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A COMPUTING THE MAXIMUM RELATIVE ENTROPY CCE

A maximum relative entropy CCE, that minimises the distance of the log-joint, logpxpaqq, to a
target log-joint, tpaq P R|A|, can be computed using gradient descent. We formulate the problem
in dual space (Marris et al., 2022a) with dual parameters, ↵ipa1

iq P R|Ai|
` @i, defined as functions,

↵ipa1
iq “ softplusp✓ipa1

iqq @i, of learned parameters, ✓pa1
iq P R|Ai| @i. Let l✓paq be a logit term

used to construct the loss function.

l✓paq “ ´
ÿ

i

ÿ

a1
i

↵ppa1
iq

“
uipa1

i, a´iq ´ uipaq
‰

` tpaq (8)

Minimizing a loss function, min✓ L✓, converges to optimal dual variables, ↵
˚
i pa1

iq “
softplusp✓˚

i pa1
iqq @i with L✓ “ log r∞a exp rl✓paqss. The loss is convex, deterministic, and un-

constrained. Therefore many optimization algorithms are suitable. The primal joint can be simply
recovered from the optimal logit term x✓paq “ softmax rl✓˚ paqs.

B AFFINITY ENTROPY

Consider defining a modified Tsallis entropy H
p
a with temperature parameter p P p0, 1s as:

H
p
apxq “ 1

p

”
1 ´ zJz

ı
“ 1

p

”
1 ´

ÿ

i

pU ppq
i xqp`1

ı
(9)

where z “ pU ppqxq p`1
2 . Note that this definition recovers the standard definition of Tsallis entropy

when U
ppq is the identity matrix.

Remark. U
ppq
ij • 0 for all entries for Hp

a to be real-valued.

U
ppq
ij must be non-negative for every i, j, otherwise, there exists x “ ej where ej is a standard-basis

vector such that U ppq
i x † 0 and pU ppq

i xqp`1 is not real for p P p0, 1q.

Remark. The pp ` 1q-norm of each column of U ppq must be less than or equal to 1 for H
p
a to be

non-negative for any x P �.

We need zJz § 1 for p P p0, 1s and any x P �. Equivalently, we require pzJzq 1
p`1 § 1 for

p P p0, 1s.

Note pzJzq 1
p`1 “

` ∞
ipU

ppq
i xqp`1

˘ 1
p`1 “ ||U ppqx||p`1. Therefore, we require

1 • sup
xP�

||U ppqx||p`1 (10)

“ sup
||x||1“1

||U ppqx||p`1 for U
ppq • 0 (11)

“ ||U ppq||1,p`1 (12)

“ max
j“1

||U ppq
¨,j ||p`1 by Drakakis et al. (2009). (13)

Remark. Among all admissible U ppq, defining U
ppq such that its columns have exactly unit pp` 1q-

norm achieves minUppq minxP� H
a
p pxq.

This follows from the previous remark and is desireable for the sake of defining a “tight” definition
of entropy. Intuitively, by the conditions set thus far, U ppq “ 0 is admissible. Yet, this gives a loose
definition of entropy where Hp

a “ 1{p. It turns out that this intuition is required in the limit as p Ñ 0.
Remark. U

ppq must be precisely column stochastic for Hp
a to remain finite in the limit of p Ñ 0.

In the limit p Ñ 0, the denominator of Hp
a goes to zero, therefore, by L’Hôpital’s rule, the numerator

must as well. The numerator goes to z
J
z “ ∞

i U
ppq
i x “ 1J

U
ppq

x. Therefore,

@x P �d´1 1 ´ 1J
U

ppq
x “ 0. (14)
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Finite distributions only obey a single equality constraint, that is xJ1 “ 1, therefore it must be the
case that 1J

U
ppq “ 1J, i.e., U ppq is column stochastic.

Remark. H
p
a is concave in x.

Let yi “ U
ppq
i x. Then each element of the sum, yp`1

i is a convex function in yi, which itself is a
linear transformation on x. Therefore,

∞
ipU

ppq
i xqp`1 is convex in x. Hence H

p
a is concave in x.

Remark. The gradients rxH
p
a are well-defined.

