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Abstract
Recent advancements in generative modeling have made it possible to generate1

high-quality content from context information, but a key question remains: how to2

teach models to know when to generate content? To answer this question, this study3

proposes a novel event generative model that draws its statistical intuition from4

marked temporal point processes, and offers a clean, flexible, and computationally5

efficient solution for a wide range of applications involving the generation of asyn-6

chronous events with high-dimensional marks. We use a conditional generator that7

takes the history of events as input and generates the high-quality subsequent event8

that is likely to occur given the prior observations. The proposed framework offers9

a host of benefits, including considerable representational power to capture intricate10

dynamics in multi- or even high-dimensional event space, as well as exceptional11

efficiency in learning the model and generating samples. Our numerical results12

demonstrate superior performance compared to other state-of-the-art baselines.13

1 Introduction14
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Figure 1: An example of generating high-
dimensional content over time. In this ex-
ample, the conditional generator explores the
customer’s next possible activity, including
not only the purchase time, but also the item,
and even its image or review. The observed
events from the customer’s past purchases are
represented by yellow dots, while the next
generated event is indicated by a blue dot.

Generating future events is a challenging yet fas-15

cinating task, with numerous practical applications16

[2, 9, 16, 31]. For instance, a news agency may need17

to generate news articles in a timely manner, taking18

into account the latest events and trends. Similarly, an19

online shopping platform may aim to provide highly20

personalized recommendations for products, services,21

or content based on a user’s preferences and behav-22

ior patterns over time, as shown in Figure 1. These23

types of applications are ubiquitous in daily life, and24

the related data typically consist of a sequence of25

events that denote when and where each event oc-26

curred, along with additional descriptive information27

such as category, volume, and even text or image,28

commonly referred to as “marks”. Recent improve-29

ments in generative modeling have made it possible30

to generate high-quality content from contextual in-31

formation such as language descriptions. However, it32

remains an open question: how to teach these models33

to determine the appropriate timing for generating34

such content based on the history of events.35

Point processes have been a popular tool for modeling and generating asynchronous and discrete event36

data. With the rise of complex systems, advanced neural point processes [6, 18, 25] are proposed as37

powerful methods to model and simulate data by capturing complex dependencies among observed38

events. However, due to the use of neural networks, the model likelihood is often analytically39

intractable, requiring complex and expensive approximations during learning. More seriously, these40
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models face significant limitations in generating events with high-dimensional marked information,41

as the event simulation relies heavily on the thinning algorithm [20], which can be costly or even42

impossible when the mark space is high-dimensional. This significantly restricts the applicability of43

these models to modern applications [30, 34], where event data often come with high-dimensional44

marks, such as texts and images in police crime reports or social media posts.45

To tackle these challenges, this paper introduces a novel combination of generative framework and46

marked temporal point processes for efficient modeling and generation of high-quality asynchronous47

events with high-dimensional marks. The effectiveness of our model is rooted in the ability to48

approximate the underlying high-dimensional data distribution through generated samples by a49

conditional generator, which takes the history of events as its input. The event history is summarized50

by a recurrent neural architecture, allowing for flexible selection based on the application’s needs.51

The benefits of our model can be summarized by:52

1. Our model is capable of handling time-stamped high-dimensional marks such as images or texts,53

leveraging the power of generative models within the framework of marked point processes;54

2. Our model possesses superior representative power, as it does not confine the conditional intensity55

or probability density of the events to any specific parametric form;56

3. Our model outperforms existing state-of-the-art baselines in terms of estimation accuracy and57

generating high-quality event series;58

4. Our model excels in computational efficiency during both the training phase and the event59

generation process. In particular, our method needs only O(NT ) for generating NT events, in60

contrast to the thinning algorithm’s complexity ofO(Nd ·NT ), whereN ≫ NT and d represents61

the event dimension.62

It is important to note that our proposed framework is general and model-agnostic, meaning that a63

wide spectrum of generative models and learning algorithms can be applied within our framework.64

We present two possible learning algorithms in the Appendix A.65

2 Methodology66

2.1 Background: Marked temporal point processes67

Marked temporal point processes (MTPPs) [23] consist of a sequence of discrete events over time.68

Each event is associated with a (possibly multi-dimensional) mark that contains detailed information69

of the event. Let T > 0 be a fixed time-horizon, andM⊆ Rd be the space of marks. We denote the70

space of observation as X = [0, T )×M and a data point in the discrete event sequence as71

x = (t,m), t ∈ [0, T ), m ∈M,

where t is the event time and m represents the mark. Let Nt be the number of events up to time t < T72

(which is random), and Ht := {x1, x2, . . . , xNt
} denote historical events. Let N be the counting73

measure on X , i.e., for any measurable S ⊆ X , N(S) = |Ht ∩ S|. For any function ϕ : X → R, the74

integral with respect to the counting measure is defined as
∫
S
ϕ(x)dN(x) =

∑
xi∈HT∩S ϕ(xi). The75

events’ distribution in MTPPs can be characterized via the conditional intensity function λ, which is76

defined to be the occurrence rate of events in the marked temporal space X given the events’ history77

Ht(x), i.e.,78

λ(x|Ht(x)) = E
(
dN(x)|Ht(x)

)
/dx, (1)

where t(x) extracts the occurrence time of the possible event x. Given the conditional intensity79

function λ, the corresponding conditional probability density function (PDF) can be written as80

f(x|Ht(x)) = λ(x|Ht(x)) · exp

(
−
∫
[tn,t(x))×M

λ(u|Ht(u))du

)
. (2)

where tn denotes the time of the most recent event before time t(x). The point process models can81

be learned using maximum likelihood estimation (MLE). See all the derivations in Appendix B.82

