → 𝜃𝑘 ) (9)

where the L𝑚𝑒𝑡𝑎 is actually set to the L of Eq. 3 for simplicity
during the experiments.

Meta-learning Procedure In the original MAML algorithm [4],
the meta-learning is conducted in an episodic manner where each

episode composes of several independent tasks. Duringmeta-testing,
the base-learner is adapted and evaluated individually on each task.
However, such meta-testing procedure is unsuitable for DNN repair
where the testing tasks are related since they comes from the same
corruption. Therefore, we apply episodic learning with essential
modifications to suit DNN repair problem. Specifically, as detailed
in Algorithm L17-L21, we set the updates of base-learner dur-
ing meta-test to be accumulated on the tasks in an episode.
This ensures the base-learner not only takes advantage of the re-
pairing capability meta-learned on other corruptions, but also the
data itself of target corruption. Overall, the proposed algorithm
dubbed MetaRepair is detailed as follows.
Algorithm 1:MetaRepair

Input : {D𝑘𝑐𝑜𝑟𝑟𝑢𝑝𝑡 = (D𝑘𝑐𝑜𝑙𝑙𝑒𝑐𝑡 ,D
𝑘
𝑓 𝑎𝑖𝑙
)}𝐾
𝑘=1,

D𝑡𝑐𝑜𝑟𝑟𝑢𝑝𝑡 = (D𝑡𝑐𝑜𝑙𝑙𝑒𝑐𝑡 ,D
𝑡
𝑓 𝑎𝑖𝑙
), 𝐹𝜃 (·), L

1 compute 𝑝𝑘𝑡𝑐𝑜𝑟𝑟𝑢𝑝𝑡 with Eq. 7 and Eq. 8
2 while not done do
3 for 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 = 1→ 𝑁 do

// 𝐷𝑠
𝑡𝑟𝑎𝑖𝑛

⊂ D𝑘
𝑐𝑜𝑙𝑙𝑒𝑐𝑡

, 𝐷𝑠𝑡𝑒𝑠𝑡 ⊂ D𝑘𝑓 𝑎𝑖𝑙
4 sample an episode of meta-train tasks {T𝑠 }𝑆𝑠=1
5 = {(𝐷𝑠

𝑡𝑟𝑎𝑖𝑛
, 𝐷𝑠𝑡𝑒𝑠𝑡 ,L, 𝑝𝑘𝑡𝑐𝑜𝑟𝑟𝑢𝑝𝑡 )}𝑆𝑠=1

6 for 𝑡𝑎𝑠𝑘 = 1→ 𝑆 do
7 𝜃𝑠 = argmin

𝜃

E(𝑋,𝑦) ∈𝐷𝑠
𝑡𝑟𝑎𝑖𝑛
L(𝐹𝜃 (𝑋 ), 𝑦)

8 L𝑠 = E(𝑋,𝑦) ∈𝐷𝑠
𝑡𝑒𝑠𝑡
L(𝐹

𝜃𝑠
(𝑋 ), 𝑦)

9 end
10 𝜃𝑚𝑒𝑡𝑎 = argmin

𝜃

∑𝑆
𝑠=1 L𝑠

11 𝜃 ← 𝜃𝑚𝑒𝑡𝑎

12 end
13 for 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 = 1→ 𝑀 do

// 𝐷𝑠
𝑡𝑟𝑎𝑖𝑛

⊂ D𝑡
𝑐𝑜𝑙𝑙𝑒𝑐𝑡

, 𝐷𝑠𝑡𝑒𝑠𝑡 ⊂ D𝑡𝑓 𝑎𝑖𝑙
14 sample an episode of meta-test tasks {T𝑠 }𝑆𝑠=1
15 = {(𝐷𝑠

𝑡𝑟𝑎𝑖𝑛
, 𝐷𝑠𝑡𝑒𝑠𝑡 ,L)}𝑆𝑠=1

16 𝜃 ← 𝜃𝑚𝑒𝑡𝑎

17 for 𝑡𝑎𝑠𝑘 = 1→ 𝑆 do
18 𝜃𝑠 = argmin

𝜃

E(𝑋,𝑦) ∈𝐷𝑠
𝑡𝑟𝑎𝑖𝑛
L(𝐹

𝜃
(𝑋 ), 𝑦)

19 𝜃 ← 𝜃𝑠

20 𝑎𝑐𝑐𝑠 = E(𝑋,𝑦) ∈𝐷𝑠
𝑡𝑒𝑠𝑡
M(𝐹

𝜃
(𝑋 ), 𝑦)