Recall (9), then:

BHp
a

Bxj
“ ´p ` 1

p

ÿ

i

pU ppq
i xqpU ppq

ij (15)

rxH
p
a “ ´p ` 1

p
pU ppqqJpU ppqxqp (16)

which is well-defined for any choice of U ppq
ij • 0 for all i, j.

Remark. H
p
a is well-defined in the limit as p Ñ 0, i.e., Shannon affinity entropy is well-defined.

It is known that Shannon entropy can be recovered from Tsallis entropy in the limit as p Ñ 0. We
repeat that derivation here and use L’Hôpital’s rule. The derivative of the denominator is 1, hence
we find the limit is given by the finite derivative of the numerator:

drpHp
a s

dp
“ ´ d

dp

” ÿ

i

y
p`1
i

ı
(17)

“ ´ d

dp

” ÿ

i

e
pp`1q logpyiq

ı
(18)

“ ´
ÿ

i

`
logpyiq ` pp ` 1q 1

yi

dyi

dp

˘
e

pp`1q logpyiq
. (19)

In the limit p Ñ 0, the derivative evaluates to

drpHp
a s

dp
“ ´

ÿ

i

”
e

pp`1q logpyiq logpyiq
ıˇ̌
ˇ
p“0

´ pp ` 1q
ÿ

i

” 1

yi

dyi

dp
e

pp`1q logpyiq
ıˇ̌
ˇ
p“0

(20)

“ ´
ÿ

i

yi logpyiq ´
ÿ

i

dyi

dp

ˇ̌
ˇ
p“0

(21)

“ Spyq ´
ÿ

i

dyi

dp

ˇ̌
ˇ
p“0

. (22)

Remark. Let K be a similarity matrix between actions with non-negative entries with positive
column-sums. Then U

ppq “ Kdiag
`
1{p1J

K
p`1q1{pp`1q˘

satisfies the conditions stated above for
U

ppq.

Remark. Under the above choice of U ppq, Shannon affinity entropy Sa “ H
pÑ0
a can be derived as:

Sapxq “ SpU p0qxq ´
ÿ

j

”
logp

ÿ

i

Kijq ´
ÿ

i

U
p0q
ij logpKijq

ı
xj . (23)

The necessary yi term can be rewritten and its derivative (evaluated at p “ 0) can be derived as
follows:
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yi “ U
ppq
i x “

ÿ

j

Kij

p∞
i1 K

p`1
i1j q 1

p`1

xj (24)

“
ÿ

j

Kijxjp
ÿ

i1
K

p`1
i1j q´ 1

p`1 (25)

“
ÿ

j

Kijxje
´ 1

p`1 logp∞
i1 Kp`1

i1j q (26)

“
ÿ

j

Kijxje
´ 1

p`1 log
` ∞

i1 e
pp`1q logpKi1jq˘

(27)

dyi

dp
“

ÿ

j

Kijxje
´ 1

p`1 log
` ∞

i1 e
pp`1q logpKi1jq˘” 1

pp ` 1q2 log
` ÿ

i1
e

pp`1q logpKi1jq˘
(28)

´ 1

p ` 1

1
∞

i1 e
pp`1q logpKi1jq

ÿ

i1
logpKi1jqepp`1q logpKi1jq

ı
(29)

“
ÿ

j

Kijxjp
ÿ

i1
K

p`1
i1j q´ 1

p`1

” 1

pp ` 1q2 logp
ÿ

i1
K

p`1
i1j q (30)

´ 1

p ` 1

1
∞

i1 K
p`1
i1j

ÿ

i1
logpKi1jqKp`1

i1j

ı
(31)

“
ÿ

j

” 1

pp ` 1q2 logp
ÿ

i1
K

p`1
i1j q ´ 1

p ` 1

ÿ

i1
pU ppq

i1j qp`1 logpKi1jq
ı
U

ppq
ij xj (32)

dyi

dp

ˇ̌
ˇ
p“0

“
ÿ

j

”
logp

ÿ

i1
Ki1jq ´

ÿ

i1
U

p0q
i1j logpKi1jq

ı
U

p0q
ij xj (33)

where we define Kij logpKijq “ 0 if Kij “ 0 (which implies pU ppq
ij qp`1 logpKijq “ 0 if Kij “ 0.