2.2 Conditional event generator83

The main idea of the proposed framework is to use a conditional event generator to produce the i-th84

event xi = (ti−1 + ∆ti,mi) given its previous i − 1 events. Here, ∆ti and mi indicate the time85

interval between the i-th event and its preceding event and the mark of the i-th event, respectively.86

Formally, this is achieved by a generator function:87

g(z,hi−1) : Rr+p → (0,+∞)×M,
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Figure 2: (a) The architecture of the proposed framework, which consists of two key components: A
conditional generative model g that generates (∆t̃, m̃) given its history embedding and an RNN-like
model ψ that summarizes the events in the history. (b) An example of generated one-dimensional
(time only) events {x̃(j)} given the historyHt. The shaded area suggests the underlying conditional
probability density captured by the model with parameters θ.

which takes an input in the form of a random noise vector (z ∈ Rr ∼ N (0, I)) and a hidden88

embedding (hi−1 ∈ Rp) that summarizes the history information up to and excluding the i-th event,89

namely,Hti = {x1, . . . , xi−1}. The output of the generator is the concatenation of the time interval90

and mark of the i-th event denoted by ∆t̃i and m̃i, respectively. To ensure that the time interval is91

positive, we restrict ∆t̃i to be greater than zero.92

To represent the conditioning variable hi−1, we use a history encoder represented by ψ, which has93

a recursive structure such as recurrent neural networks (RNNs) [32] or Transformers [28]. In our94

numerical results, we opt for long short-term memory (LSTM) [7], which takes the current event xi95

and the preceding hidden embedding hi−1 as input and generates the new hidden embedding hi. This96

new hidden embedding represents an updated summary of the past events including xi. Formally,97

h0 = 0 and hi = ψ(xi,hi−1), i = 1, 2, . . . , NT .

We denote the parameters of both g and ψ using θ ∈ Θ. Figure 2 (a) presents the model architecture.98

Connection to marked temporal point processes The proposed framework draws its statistical99

inspiration from MTPPs. Unlike other recent attempts at modeling point processes, our framework100

approximates the conditional probability of events using generated samples rather than directly101

specifying the conditional intensity in (1) or PDF in (2) using a parametric model [6, 18, 22, 24, 33].102

As illustrated by Figure 2 (b), when our model generates an event denoted by x̃ = (t+∆t̃, m̃), it103

implies that the resulting event x̃ follows a conditional probabilistic distribution that is determined by104

the model parameter θ and the event’s historyHt:105

x̃ ∼ fθ(x|Ht(x)),

where fθ denotes the conditional PDF of the underlying MTPP (2). This design has three main106

advantages compared to other point process models:107

1. Generative efficiency: The generative nature of our model confers an exceptional efficiency in108

simulating a complete event series for any point processes without relying on thinning algorithms109

[20]. To exemplify, thinning algorithm (Algorithm 4) has a time complexity of O(Nd · NT )110

to generate NT events from a history-dependent point process in d-dimensional space X , with111

N ≫ NT being the number of uniformly sampled candidates in one dimension. In contrast, our112

generation process (Algorithm 1) only requires a complexity of O(NT ).113

2. Expressiveness: The proposed model enjoys considerable representational power, as it does not114

impose any restrictions on the parametric form of the conditional intensity λ or PDF f . The115

numerical findings also indicate that our model is capable of capturing complex event interactions,116

even in a multi-dimensional space.117

3. Predictive efficiency: To predict the next event x̂i = (ti−1 +∆t̂i, m̂i) given the observed events’118

historyHti , we can calculate the sample average over a set of generated events {x̃(l)i } without119

the need for an explicit expectation computation, i.e.,120

x̂i =

∫
(ti−1,+∞)×M

x · fθ(x|Ht(x))dx ≈
1

L

L∑
l=1

x̃
(l)
i ,

where L denotes the number of samples.121
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Algorithm 1 Event generation process using CEG
Input: Generator g, history encoder ψ, time horizon T
Initialization: HT = ∅,h0 = 0, t = 0, i = 0
while t < T do

1. Sample z ∼ N (0, I);
2. Generate next event x̃ = (t+∆t̃, m̃), where (∆t̃, m̃) = g(z,hi);
3. i = i+ 1; t = t+∆t̃;xi = x̃;HT = HT ∪ {xi};
4. Update hidden embedding hi = ψ(xi,hi−1);

end while
if t(xi) ≥ T then

returnHT − {xi}
else

returnHT

end if

3 Experiments122

We evaluate our method using both synthetic and real data and demonstrate the superior performance123

compared to five state-of-the-art approaches, including (1) Recurrent marked temporal point processes124

(RMTPP) [6], (2) Neural Hawkes (NH) [18], (3) Fully neural network based model (FullyNN) [22], (4)125

Epidemic type aftershock sequence (ETAS) [21] model, (5) Deep non-stationary kernel in point process126

(DNSK) [5]. The first three baselines leverage neural networks to model temporal event data (or only127

with categorical marks). The last two baselines are chosen for testing multi-dimensional event data.128

Meanwhile, the DNSK is the state-of-the-art method that uses neural networks for high-dimensional129

mark modeling. In the following, we refer to our proposed method as the conditional event generator130

(CEG). Detailed experimental setup and model architectures are presented in Appendix F.131

3.1 Synthetic data132

We first evaluate our model on synthetic data. To be specific, we generate four one-dimensional133