21 end
22 end
23 𝑎𝑐𝑐 = (∑𝑀𝑚=1

∑𝑆
𝑠=1 𝑎𝑐𝑐𝑠 )/(𝑀 × 𝑆)

24 end

5 EXPERIMENT
In this section, we conduct experiments to answer the following
four research questions (RQ).
• RQ1: How MetaRepair performs compared with state-of-
the-art (SOTA) DNN repairing approaches?
• RQ2: Does the Hypothesis in Sec. 4.1 holds for DNN repair-
ing problem?
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Table 1: The repairing performance of the deployed DenseNet repaired by SOTA methods and MetaRepair on CIFAR-10.

Method
Corruption CIFAR-10

Clean GN ZM FOG BR PIX JPEG ET
Apricot [42]

95.69

37.03 20.90 36.89 40.63 42.25 39.41 37.11
AugMix [10] 48.18 63.92 48.37 50.90 65.08 54.71 55.29
Arachne [30] 37.15 26.36 45.89 38.98 33.81 40.47 49.48
SENSEI [6] 21.24 10.31 14.34 17.17 17.39 18.78 14.33
DeepRepair [41] 61.51 73.14 57.81 56.94 60.32 63.41 62.56
ArchRepair [26] 62.16 70.81 58.06 61.17 60.58 58.80 62.71
MetaRepair (ours) 73.51 89.45 59.15 65.78 62.84 70.23 65.55

Table 2: The repairing performance of the deployed DenseNet repaired by SOTA methods and MetaRepair on tiny-ImageNet.

Method
Corruption tiny-ImageNet

Clean GN ZM FOG BR PIX JPEG ET
Apricot [42]

50.69

17.80 13.31 16.85 15.99 12.59 15.96 11.83
AugMix [10] 18.64 13.96 16.87 16.51 15.07 16.25 12.92
Arachne [30] 18.23 13.94 17.09 15.47 10.87 16.20 14.76
SENSEI [6] 16.95 13.42 16.24 15.49 11.80 16.73 12.90
DeepRepair [41] 18.80 14.09 16.34 14.93 13.21 17.12 13.50
ArchRepair [26] 18.85 13.94 16.96 16.94 13.69 15.39 13.77
MetaRepair (ours) 27.19 18.14 19.83 25.32 21.77 26.51 17.88

• RQ3: Can the DNN generalize to different deploying envi-
ronments after repair?
• RQ4: What are the contributions of different MetaRepair
components?

5.1 Experimental Setup
We first summarize the corruptions, datasets, the repairing setup,
DNNs and the baseline in our experiments. For more experimental
details, please refer to the supplemental material.

5.1.1 Corruptions. To simulate different DNN deploying environ-
ments {P𝑘𝑐𝑜𝑟𝑟𝑢𝑝𝑡 }𝐾𝑘=1, we apply the commonly used corruptions [9]
to existing data as the corrupted data source {D𝑘𝑐𝑜𝑟𝑟𝑢𝑝𝑡 }𝐾𝑘=1. Also,
the severity is set as 5 different levels following [9] for each cor-
ruption. Specifically, there are 19 corruptions in total which can be
categorized as follows:
• Noise: gaussian noise (GN), shot noise (SN), impulse noise
(IN), speckle noise (SKN).
• Blur: defocus blur (DB), glass blur (GB), motion blur (MB),
zoom blur (ZM), gaussian blur (GAB).
• Weather: snow (SW), frost (FR), fog (FOG), spatter (SP).
• Image property: brightness (BR), contrast (CT), saturate (SA).
• Digital error: elastic transform (ET), pixelate (PIX), jpeg com-
pression (JPEG).

As all the corruptions can be adopted as the repairing target, we take
gaussian noise, zoom blur, fog, brightness as the representatives of
target corruptions to be repaired. As for digital error, we experiment
all the three corruptions since they are unique to each other.

5.1.2 Datasets. We evaluate MetaRepair on CIFAR-10 [16] and
tiny-ImageNet [18]. CIFAR-10 contains 60,000 images in total for

10 categories with the size of (64, 64), where 50,000 images are split
as training and the remaining 10,000 images are utilized for testing.
Similarly, tiny-ImageNet is a subset of ImageNet [17] dataset and
contains 200 classes of image with the size of (64, 64). It composed of
a training split with 100,000 images, a validation split and a testing
split both of which contain 10,000 images.