Plugging this back into the second term in the formula for Shannon affinity entropy, we find

ÿ

i

dyi

dp

ˇ̌
ˇ
p“0

“
ÿ

i

ÿ

j

”
logp

ÿ

i1
Ki1jq ´

ÿ

i1
U

p0q
i1j logpKi1jq

ı
U

p0q
ij xj (34)

“
ÿ

j

”
logp

ÿ

i1
Ki1jq ´

ÿ

i1
U

p0q
i1j logpKi1jq

ı
xj

ÿ

i

U
p0q
ij (35)

“
ÿ

j

”
logp

ÿ

i1
Ki1jq ´

ÿ

i1
U

p0q
i1j logpKi1jq

ı
xj (36)

completing the claim.

Remark. In the case of duplicate strategies (clones), the maximizers of Hp
a form precisely the set

of distributions which arbitrarily distribute a mass of 1
C across each of the C sets of clones.

Consider the case of exact clones, i.e., K is block diagonal (w.l.o.g.) with blocks of ones. Let there
be C clone groups each of size nc for c P t1, . . . , Cu. Let cpiq map an action i to its clone set. In this

case, it can be shown that U ppq
ij “ n

´ 1
p`1

cpiq if cpiq “ cpjq, otherwise U
ppq
ij “ 0. Note that the gradient

of entropy w.r.t. x must be proportional to the ones vector for x to be a maximizer in the interior of
the simplex. Let x “ r 1

Cx1, . . . ,
1
CxCs with each xc P Rnc w.l.o.g. We will show that the set of

maximizers of Hp
a is necessarily the set of x where each xc P �nc´1. For x to be a maximizer, the

gradient must be equal to the ones vector multiplied by a scalar ´d P R:
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@j BHp
apxq

Bxj
“ ´p ` 1

p

ÿ

i

pU ppq
i xqpU ppq

ij (37)

“ ´p ` 1

p

ÿ

i

p
ÿ

k

U
ppq
ik xkqpU ppq

ij (38)

“ ´p ` 1

p

ÿ

i

` 1

C
n

´ 1
p`1

cpiq 1Jxcpiq
˘p
U

ppq
ij (39)

“ ´p ` 1

p
ncpjq

` 1

C
n

´ 1
p`1

cpjq 1Jxcpjq
˘p
n

´ 1
p`1

cpjq (40)

“ ´p ` 1

p
ncpjqn

´ p`1
p`1

cpjq
` 1

C
1Jxcpjq

˘p (41)

“ ´p ` 1

p

` 1

C
1Jxcpjq

˘p “ ´d. (42)

We also require x P �, which implies
xj • 0 ùñ xcpjq • 0 (43)

1 “
ÿ

j

xj “
ÿ

c

1

C
1J
nc
xc (44)

“ C

´
dp

p ` 1

¯1{p
“ d

1{p
C

´
p

p ` 1

¯1{p
ùñ d “ C

´p
´
p ` 1

p

¯
. (45)

Finally, we know from (42)

p 1
C
1Jxcpjqqp “ dp

p ` 1
“ C

´p (46)

ùñ 1Jxcpjq “ 1 (47)
proving the claim.
Remark. In the case of duplicate strategies (clones), the maximizers of Hp

a achieve an entropy
value which is equal to the Tsallis entropy of the system with clones removed.

If we evaluate the max entropy distribution we find

H
p
apxq “ 1

p

”
1 ´

ÿ

i

pU ppq
i xqp`1

ı
(48)

“ 1

p

”
1 ´

ÿ

i

` 1

C
n

´ 1
p`1

cpiq 1Jxcpiq
˘p`1

ı
(49)

“ 1

p

”
1 ´

ÿ

c

nc

` 1

C
n

´ 1
p`1

c 1Jxc

˘p`1
ı

(50)

“ 1

p

”
1 ´

ÿ

c

nc

` 1

C
n

´ 1
p`1

c

˘p`1
ı

(51)

“ 1

p

”
1 ´

ÿ

c

ncn
´1
c

` 1

C

˘p`1
ı

(52)

“ 1

p

”
1 ´

ÿ

c

` 1

C

˘p`1
ı

(53)

which is precisely the Tsallis entropy of the uniform distribution over C distinct clones.