(1D) and a three-dimensional (3D) synthetic data sets: Four 1D (time only) data sets include 1,000134

sequences each, with an average length of 135 events per sequence, and are simulated by two135

self-exciting processes and two self-correcting processes, respectively, using thinning algorithm136

(Algorithm 4 in Appendix F). The 3D (time and space) data set also includes 1,000 sequences, each137

with an average length of 150, generated by a randomly initialized CEG using Algorithm 1.138

To assess the effectiveness of our model in acquiring the underlying data distribution, we computed139

the mean relative error (MRE) of the estimated conditional intensity and PDF on the testing set, and140

compared them to the ground truth. Table 1 presents more quantitative results on 1D and 3D data141

sets, including log-likelihood testing per events and the mean relative error (MRE) of the recovered142

conditional density and intensity. These results demonstrate the consistent superiority of CEG over143

other methods across all scenarios. Figure F3 and Figure F4 in Appendix F presents visualizations of144

the estimated conditional probability density on 1D and 3D synthetic data sets, where CEG accurately145

captures the complex spatio-temporal point patterns while other baselines fail to do so.146

3.2 Semi-synthetic data with image marks147

We test our model’s capability of generating complex high-dimensional marked events on two semi-148

synthetic data, including time-stamped MNIST (T-MNIST) and CIFAR-100 (T-CIFAR). In these149

data sets, both the mark (the image category) and the timestamp are generated through a marked150

point process. Images from MNIST and CIFAR-100 are subsequently chosen at random based151

on these marks, acting as an high-dimensional representation of the original image category. It’s152

important to note that during the training phase, categorical marks are excluded, retaining only the153

high-dimensional images for model learning. Since calculating the log-likelihood for event series with154

Table 1: Performance comparison with five baseline methods.
1D self-exciting data 1D self-correcting data 3D synthetic data 3D earthquake data

Model Testing ℓ MRE of f MRE of λ Testing ℓ MRE of f MRE of λ Testing ℓ MRE of f MRE of λ Testing ℓ

RMTPP −1.051 (0.015) 0.437 0.447 −0.975 (0.006) 0.308 0.391 / / / /
NH −0.776 (0.035) 0.175 0.198 −1.004 (0.010) 0.260 0.363 / / / /

FullyNN −1.025 (0.003) 0.233 0.330 −0.821 (0.008) 0.322 0.495 / / / /
ETAS / / / / / / −4.832 (0.002) 0.981 0.902 −3.939 (0.002)
DNSK −0.649 (0.002) 0.015 0.024 −2.832 (0.004) 0.134 0.185 −2.560 (0.004) 0.339 0.415 −3.606 (0.003)
CEG –0.645 (0.002) 0.013 0.066 –0.768 (0.005) 0.042 0.075 –2.540 (0.011) 0.049 0.089 –2.629 (0.015)

*Numbers in parentheses present standard error for three independent runs.
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t0 = 8.12 t1 = 8.23 t2 = 9.66 t3 = 10.93 t4 = 12.45 t5 = 16.97 t6 = 18.98 t7 = 21.31 t8 = 24.00

t0 = 8.17 t1 = 8.57 t2 = 8.60 t3 = 9.63 t4 = 9.68 t5 = 13.14 t6 = 14.98 t7 = 21.80

t0 = 8.36 t1 = 9.96 t2 = 10.59 t3 = 12.31 t4 = 13.09 t5 = 16.36 t6 = 16.85 t7 = 20.20 t8 = 20.85 t9 = 24.00

t0 = 8.02 t1 = 8.35 t2 = 8.37 t3 = 12.54 t4 = 14.23 t5 = 15.58 t6 = 16.77 t7 = 16.84 t8 = 23.11

(a) True series

t0 = 8.17 t1 = 8.57 t2 = 9.30 t3 = 10.98 t4 = 14.11 t5 = 16.46 t6 = 23.19

t0 = 8.12 t1 = 8.23 t2 = 8.23 t3 = 10.36 t4 = 10.36 t5 = 14.07 t6 = 15.26 t7 = 17.35 t8 = 21.63 t9 = 24.00

t0 = 8.36 t1 = 9.96 t2 = 10.87 t3 = 14.77 t4 = 16.58 t5 = 20.01 t6 = 22.27 t7 = 22.27 t8 = 24.00

t0 = 8.02 t1 = 8.35 t2 = 9.42 t3 = 9.64 t4 = 14.46 t5 = 16.99 t6 = 19.12 t7 = 21.99

(b) CEG generated series

t0 = 8.12 t1 = 8.23 t2 = 11.54 t3 = 12.37 t4 = 12.62 t5 = 13.12 t6 = 14.19 t7 = 16.70 t8 = 17.12 t9 = 18.38

t0 = 8.36 t1 = 9.96 t2 = 10.40 t3 = 12.50 t4 = 13.62 t5 = 13.86 t6 = 14.75 t7 = 14.87 t8 = 15.54 t9 = 16.65

t0 = 8.17 t1 = 8.57 t2 = 9.05 t3 = 10.92 t4 = 11.96 t5 = 12.22 t6 = 13.34 t7 = 13.50 t8 = 14.34 t9 = 15.29

t0 = 8.02 t1 = 8.35 t2 = 8.93 t3 = 10.79 t4 = 10.92 t5 = 11.74 t6 = 12.12 t7 = 13.15 t8 = 13.32 t9 = 14.09

(c) DNSK generated series

Figure 3: Generated T-MNIST (first row) and T-CIFAR (second row) series using CEG and a neural
point process baseline DNSK, with true sequences displayed in the first column. Each event series is
generated (blue boxes) given the first two true events (red boxes).