5.1.3 Repairing Setting. In general, one corruption is setup as the
target corruption for meta-testing and 𝐾 out of the rest 18 corrup-
tions are utilized for meta-training in a round of experiment. During
meta-training, the data source {D𝑘𝑐𝑜𝑟𝑟𝑢𝑝𝑡 = (D𝑘𝑐𝑜𝑙𝑙𝑒𝑐𝑡 ,D

𝑘
𝑓 𝑎𝑖𝑙
)}𝐾
𝑘=1

is constructed by applying the 𝐾 meta-training corruptions to the
training split D𝑡𝑟𝑎𝑖𝑛 of the clean dataset. Similarly, the data source
for meta-testingD𝑡𝑐𝑜𝑟𝑟𝑢𝑝𝑡 = (D𝑡𝑐𝑜𝑙𝑙𝑒𝑐𝑡 ,D

𝑡
𝑓 𝑎𝑖𝑙
) is constructed by ap-

plying the meta-testing corruption to the clean testing split D𝑡𝑒𝑠𝑡 .
In more specific, for the 𝑘-th corruption of meta-training, we

randomly select 1000 failures from D𝑘𝑐𝑜𝑟𝑟𝑢𝑝𝑡 as the D𝑘𝑐𝑜𝑙𝑙𝑒𝑐𝑡 and
the rest of it is utilized as D𝑘

𝑓 𝑎𝑖𝑙
. As for meta-testing, we follow the

same procedure as DeepRepair [41] to filter out all the examples
failed the pretrained DNN fromD𝑡𝑐𝑜𝑟𝑟𝑢𝑝𝑡 . Then, 1000 examples are
further randomly selected from them as D𝑡

𝑐𝑜𝑙𝑙𝑒𝑐𝑡
and the rest are

assembled into D𝑡
𝑓 𝑎𝑖𝑙

.
For both meta-training and meta-testing, the tasks are assembled

following the same procedure as described in the task distribution
part of Sec. 4.2 with the data source described above. More details
of task construction can be found in the supplemental material.

5.1.4 DNNs. We adopt Densenet 121 [12], ConvNeXt base [25] and
Visual Attention Network (VAN) base [8] as the DNNs for repairing
experiments. For all three selected DNNs, we pretrained them on
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(a) CIFAR-10 (b) tiny-ImageNet
Figure 2: The repairing performance of AugMix [10], DeepRepair [41], ArchRepair [26] and our MetaRepair for ConvNeXt on
the representative corruptions for both CIFAR-10 and tiny-ImageNet.

(a) CIFAR-10 (b) tiny-ImageNet
Figure 3: The repairing performance of AugMix [10], DeepRepair [41], ArchRepair [26] and our MetaRepair for VAN on the
representative corruptions for both CIFAR-10 and tiny-ImageNet.

the clean training split data and the model with the best evaluation
results on the testing split are saved as the DNN for deployment.

5.1.5 Baselines. We collect state-of-the-art (SOTA) repairing re-
sults of DenseNet-121 [12] onCIFAR-10 [16] and tiny-ImageNet [18].
Specifically, we compare the repairing results of DenseNet-121
with Apricot [42], AugMix [10], Arachne [30], SENSEI [6], DeepRe-
pair [41], ArchRepair [26] on both two datasets. As for the repair-
ing performance of ConvNext [25] and VAN [8], we only compare
their repairing results with the best three based on the results for
DenseNet which are AugMix [10], DeepRepair [41] and ArchRe-
pair [26]. For all the results, we also show the DNN performance
on clean data without any corruption for better comparison.

5.2 How MetaRepair performs compared with
state-of-the-art DNN repairing approaches?

We first compare our MetaRepair with other repairing approaches.
Tab. 1 and Tab. 2 show the repairing results of DenseNet for target
corruptions on CIFAR-10 and tiny-ImageNet dataset respectively.
It is clear that our approach outperforms all the other repairing
approaches by a large margin. Notably, MetaRepair achieves 89.45%
top-1 accuracy for zoom blur on CIFAR-10, which is only 6.24%
lower compared with the performance on clean data. Similarly,
it realizes 12.0% accuracy improvement for gaussian noise com-
pared with DeepRepair. While CIFAR-10 is a quite easy dataset,
MetaRepair still establish a new repair baseline on tiny-ImageNet
as shown in Tab. 2. In summary, our proposed repairing method
consistently better repairing DenseNet under different corruptions
on both datasets.

Figure 4: Cross-corruption FID scores based on the Inception
v3 [36] features of collected failures for each corruption on
CIFAR-10 dataset.