C INTEGRALS OVER SIMPLEX

It is possible to derive a closed-form result for the dis-similarity kernel in (6) by appealing to known
results of integrals of polynomial functions over the simplex.
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Let T d “ tpx1, . . . , xdq : xi • 0,
∞d

i“1 xi § 1u be the standard simplex in Rd. Let ⌫i ° 0 for all i,
then

ª

Td

x
⌫1´1
1 . . . x

⌫d´1
d p1 ´ x1 ´ . . . ´ xdq⌫0´1 “

±d
i“0 �p⌫iq

�p∞d
i“0 ⌫iq

. (54)

Proposition C.1. From player i’s perspective, the expected dis-similarity between two actions p and
q under a uniform distribution over all opponent joint strategy profiles x´i is equal to

D
piq
pq “ 1

pdi ` 1qpdi ` 2q
”
||U piq

p ´ U
piq
q ||2 `

`
1JpU piq

p ´ U
piq
q q

˘2ı
(55)

where U
piq is a |Ai| ˆ |A´i| matrix where each entry U

piq
ai,a´i is the expected utility for player

i playing action ai against the background joint action a´i. U
piq
ai indicates an entire row of the

matrix. The integer di “ ±
j‰i |Aj |.

Proof. Recall (54) and �pnq “ pn ´ 1q! for n P N. Let rp “ ∞
w Upwxw be the rating for the pth

action under an opponent strategy profile x´i.

Then we want to compute Ex´i„Dirp1qrprp ´ rqq2s. Recall the volume of the simplex is 1
d! . Then

Ex´i„Dirp1qrprp ´ rqq2s “
≥
Tdprp ´ rqq2dx´i≥

Td dx´i
(56)

“ d!

ª

Td

prp ´ rqq2dx´i (57)

“ d!

ª

Td

p
ÿ

w

U
piq
pwxw ´

ÿ

w

U
piq
qwxwq2dx´i (58)

“ d!

ª

Td

”
p
ÿ

w

ÿ

y

U
piq
pwU

piq
py xwxyq ` p

ÿ

w

ÿ

y

U
piq
qwU

piq
qy xwxyq (59)

´ 2p
ÿ

w

ÿ

y

U
piq
pwU

piq
qy xwxyq

ı
dx´i (60)

“ d!
ÿ

w

ÿ

y

”`
U

piq
pwU

piq
py

ª

Td

xwxydx´i
looooooomooooooon
2

pd`2q! if w“y else 1
pd`2q!

˘
(61)

`
`
U

piq
qwU

piq
qy

ª

Td

xwxydx´i

˘
´ 2

`
U

piq
pwU

piq
qy

ª

Td

xwxydx´i

˘ı
(62)

“ d!

pd ` 2q!
ÿ

w

”
pU piq2

pw ` U
piq2
qw ´ 2U piq

pwU
piq
qwq (63)

`
ÿ

y

`
U

piq
pwU

piq
py ` U

piq
qwU

piq
qy ´ 2U piq

pwU
piq
qy

˘ı
(64)

“ 1

pd ` 1qpd ` 2q
” ÿ

w

pU piq
pw ´ U

piq
qwq2 ` p

ÿ

w

U
piq
pw ´

ÿ

w

U
piq
qwq2

ı
(65)

“ 1

pd ` 1qpd ` 2q
”
||U piq

p ´ U
piq
q ||2 `

`
1JpU piq

p ´ U
piq
q q

˘2ı
. (66)

Proposition C.2. From player i’s perspective, the expected dis-similarity between two actions p and
q under a uniform distribution over all factorize-able opponent strategy profiles x´i “ ±

j‰i xj is
equal to

D
piq
pq “

π

j‰i

1

pdj ` 1qpdj ` 2q
´

(67)

ÿ

a´iPA´i

ÿ

a1
´iPA´i

`
uipp, a´iq ´ uipq, a´iq

˘`
uipp, a1

´iq ´ uipq, a1
´iq

˘`
2#a“a1 ˘¯

(68)
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where the integer di “ |Ai| and “#a“a
1” “ ∞

j‰i 1raj “ a
1
js indicates the number of action

matches between two opponent profiles.