high-dimensional marks is infeasible for CEG (the number of samples needed to estimate density is155

impractically large), we evaluate the model performance according to: (1) the quality of the generated156

image marks and (2) the transition dynamics of the entire series. Details of the data generation157

processes can be found in Appendix F.158

1. T-MNIST: For each sequence in the data, the actual digit in the succeeding image is the aggregate159

of the digits in the two preceding marks. The initial two digits are randomly selected from 0 and160

1. The digits in the marks must be less than nine. The hand-written image for each mark is then161

chosen from the corresponding subset of MNIST according to the digit. The time for the entire162

MNIST series conforms to a Hawkes process with an exponentially decaying kernel.163

2. T-CIFAR: The data contains event series that depict a typical day in the life of a graduate student,164

spanning from 8:00 to 24:00. The marks are sampled from four categories: outdoor exercises,165

food ingestion, working, and sleeping. Depending on the most recent activity, the subsequent166

one is determined by a transition probability matrix. Images are selected from the respective167

categories to symbolize each activity. The activity times follows a self-correcting process.168

Figure 3 presents the true T-MNIST series alongside the series generated by CEG and DNSK given169

the first two events. Our model not only generates high-dimensional event marks that resemble true170

images, but also successfully captures the underlying data dynamics, such as the clustering patterns171

of the self-exciting process and the transition pattern of image marks. On the contrary, the DNSK only172

learns the temporal effects of historical events and struggles to estimate the conditional intensity173

for the high-dimensional marks. Besides, the grainy images generated by DNSK demonstrate the174

challenge of simulating credible high-dimensional content using thinning algorithm. This is because175

the real data points, being sparsely scattered in the high-dimensional mark space, make it challenging176

for the candidate points to align closely with them in the thinning algorithm.177

Similar results are shown in Figure 3 on T-CIFAR data set, where the CEG is able to simulate high-178

quality daily activities with high-dimensional content at appropriate times. However, the DNSK fails179

to extract any meaningful patterns from the data, since intensity-based modeling and data generation180

become ineffectual in high-dimensional mark space.181

3.3 Real data182

In our real data results, our model demonstrates superior efficacy in generating multi- and high-183

dimensional event sequences of high quality, which closely resemble real event series.184

Northern California earthquake catalog We test our method using the Northern California185

Earthquake Data [19], which contains detailed information on the timing and location of earthquakes186

that occurred in central and northern California from 1978 to 2018, totaling 5,984 records with187
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Figure 5: The spatial distributions of the TF-IDF values of 10 crime-related keywords. The heatmap
in red and blue represent distributions of TF-IDF value of the keywords in the true and generated
events, respectively. The black dots pinpoint the locations of the corresponding events.

magnitude greater than 3.5. We divided the data into several sequences by month. In comparison188

to other baseline methods that can only handle 1D event data, we primarily evaluated our model189

against DNSK and ETAS. we assess the quality of the generated sequences by each model. Our model’s190

generation process for new sequences can be efficiently carried out using Algorithm 1, whereas191

both DNSK and ETAS requires the use of a thinning algorithm (Algorithm 4) for simulation. We also192

compared the estimated conditional probability density functions (PDFs) of real sequences by each193

model in Appendix F.194

(a) Real (b) CEG (c) DNSK (d) ETAS
Figure 4: Comparison between real and generated earthquake
sequence. The first row displays a single sequence, either
real or generated, with the color depth of the dots reflecting
the occurrence time of each event. Darker colors represent
more recent events. The shaded areas represent the estimated
conditional PDFs. The second row shows 1,000 real or gener-
ated events, where the gray area indicates the high density of
events, which can be interpreted as the “background rate”.

We compare the generative ability195

of each method in Figure 4. The196

top left sub-figure features a sin-197

gle event series selected at random198

from the data set, while the rest of199

the sub-figures in the first row ex-200

hibit event series generated by each201

model, respectively. The quality of202

the generated earthquake sequence203

using our method is markedly supe-204

rior to that generated by DNSK and205

ETAS. We also simulate multiple se-206

quences using each method and visu-207

alize the spatial distribution of gen-208

erated earthquakes in the second row.209

The shaded area reflects the spatial210

density of earthquakes obtained by211

KDE and represents the “background212

rate” over space. It is evident that213

CEG is successful in capturing the un-214

derlying earthquake distribution, while the two STPP baselines are unable to do so. Additional215

results in Figure F6 visualizes the conditional PDF estimated by CEG, DNSK, and ETAS for an actual216

earthquake sequence in testing set, respectively. The results indicate that our model is able to capture217

the heterogeneous triggering effects among earthquakes which align with current understandings of218

the San Andreas Fault System [29]. However, both DNSK and ETAS fail to extract this geographical219

feature from the data.220

Atlanta crime reports with textual description We further assess our method using 911-calls-221

for-service data in Atlanta. The proprietary data set contains 4644 burglary incidents from 2016 to222

2017, detailing the time, location, and a comprehensive textual description of each incident. Each223

textual description was transformed into a TF-IDF vector [1], from which the top 10 keywords with224

the most significant TF-IDF values were selected. The location combined with the corresponding225

10-dimensional TF-IDF vector is regarded as the mark of the incident. We first fit our CEG model226

using the preprocessed data, subsequently generate crime event sequences, and then compare them227

with the real data.228

Figure 5 visualizes the spatial distributions of the true and the generated TF-IDF value of each229

keyword, respectively, signifying the heterogeneous crime patterns across the city. As we can observe,230

our model is capable of capturing such spatial heterogeneity for different keywords and simulating231

crime incidents that follow the underlying spatio-temporal-textual dynamics existing in criminological232

modus operandi [34].233
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A Model estimation320