As shown in Fig. 2 and Fig. 3, both ConvNeXt and VAN also
receive great performance boosting for different target corrup-
tions on CIFAR-10 dataset. While the repairing performance on
tiny-ImageNet looks discouraging compared with clean results,
our MetaRepair still generally mitigated the performance gap be-
tween the clean and corrupted data. Overall, our proposed repairing
method realized superior performance improvements which are
consistent across different corruptions, datasets and DNNs.
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(a) DenseNet (b) ConvNeXt (c) VAN

Figure 5: The repairing performance by gradually adding correlated corruptions as repairing experiences on CIFAR-10 dataset.

5.3 Does the hypothesis in Sec. 4.1 holds for
DNN repairing problem?

Although the performance boosting looks promising, our strategy
is based on the critical hypothesis from Sec. 4.1. As a general demon-
stration of its genuineness, we first calculate the cross-corruption
FID scores based on the collected failures for all the corruptions
on CIFAR-10. As illustrated in Fig. 4, it is clear that different cor-
ruptions are correlated on their data distributions which clearly
support the hypothesis with evidence. Moreover, we conduct ex-
periments to further verify the coaction of correlated corruptions
during repairing. Specifically, we gradually add five most correlated
corruptions as experiences to repair the selected target corruption
as follows.

• Gaussian Noise: +Shot Noise, +Speckle Noise, +Glass Blur,
+Elastic Transform, + Frost
• Zoom Blur: +Elastic Transform, +Spatter, +Glass Blur, +Con-
trast, +Fog
• Fog: +Saturate, +Spatter, +Contrast, +Brightness, +Frost
• Brightness: +Spatter, +Contrast, +Saturate, +Fog, +Snow

As shown in Fig. 5, it can be seen that the repairing performance
of all three DNNs are consistently improved with the adding of
correlated corruptions. Especially for blur, weather and image prop-
erty corruptions, the performances are improved monotonically
with the most correlated corruption added. Particularly, we notice
the performance boosting of noise corruptions degenerated when
the last three corruptions are added. Such trending is correspond
to the FID correlations shown in Fig. 4 where only SN and SKN are
highly correlated with GN.

5.4 Can the DNN generalize to different
deploying environments after repair?

One of the main goal with our L2R strategy is to repair DNN with
generalizability. In this section, we conduct experiments for verify-
ing the generalization of our repairing strategy. In more details, we
consider two types of settings:

• Basic Generalization Intuitively, we expect the DNN re-
paired on specific target corruption can also perform cor-
rectly on the corruptions of the same type. For example, the
DNN repaired on gaussian noise should be more easy to be
repaired on other noise, since they share similar underlying
distribution. Therefore, we evaluate the DNN on the cor-
ruptions of the same type after repairing it for the selected
corruption whose result is referred as “Base”.
• One-for-all Generalization Especially, our L2R is capable
of repairing DNN for all type of corruptions with one-time
learning. Benefit from the designing of meta-learning how
to repair, the proposed repairing pipeline is corruption inde-
pendent. Consequently, our L2R is expect to be generalizable
to all types of environmental corruptions when there exists
correlated corruptions as experiences.

As shown in Tab. 3, we tabulate the statistics of the basic gener-
alization results for noise corruptions. The results for other type
of corruptions can be found in the supplemental material. We first
note that the performance of base corruption, i.e. Gaussian Noise,
degraded a lot compared with the results in Tab. 1 and Tab. 2. It is
because, as Fig. 4 indicated, the most correlated corruptions for GN
are SN and SKN, both of which have been excluded from the repair-
ing experiences in this experiment. In contrast, the performance of
SN and SKN keeps competitive, since GN has been learned by the
model which is highly helpful for SN and SKN repairing. Another
phenomenon is the inferior performance of IN compared with other
noise corruptions, especially on the CIFAR-10 dataset. This can also
be explained by the cross-corruption correlations since there is no
highly correlated corruption for IN corruption based on Fig. 4. Gen-
erally, similar phenomenon can be observed for other three type
of corruptions, that proving our approach successfully generalized
the repaired DNN to the same type of corruptions for all the three
DNNs and two datasets.

As an unique property of our repairing strategy, we demonstrate
the one-for-all generalizability in Tab. 4. Basically, we only conduct
one-time meta-training on the available corruptions and meta-test
for all the selected target corruptions. Surprisingly, even the overall
performance has been degraded due to the lack of highly correlated
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Table 3: Basic generalization results for noise corruptions with gaussian noise as repairing basis.