Proof. Let rp “ ∞
a´iPA´i

uipp, a´iq
±

j‰i xj,aj be the rating for the pth action under an opponent
profile x´i “ ±

j‰i xj . Let dx´i be a shorthand for dx´i. Likewise, let
≥
Td´i be a shorthand for≥

Td1
. . .

≥
Tdi´1

≥
Tdi`1 . . .

≥
Tdn .

Then we want to compute Exj„Dirp1q@j‰irprp ´ rqq2s. Recall the volume of a simplex is 1
d! . Then

Exj„Dirp1q@j‰irprp ´ rqq2s (69)

“
≥
Td´i pri ´ r

1
iq2dx´i≥

Td´i dx´i
(70)

“
´ π

j‰i

dj !
¯ ª

Td´i

pri ´ r
1
iq2dx´i (71)

“
´ π

j‰i

dj !
¯ ª

Td´i

´ ÿ

a´iPA´i

uipp, a´iq
π

j‰i

xj,aj ´
ÿ

a´iPA´i

uipq, a´iq
π

j‰i

xj,aj

¯2
dx´i (72)

“
´ π

j‰i

dj !
¯ ª

Td´i

´ ÿ

a´iPA´i

π

j‰i

xj,aj

`
uipp, a´iq ´ uipq, a´iq

˘¯2
dx´i (73)

“
´ π

j‰i

dj !
¯ ª

Td´i

´
(74)

ÿ

a´iPA´i

ÿ

a1
´iPA´i

p
π

j‰i

xj,aj qp
π

j‰i

xj,a1
j
q
`
uipp, a´iq ´ uipq, a´iq

˘`
uipp, a1

´iq ´ uipq, a1
´iq

˘¯
dx´i

(75)

“
´ π

j‰i

dj !
¯ ª

Td´i

´
(76)

ÿ

a´iPA´i

ÿ

a1
´iPA´i

`
uipp, a´iq ´ uipq, a´iq

˘`
uipp, a1

´iq ´ uipq, a1
´iq

˘` π

j‰i

xj,ajxj,a1
j

˘¯
dx´i (77)

“
´ π

j‰i

dj !
¯´

(78)

ÿ

a´iPA´i

ÿ

a1
´iPA´i

`
uipp, a´iq ´ uipq, a´iq

˘`
uipp, a1

´iq ´ uipq, a1
´iq

˘` π

j‰i

ª

Tdj

xj,ajxj,a1
j
dxj

loooooooooomoooooooooon
2

pdj`2q! if aj“a1
j else 1

pdj`2q!

˘¯

(79)

“
´ π

j‰i

dj !
¯

{
´ π

j‰i

pdj ` 2q!
¯´

(80)

ÿ

a´iPA´i

ÿ

a1
´iPA´i

`
uipp, a´iq ´ uipq, a´iq

˘`
uipp, a1

´iq ´ uipq, a1
´iq

˘`
2#a“a1 ˘¯

(81)

“
π

j‰i

1

pdj ` 1qpdj ` 2q
´

(82)

ÿ

a´iPA´i

ÿ

a1
´iPA´i

`
uipp, a´iq ´ uipq, a´iq

˘`
uipp, a1

´iq ´ uipq, a1
´iq

˘`
2#a“a1 ˘¯

. (83)
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Figure 6: We visualise the marginal NE rating contributions of each player 2 action to each player 1
action. We show that a) all actions receive zero ratings and b) the rating of each action is interpretable
and corresponds to our intuition.

D WARMUP: GAME-THEORETIC RANKING OF rock-paper-scissors

We provide a demonstration of game-theoretic ranking on the classic 2-player, 3-action zero-sum
Rock-Paper-Scissors game. Balduzzi et al. (2018) proposed rating actions under the max-entropy
Nash equilibrium of the game. In that case, each action receives a rating of zero. If we duplicate the
Rock action, for example, the ratings remain zero under the max-entropy NE. Our proposed LLE
based approach returns the same ratings.