To learn the model, one can maximize the log-likelihood of the observed event series. The log-321

likelihood of observing a sequence with NT events can therefore be obtained by322

ℓ(x1, . . . , xNT
) =

∫
X
log λ(x|Ht(x))dN(x)−

∫
X
λ(x|Ht(x))dx. (A1)

An equivalent form of this objective can be expressed using conditional PDF, as shown in the323

following equation (see Appendix B for the derivation):324

max
θ∈Θ

ℓ(θ) :=
1

K

K∑
k=1

∫
X

log fθ(x|Ht(x)) dNk(x), (A2)

where K represents the total number of observed event sequences and Nk is the counting measure325

of the k-th event sequence. It is worth noting that this learning objective circumvents the need to326

compute the integral in the second term of (A1), which can be computationally intractable when327

events exist in a multi-dimensional data space.328

Now the key challenge is how do we obtain the conditional PDF of an event x without access to the329

function fθ? This is a commonly posed inquiry in the realm of generative model learning, and there330

are several pre-existing learning algorithms intended for generative models that can provide solutions331

to this question [3]. In the rest of this section, we present two learning strategies that approximate the332

conditional PDF using generated samples and demonstrate the effectiveness of the proposed approach333

using numerical examples.334

Non-parametric density estimation We present a non-parametric learning strategy that approxi-335

mates the conditional PDF using kernel density estimation (KDE). Specifically, the conditional PDF336

of the i-th event xi can be estimated by,337

fθ(xi|Hti) ≈
1

L

L∑
l=1

κσ(xi − x̃(l)i ), (A3)

where {x̃(l)i }Ll=1 is a set of samples generated by model g(·,hi−1) and κσ is a kernel function with a338

bandwidth σ. See our implementation details in Appendix C.339

We note that it is important to consider boundary correction [10] for the kernel function in the time340

dimension, as the support of the next event’s time is [0,+∞), and a regular KDE would extend it to341

negative infinity. To select the kernel bandwidth σ, we adopt a common approach called the self-tuned342

kernel [4, 17]. This method dynamically determines a value of σ for each sample x̃(j) by computing343

the k-nearest neighbor (kNN) distance among other generated samples. The use of self-tuned kernels344

is crucial for the success of the model because the event distribution may change significantly over345

the training iterations. Therefore, adapting the bandwidth for each iteration and sample is necessary346

to achieve an accurate estimate of the conditional PDF.347

Variational approximation Variational method is another widely-adopted approach for learning348

a wide spectrum of generative models. Examples of such models include variational autoencoders349

[13, 14] and diffusion models [8, 11, 26]. In this paper, we follow the idea of conditional variational350

autoencoder (CVAE) [27] and approximate the log conditional PDF using its evidence lower bound351

(ELBO):352

log fθ(xi|Hti) ≥ −DKL(q(z|xi,hi−1)||pθ(z|hi−1)) + Eq(z|xi,hi−1) [log pθ(xi|z,hi−1)] , (A4)

where q is a variational approximation of the posterior distribution over the random noise given ob-353

served i-th event xi and its history hi−1. The first term on the right-hand side is the Kullback–Leibler354

(KL) divergence of the approximate posterior q(·|xi,hi−1) from the exact posterior pθ(·|hi−1)). The355

second term is the log-likelihood of the latent data generating process. The complete derivation of356

(A4) and implementation details can be found in the Appendix D.357

B Derivation of the conditional probability of point processes358

The conditional probability of point processes can be derived from the conditional intensity (1).359

Suppose we are interested in the conditional probability of events at a given point x ∈ X , and we360
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assume that there are i events that happen before t(x). Let Ω(x) be a small neighborhood containing361

x. According to (1), we can rewrite λ(x|Ht(x)) as following:362

λ(x|Ht(x)) = E
(
dN(x)|Ht(x)

)
/dx = P{xi+1 ∈ Ω(x)|Ht(x)}/dx

= P{xi+1 ∈ Ω(x)|Hti+1
∪ {ti+1 ≥ t(x)}}/dx

=
P{xi+1 ∈ Ω(x), ti+1 ≥ t(x)|Hti+1

}/dx
P{ti+1 ≥ t(x)|Hti+1

}
.

Here Hti+1 = {x1, . . . , xi} represents the history up to i-th events. If we let F (t(x)|Ht(x)) =363

P(ti+1 < t(x)|Hti+1) be the conditional cumulative probability, and f(x|Ht(x)) ≜ f(xi+1 ∈364

Ω(x)|Hti+1
) be the conditional probability density of the next event happening in Ω(x). Then the365

conditional intensity can be equivalently expressed as366

λ(x|Ht(x)) =
f(x|Ht(x))

1− F (t(x)|Ht(x))
.

We multiply the differential dx = dtdm on both sides of the equation and integral over the mark367

spaceM:368

dt ·
∫
M
λ(x|Ht(x))dm =

dt ·
∫
M f(x|Ht(x))dm

1− F (t(x)|Ht(x))
=

dF (t(x)|Ht(x))

1− F (t(x)|Ht(x))

= −d log (1− F (t(x)|Ht(x))).