Model
Corruption CIFAR-10 tiny-ImageNet

Base SN IN SKN Base SN IN SKN
DenseNet 56.76 64.52 54.39 60.40 18.45 20.05 15.30 25.09
ConvNeXt 58.49 66.27 55.46 62.30 18.38 22.83 15.33 20.29
VAN 55.19 61.32 51.77 61.89 25.40 29.93 18.58 29.18

Table 4: One-for-all generalization results for different type of corruptions on CIFAR-10 and tiny-ImageNet datasets.

Model GN ZM FOG BR PIX JPEG ET

CIFAR-10
DenseNet 64.39 65.29 54.48 52.33 60.49 64.62 54.15
ConvNeXt 65.46 64.96 53.23 58.70 59.10 62.04 56.68

VAN 61.77 65.54 50.83 55.73 61.46 64.58 58.03

tiny-ImageNet
DenseNet 20.05 13.74 15.26 18.82 19.33 21.79 14.30
ConvNeXt 22.83 24.40 18.16 16.73 25.38 23.52 21.80

VAN 29.93 26.77 13.20 16.80 15.72 23.21 24.07

Table 5: Ablation study results of MetaRepair on CIFAR-10
dataset.

Corruption Empirical
Selection

w/o
Confidence

Separate
Update MetaRepair

D
en
se
N
et GN 69.60 58.07 73.20 73.51

ZM 75.86 79.05 85.22 89.45
FOG 55.17 53.76 58.09 59.15
BR 61.85 60.46 63.81 65.78

Co
nv

N
eX

t GN 68.48 63.60 75.11 76.46
ZM 61.50 62.98 68.54 71.69
FOG 55.45 58.54 64.97 65.70
BR 60.98 64.67 70.98 70.99

VA
N

GN 64.72 56.40 71.00 72.77
ZM 66.86 61.38 67.29 70.45
FOG 53.12 53.15 60.21 61.15
BR 63.71 60.62 64.31 68.30

repairing experiences, our approach still achieves promising results
on all the target corruptions. Similar to the basic generalization
results, we can observe the dominant influence of the corruption
correlations during repairing. For example, there is no significant
performance degradation for PIX compared with the best results
in Tab. 1, since all other corruptions are not highly correlated with
it. In summary, L2R exhibit superior generalizability for repairing
DNN under different type of corruptions which is highly desirable
for deploying DNN for real environments.

5.5 What are the contributions of different
MetaRepair components?

In this part, we ablate different versions of the designed MetaRepair
on CIFAR-10 dataset. In specific, we experiment three settings as
follows: ❶ We first test whether selecting corruptions with FID
as repairing experience is more effective compared with empirical
selection. This setting is denoted as “Empirical Selection”.❷ Thenwe

utilize the corruptions selected with FID score to test whether the
confidence of selected experiences influence the overall repairing
performance, which is denoted as “w/o Confidence”. ❸ With the
optimal experience selection strategy, we finally test the influence of
accumulated updates for the tasks in an testing episode. We denote
this setting as “Separate Update” which means DNN is updated with
tasks in separate.

As Tab. 5 shows, we first observe that separately update DNN
with tasks during meta-test has limiting impact to the overall perfor-
mance. We attribute this to the goal divergence between adapting
to data and adapting to corruption, while accumulate updating
still benefit to the overall results in general. In contrast, it is clear
both selection with FID and confidence contribute to the repairing
performance a lot. Such results conform to the cross-corruption
correlation we have concluded in Sec. 5.3. We also notice that the
“w/o Confidence” performance of GN drops a lot when compare
with other corruptions, which can be ascribed to the disturbance
of unrelated corruptions.

6 CONCLUSION
In this work, we propose to repair DNN from a novel perspective by
learning how the DNN is repaired under different deploying envi-
ronments. Instead of focusing on rectifying DNN misbehaviour for
specific corruption, the proposed Learning to Repair (L2R) strategy
formalize DNN repair into a meta-learning problem to acquire the
general repairing capability. By instantiate L2R with DNN repair
specific considerations, the designed MetaRepair model effectively
boosts the repairing performance and realizes great repairing gener-
alization on various type of corruptions. Practically, L2R simply ab-
stracts different repairing experiences and applies the meta-learned
repairing capability, which is flexible and general for implemen-
tation. The comprehensive experiments confirmed the consistent
superiority of the proposed strategy and corresponding MetaRepair
model for three modern DNNs on two datasets. As potential future
works, the proposed MetaRepair will be implemented with different
meta-learning algorithms and evaluated on larger benchmarks for
comprehensive understanding of the learning to repair strategy.
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