Rock Paper Scissors
Rock 0, 0 ´1,`1 `1,´1
Paper `1,´1 0, 0 ´1,`1

Scissors ´1,`1 `1,´1 0, 0

Rock1 Rock2 Paper Scissors
Rock1 0, 0 0, 0 ´1,`1 `1,´1
Rock2 0, 0 0, 0 ´1,`1 `1,´1
Paper `1,´1 `1,´1 0, 0 ´1,`1

Scissors ´1,`1 ´1,`1 `1,´1 0, 0

Figure 7: Rock-Paper-Scissors (RPS) Game and RPS Game with Duplicate Rock Action.

In Figure 6, we show that the equilibrium underlying the scalar ratings reflects incentive structure of
the game — player 1 does not wish to deviate to the Paper action precisely because doing so would
lead to losses against the Scissors action despite wins against the two Rock actions.

E VULNERABILITY OF STANDARD SHANNON ENTROPY

Prior work has shown max-entropy Nash equilibrium (equivalently max-entropy (C)CE) to be in-
variant to clones in 2-player zero-sum games (Balduzzi et al., 2018). We include a simple experi-
ment here to illustrate why max-entropy Nash equilibrium becomes vulnerable to redundancy in the
N -player general-sum setting.

Chicken Game Consider the 2-player 2-action general-sum Chicken game. Let players receive
0 if they both swerve. If one player swerves while the other goes straight, the one who swerves
receives ´1 and the other `1. If both go straight, then they both receive ´12. This game has three
NEs. Two are pure in which one player goes straight and the other swerves. The third is symmetric
and the max-entropy NE of this game; each player swerves with probability 11{12. Both straight
and swerve have an expected payoff of ´1{12 under this NE. If we duplicate the straight action, the
original max-entropy NE becomes the min-entropy NE! The other two NEs representing each player
swerving while the other goes straight now have higher entropy. The player that swerves rates their
swerve and straight actions as ´1 and ´12 respectively. The player that goes straight rates their
swerve and straight actions as 0 and 1 respectively, demonstrating that the max-entropy NE solution
concept is not invariant to clones in the general-sum setting.

The story in the max-entropy CCE setting is more nuanced. We find that although the CCE ratings
change under the addition of clones, the ratio of the ratings of the two actions remains stable. Further
investigation is necessary to understand whether max-entropy CCE ratings are equivariant (robust
up to affine transformations of the ratings) to cloned actions.

By contrast, we show in Figure 9 that all actions would receive zero ratings under our proposed
equilibrium ratings. In other words, our equilibrium selection procedure continues to select the
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Figure 8: Chicken Game and Chicken Game with Duplicate Straight Actions.
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Figure 9: We visualise the marginal NE rating contributions of each player 2 action to each player 1
action. We show that a) all actions receive zero ratings and b) the rating of each action is interpretable
and corresponds to our intuition.

mixed-strategy NE in the original game, unaffected by the additional redundant “straight” action.
Further, the widths of the bars are interpretable: suggesting that deviating to the Swerve action is a
safe option without major risk or reward. Deviating to one of the Straight actions however, can lead
to high rewards but also catastrophic losses.

F EXPERIMENTS

F.1 SIMULATED MODEL AND PROMPT IMPROVEMENT PATH

Algorithm 1 describes our simulated model and prompt improvement procedure. At each iteration,
we add a new prompt and a model following an evolutionary procedure. We require all prompts to be
probability distributions over skill dimensions. We model for a transitive dimension for models by
representing each model vector as a sum of probability vectors over skills. A new model is added to
the set of models Am if and only if it becomes top-ranked according to the rating function r. A new
prompt is added as long as it is the best-of-P 1 sampled prompts and does not have to be top-ranked.

F.2 EQUILIBRIUM-SOLVING HYPER-PARAMETERS

We use the same set of hyper-parameters for all our experiments. For affinity-entropy H
p
apxq, we

use p “ 1 and set kernel variance to 1e´6. To solve for a max affinity-entropy distribution we use
gradient descent. The max affinity-entropy distribution is then used in NE and CCE solving.