Hence, integrating over t on [ti, t(x)) leads to the fact that369

F (t(x)|Ht(x)) = 1− exp

(
−
∫ t(x)

ti

∫
M
λ(x|Ht(x))dmdt

)

= 1− exp

(
−
∫
[ti,t(x))×M

λ(x|Ht(x))dx

)
because F (ti) = 0. Then we have370

f(x|Ht(x)) = λ(x|Ht(x)) · exp

(
−
∫
[ti,t(x))×M

λ(x|Ht(x))dx

)
,

which corresponds to (2).371

The log-likelihood of one observed event series in (A1) is derived, by the chain rule, as372

ℓ(x1, . . . , xNT
) = log f(x1, . . . , xNT

) = log

NT∏
i=1

f(xi|Hti)

=

∫
X
log f(x|Ht(x))dN(x)

=

∫
X
log λ(x|Ht(x))dN(x)−

∫
X
λ(x|Ht(x))dx.

The log-likelihood of K observed event sequences in (A2) can be conveniently obtained with the373

counting measure N replaced by the counting measure Nk for the k-th sequence.374

C Implementation details of non-parametric learning375

Estimating the conditional PDF f(x|Ht(x)) using kernel density estimation (KDE) within our frame-376

work presents two main challenges: (1) The distribution density of events generated by certain377

inhomogeneous point processes can vary from location to location in the event space. Consequently,378

using a single bandwidth for estimation would either oversmooth the conditional PDF or introduce379

excessive noise in areas with sparse events. (2) The time intervals of the next events are usually380

clustered in a small neighborhood of 0 and always positive, which will lead to a significant boundary381

bias.382

To overcome the above challenges, we adopt the self-tuned kernel with boundary correction:383
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Figure B1: A comparison between the vanilla KDE and the KDE with boundary correction. The grey
shaded area indicates the true density function, which is defined on the bounded region [0,+∞). The
blue dashed line and red line show the estimated density function by the vanilla KDE and the KDE
with reflection, respectively.

True f
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(a) Vanilla KDE
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(b) KDE using self-tuned kernel
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(c) KDE using self-tuned kernel with boundary correction

Figure B2: The estimated conditional PDF f(t|Ht) of a testing sequence is displayed from left to
right. Each panel within the same row represents the estimated conditional PDF at intervals of 10
training epochs.

1. We first choose the bandwidth adaptively, where the bandwidth σ tends to be small for those384

samples falling into event clusters and to be large for those isolated samples. We dynamically385

determine the value of σ for each sample x̃ by computing the k-nearest neighbor (kNN) distance386

among other generated samples [4, 17].387

2. We correct the boundary bias of KDE by reflecting the data points against the boundary 0 in time388

domain [10]. Specifically, the kernel with reflection is defined as follows:389

κ(x− x̃) = υ∗(∆t−∆t̃) · υ(m− m̃),

where υ is an arbitrary kernel and υ∗(x− x̃) = υ(x− x̃) + υ(−x− x̃) is the same kernel with390

reflection boundary. This allows for a more accurate estimation of the density near the boundary391

of the time domain without impacting the estimation elsewhere, as shown in Figure B1.392

Figure B2 compares the learned conditional PDF using three KDE methods on the same synthetic393

data set generated by a self-exciting Hawkes process. The results show that the estimation using394

the self-tuned kernel with boundary correction shown in (c) significantly outperforms two ablation395

models in (a) and (b). We also summarize the learning algorithm in Algorithm 2.396
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Algorithm 2 Non-parametric learning for CEG

Input: Training set X with K sequences: X = {x(k)i }i=1,...,Nk(X ), k=1,...,K , learning epoch E,
learning rate γ, mini-batch size M .
Initialization: model parameters θ, e = 0
while e < E do

for each sampled batch X̂M with size M do
1. Draw samples z from noise distribution N (0, 1);
2. Feed z into the generator g to obtain sampled events x̃;
3. Estimate conditional PDF using KDE (A3) and log-likelihood ℓ (A1), given data X̂M ,
samples x̃ and the model;
4. θ ← θ + γ∂ℓ/∂θ;

end for
e← e+ 1;

end while
return θ

D Derivation and implementation details of variational learning397

Derivation of the approximate conditional PDF Now we present the derivation of the approximate398

conditional PDF in (A4). We first use hidden embedding h to represent the history Ht(x) and399

fθ(x|Ht(x)) can be substituted by fθ(x|h). Then the conditional PDF of event x given the history400

can be re-written as:401

log fθ(x|h) = log

∫
pθ(x, z|h)dz,

where z is a latent random variable. This integral has no closed form and can usually be estimated by402

Monte Carlo integration with importance sampling, i.e.,403 ∫
pθ(x, z|h)dz = Ez∼q(·|x,h)

[
pθ(x, z|h)
q(z|x,h)

]
.

Here q(z|x,h) is the proposed variational distribution, where we can draw sample z from this404

distribution given x and h. Therefore, by Jensen’s inequality, we can find the evidence lower bound405

(ELBO) of the conditional PDF:406

log fθ(x|h) = logEz∼q(·|x,h)

[
pθ(x, z|h)
q(z|x,h)

]
≥ Ez∼q(·|x,h)

[
log

pθ(x, z|h)
q(z|x,h)

]
.

Using Bayes rule, the ELBO can be equivalently expressed as:407

Ez∼q(·|x,h)

[
log

pθ(x, z|h)
q(z|x,h)

]
= Ez∼q(·|x,h)

[
log

pθ(x|z,h)pθ(z|h)
q(z|x,h)

]
= Ez∼q(·|x,h)

[
log

pθ(z|h)
q(z|x,h)

]
+ Ez∼q(·|x,h) [log pθ(x|z,h)]

= −DKL(q(z|x,h)||pθ(z|h)) + Ez∼q(·|x,h) [log pθ(x|z,h)] .