For NE solving using LLE approximation, we initialize temperature ⌧ “ 1.0 which is annealed
exponentially with a decay rate of 0.95 every 250 gradient updates if and only if the exploitability
in the annealed game L⌧ pxq (Equation (4)) is at most 1e´5. We set the terminal temperature to
⌧ “ 1e´2. We early terminate the equilibrium solving if we have found an ✏´NE with ✏ “ 1e´3.
For CCE solving, the optimization problem is convex and we minimize Equation 8 directly. For
gradient descent, we use an Adam optimizer Kingma (2014) with a fixed learning rate 1e´2 for all
steps (maximizing affinity-entropy and equilibrium solving).

F.3 THE arena-hard-v0.1 EVALUATION DATA

We evaluate our method on the arena-hard-v0.1 dataset (Li et al., 2024b) with 500
prompts and 17 competing models. The set of prompts as well as model responses
are downloaded from LMSYS data repository (https://huggingface.co/spaces/
lmsys/arena-hard-browser), with the exception of gemini-1.5-pro-api-0514 and
gemini-1.5-flash-api-0514. As we need to tabulate the payoff tensor for all model pairs,
we sampled 8 preference ratings using gemini-1.5-pro-api-0514 for each model pair, with
4 samples for each permutation to account for potential position bias of the LLM rater. Pairwise
model utility is averaged over all ratings samples.
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Algorithm 1 Evolutionary model and prompt selection procedure
1: Let K be the number of orthogonal skill dimensions.
2: Let r : Ap ˆ Am Ñ rp, rm be a rating function assigning a scalar rating to each action.
3: Let P0, M0 be the number of initial prompts and models.
4: Let P 1, M 1 be the number of sampled candidate prompts and models at each iteration.
5:
6: A0

p „ Dirichletp11:K , P0q ô P0 sampled initial prompts.
7: A0

m „ Dirichletp11:K ,M0q ô M0 sampled initial models.
8:
9: for t P r1, . . . s do

10: if additional prompts then ô If adding new prompts.
11: A1

p „ Dirichletp11:K , P
1q ô Sampling P

1 candidate prompts.
12: rp, – rpA1

p Y Ap, Amq
13: Ap – Ap Y tA1

prargmax rpr: P 1ssu ô Add best-of-P 1 prompt.
14: end if

15: A1
m – 0

16: while true do

17: �m – Dirichletp11:K ,M
1q ô Sampling M

1 model improvement vectors.
18: , rm – rpAp, tA1

m ` �mu Y Amq ô Evaluate improved candidate models.
19: A1

m – A1
m ` �mrargmax rmr: M 1ss

20: if argmax rmr: M 1s “ argmax rm then

21: Am “ tA1
mrargmax rmsu Y Am ô Add a new top-ranked model.

22: break

23: end if

24: end while

25: end for

Table 1: Prompt and king actions that each define 16 pure-strategy Nash equilibria — any rebel
action except the model played by the king player is a pure-strategy NE.

Prompt King

“Can you implement a python tool that is intended to ru...” gemini-1.5-pro-api-0514
“Hi. I have this URL which I can paste in my Microsoft ...” gemini-1.5-pro-api-0514

“Please provide a simple RESPONSE to the following PROM...” claude-3-5-sonnet-20240620
“Take on the rol eof an Gherkin expert. Can you improve...” claude-3-5-sonnet-20240620

“Write a small python function that get all the links o...” gemini-1.5-flash-api-0514

F.4 RISK-DOMINANT EQUILIBRIA

Our king-of-the-hill evaluation game admits a multitude of Nash equilibria, among them
80 are pure-strategy NEs (see Table 1). Additionally, we computed 128 mixed-strategy NEs with
exploitability at most 1e´2 that each derives a distinct set of ratings. In particular, one of the 128
mixed-strategy NEs is pre-computed by our NE solving and selection procedure by tracing the QRE
continuum, which we refer to as the 0-th equilibrium, or x0.