Implementation details In practice, we introduce two additional generator functions, encoder408

net gencode(ϵ, xi,hi−1) and prior net gprior(ϵ,hi−1), respectively, to represent q(z|xi,hi−1) and409

pθ(z|hi−1) as transformations of another random variable ϵ ∼ N (0, I) using reparametrization trick410

[26]. Both q(z|xi,hi−1) and pθ(z|hi−1) are often modeled as Gaussian distributions, which allows411

us to compute the KL divergence of Gaussians with a closed-form expression. The log-likelihood412

of the second term can be implemented as the reconstruction loss and calculated using generated413

samples.414

We parameterize both pθ(z|h) and q(z|x,h) using fully-connected neural networks with one hidden415

layer, denoted by gprior and gencode, respectively. The prior of the latent variable is modulated by the416

input h in our formulation; however, the constraint can be easily relaxed to make the latent variables417

statistically independent of input variables, i.e., pθ(z|h) = pθ(z) [15, 27]. For the approximate pos-418

terior q(z|x,h), a common choice is a simple factorized Gaussian encoder, which can be represented419

as:420

q(z|x,h) = N (z;µ, diag(Σ)),
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Algorithm 3 Variational learning for CEG using stochastic gradient descent

Input: Training set X with K sequences: X = {x(k)i }i=1,...,Nk(X ), k=1,...,K , learning epoch E,
learning rate γ, mini-batch size M .
Initialization: model parameters θ, e = 0
while e < E do

for each sampled batch X̂M with size M do
1. Draw samples ϵ from noise distribution N (0, 1);
2. Compute z using reparametrization trick, given data X̂M , noise ϵ, gprior, and gencode;
3. Compute ELBO (A4) and log-likelihood ℓ (A1) based on z and data X̂M ;
4. θ ← θ + γ∂ℓ/∂θ;

end for
e← e+ 1;

end while
return θ

or421

q(z|x,h) =
r∏

j=1

q(zj |x,h) =
r∏

j=1

N (zj ;µj , σ
2
j ).

The Gaussian parameters µ = (µj)j=1,...,r and diag(Σ) = (σ2
j )j=1,...,r are the output of an encoder422

network ϕ and the latent variable z can be obtained using reparametrization trick:423

(µ, log diag(Σ)) = ϕ(x,h),

z = µ+ diag(Σ)⊙ ϵ,

where ϵ ∼ N (0, I) is another random variable and ⊙ is the element-wise product. For simplicity in424

presentation, we denote such a factorized Gaussian encoder as gencode(ϵ, x,h) that maps an event x,425

its history h, and a random noise vector ϵ to a sample z from the approximate posterior for that event426

x.427

In (A4), the first term is the KL divergence of the approximate posterior from the prior, which acts as a428

regularizer, while the second term is an expected negative reconstruction error. They can be calculated429

as follows: (1) Because both q(z|xi,hi−1) and pθ(z|hi−1) are modeled as Gaussian distributions,430

the KL divergence can be computed using a closed-form expression. (2) Minimizing the negative431

log-likelihood pθ(x|z,h) is equivalent to maximizing the cross entropy between the distribution of432

an observed event x and the reconstructed event x̃ generated by the generative model g given z and433

the history h. The learning algorithm has been summarized in Algorithm 3.434

E Sampling efficiency comparison435

Thinning algorithms are known to be challenging and suffer from low sampling efficiency. This436

is because (i) these algorithms require sampling uniformly in the space X with the upper limit of437

the conditional intensity λ > λ(x), ∀x, and only a few candidate points are retained in the end.438

(ii) the decision of whether to reject one candidate point requires the evaluation of the conditional439

intensity function over the entire history, which is also stochastic. This doubly stochastic trait makes440

the entire thinning process particularly costly when X is a multi-dimensional space, since it requires441

a drastically large number of candidate points and numerous evaluations of the conditional intensity442

function.443

On the contrary, our model generates samples based on the underlying conditional distribution of444

events learned from true data, thus every generated point will be retained. Table E1 compares the time445

costs for ETAS, DNSK, and CEG to generate event series of length 100 on each data set. Particularly446

noteworthy is that our model requires a similar amount of time to generate different numbers of447

sequences. This is because CEG can generate all the sequences in parallel, leveraging the benefits of448

the implementation of conditional generative models.449
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Table E1: Computation costs for generating earthquake series and time-stamped image series of
length 100 using ETAS, DNSK and CEG.

3D earthquake data T-MNIST T-CIFAR
Model 5 sequences 50 sequences 5 sequences 50 sequences 5 sequences 50 sequences

ETAS 12.4 118.6 / / / /
DNSK 20.1 220.4 87.3 745.6 274.0 1381.9
CEG < 1 < 1 0.6 0.8 1.1 1.2

*Unit: second.