A longstanding challenge in game theory is that of equilibrium selection. Suppose that every player
knows that there are many equilibria in the game, each player must confront the following ques-
tion during play: out of all equilibria, which equilibrium strategy should I play and relatedly, which
equilibrium would each of my co-players play? This is critical, as miscoordinating could lead to
arbitrarily bad outcome, despite each player playing one of its equilibrium strategies. For instance,
everyone driving on the right or left hand side of the road are two valid equilibria, but miscoordinat-
ing would be devastating.

It is for this reason that the notion of risk-dominance of Harsanyi & Selten (1988) is critically
important: the Nobel-prize winning theorem suggests that players would each iterate on their prior
beliefs over which equilibria its co-players would play and choose the one that is the least risky when
players miscoordinate under such priors. Here, we show empirically that our solution concept leads
to risk-dominant equilibria as suggested by Herings & Peeters (2010). To do so, we simultaneously
minimize the exploitability of several profiles in parallel with a regularizer that maximizes the L2
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rating differences between any two profiles by gradient descent as in Liu et al. (2024). This yields
an additional 127 NEs with exploitability at most 1e´2 that we analyze in Figure 10.

Figure 10 (Top) shows the 128 mixed-strategy NEs with distinct model ratings. Figure 10 (Center)
shows the expected payoffs to player i when it plays its p-th equilibrium strategy x

p
i when other

players uniformly choose one of theirs, or Eq„⇡u

“
uipxp

i , x
q
´iq

‰
with ⇡u a uniform distribution over

128 equilibria. In yellow, we show the sum of per-player expected payoffs. We confirm that many
NEs are indeed risky, as their stability relies heavily on all players coordinating on the same equilib-
rium. Figure 10 (Bottom) takes things one step further and follows the intuition of risk dominance
more closely. Starting from a uniform prior belief over player i’s choice of equilibria, ⇡0

i “ ⇡u,
each player iterate their believes over other players’ choices of equilibrium based on the expected
payoff of them playing each equilibrium.

Specifically, we let

⇡
t`1
i “ softmax

´
log ⇡t

i ` ⌘E @j‰i
tpjq„⇡j

”
uip. . . , xtpi´1q

i´1 , x
tpi`1q
i`1 , . . . q

ı ¯
(84)

with ⌘ “ 1e´2 the step-size and we compute the expected payoffs to player i when playing its k-th
equilibrium at T “ 10, 000 as

E @j‰i
epjq„⇡T

j

”
uip. . . , xepi´1q

i´1 , x
k
i , x

epi`1q
i`1 , . . . q

ı
(85)

Ordered by the sum of expected payoffs for all players, we observe that the Nash equilibrium our
procedure selects (equilibrium x0) is the least risky among 128 mixed-strategy NEs of the game,
without any player being particularly worse off than others even when players miscoordinate.

F.5 INVARIANT EVALUATION

We show in Figure 11 the effect of introducing near redundant adversarial prompts on the equi-
librium ratings. While our invariant property is limited to exact clones, our results show that our
approach results in rankings that degrade gracefully in this approximate case, even with 1,000 ad-
versarial prompts. The Elo rating system suffers from such bias in data similarly as in the exact case
Figure 3.

In Figure 12 we provide a detailed breakdown of our NE and CCE ratings results (without redundant
adversarial prompts). We show the actions of each player ranked by their equilibrium ratings and by
their support under the equilibrium marginal distribution.
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Figure 11: We introduce an increasing number of redundant copies of prompts adversarial to
gemini-1.5-pro-api-0514 with noise sampled from Uniformp´0.01, 0.01q applied to their
payoffs. Equilibrium ratings with a clone invariant selection procedure degrades gracefully to noisy
redundancy while the Elo ratings become incrementally skewed. Models at the same rank (with an
absolute rating difference at most 1e´4) are grouped in grey and ordered alphabetically. We caveat
that the specific rankings reported are subject to the LLM preference model used which in this case
may exhibit a self-preference to the Gemini family of models.
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Figure 12: We show actions of each player ranked by their rating and equilibrium support under NE
(Top) and CCE (Bottom) profiles respectively.
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