F Experiment details and additional results450

Baselines We compare our proposed method empirically with the following baselines:451

1. Recurrent Marked Temporal Point Process (RMTPP) [6] uses an RNN to capture the nonlinear452

relationship between both the markers and the timings of past events. It models the conditional453

intensity function by454

λ(t|Ht) = exp(v⊤hi + w(t− ti) + b),

where hidden state hi of the RNN represents the event history until the nearest i-th eventHti ∪455

{ti}. The v, w, b are trainable parameters. The model is learned by MLE using backpropagation456

through time (BPTT).457

2. Neural Hawkes Process (NH) [18] extends the classical Hawkes process by memorizing the458

long-term effects of historical events. The conditional intensity function is given by459

λ(t|Ht) = f(w⊤ht),

where ht is a sufficient statistic of the event history modeled by the hidden state in a continuous-460

time LSTM, and f(·) is a scaled softplus function for ensuring positive output. The weight w is461

learned jointly with the LSTM through MLE.462

3. Fully Neural Network based Model (FullyNN) for General Temporal Point Processes [22]463

models the cumulative hazard function given the history embedding hi, which leads to a tractable464

likelihood. It uses a fully-connect neural network Zi with a non-negative activation function for465

the cumulative hazard function Φ(τ |hi) where τ = t− ti. The conditional intensity function is466

obtained by computing the derivative of the network:467

λ(t|Ht) =
∂

∂(τ)
Φ(τ |hi) =

∂

∂(τ)
Zi(τ),

where Zi is the fully-connect neural network.468

4. Epidemic-type aftershock sequence (ETAS) acts as a benchmark in spatio-temporal point process469

modeling. Denoting each event x := (t, s), ETAS adopts a Gaussian diffusion kernel in the470

conditional intensity as following471

λ(t, s|Ht) = µ+
∑

(ti,si)∈Ht

k(t, ti, s, si),

where472

k(t, ti, s, si) =
Ce−β(t−ti)

2π
√
|Σ|(t− ti)

· exp
{
− (s− si − a)⊤Σ−1(s− si − a)

2(t− ti)

}
.

Here Σ = diag(σ2
x, σ

2
y) is a diagonal matrix representing the covariance of the spatial correlation.473

Note that the diffusion kernel is stationary and only depends on the spatio-temporal distance474

between two events. All the parameters are learnable.475

5. Deep non-stationary kernel (DNSK) proposes a neural-network-based influence kernel based on476

kernel singular value decomposition for modeling spatio-temporal point process data. In addition,477

their kernel can be extended to handle high-dimensional marks:478

k(ti, t− ti, si, s−si,mi,m) =

Q∑
q=1

R∑
r=1

L∑
l=1

αlrqψl(ti)φl(t− ti)ur(si)vr(s−si)gq(mi)hq(m).

Here all the basis functions are represented by fully-connected neural networks.479

14



True
CEG
RMTPP
NH
FullyNN

C
on

di
tio

na
l P

D
F 
𝑓

C
on

di
tio

na
l i

nt
en

sit
y 

𝜆 True
CEG
RMTPP
NH
FullyNN

(a) Self-exciting 1 (b) Self-exciting 2 (c) Self-correcting 1 (d) Self-correcting 2

Figure F3: Out-of-sample estimation of the conditional PDF f(t|Ht) and the corresponding intensity
λ(t|Ht) using the proposed method on one-dimensional (time only) synthetic event sequences.
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Figure F4: Snapshots of out-of-sample estimation of the conditional PDFs for a three-dimensional
(time and space) synthetic event sequence, arranged in chronological order from left to right. The
conditional PDFs are indicated by shaded areas, with darker shades indicating higher conditional
PDF values. The red dots represent newly observed events within the most recent time period, while
the circles represent historical events.

Synthetic data description We use the following point process models to generate the one-480

dimensional synthetic data sets using Algorithm 4:481

1. Self-exciting Hawkes process: λ(t) = µ +
∑

ti∈Ht
βe−β(t−ti), with µ = 0.1, β = 0.1 and482

µ = 0.5, β = 1.0 in self-exciting data 1 and 2, respectively.483

2. Self-correcting process: λ(t) = exp
(
µt−

∑
ti∈Ht

α
)
, with µ = 1.0, α = 1.0 and µ = 0.5, α =484

0.8 in self-correcting data 1 and 2, respectively.485
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Algorithm 4 Thinning algorithm
Input: Model λ(·), time horizon T , mark spaceM, Intensity upper bound λ̄.
Initialization: HT = ∅, t = 0, i = 0
while t < T do

1. Sample u ∼ Unif(0, 1).
2. t← t− lnu/λ̄.
3. Sample m ∼ Unif(M), D ∼ Unif(0, 1).
4. λ = λ(t,m|HT ).
if Dλ̄ ≤ λ then
i← i+ 1; ti = t,mi = m.
HT ← HT ∪ {(ti,mi)}.

end if
end while
if ti ≥ T then

returnHT − {(ti,mi)}
else

returnHT

end if

3. T-MNIST: In the MNIST series, all the digits that are greater than nine will be truncated to nine.486

The exponentially decaying kernel for the observation times are k(t, ti) = βe−β(t−ti), β = 0.2.487

4. T-CIFAR: The images of bicycles and motorcycles represent outdoor exercises; the apples, pears,488

and oranges represent food ingestion; the computer keyboards represent study/working; and489

the beds represent sleeping. Before 21:00, the activity series progresses with the transition490

probability matrix between (exercise, food ingestion, working) being491

P =

(
0.0 1.0 0.0
0.2 0.0 0.8
0.2 0.3 0.5

)
.

Starting from 21:00, the probability of sleeping increases linearly from 0 to 1 at 23:00. Each492

series ends with the activity of sleeping. The self-correcting process for event times is set with493

µ = 0.1, α = 0.5, indicating that each activity will last for a while before the student moves to494

the next activity (or stays in the current one).495

Experimental setup We choose our generator g to be a fully-connected neural network with two496

hidden layers of width 32 with softplus activation function. To guarantee that the generated time497

interval is always positive, we apply an extra Rectified Linear Unit (ReLU) function for the output498

of the time dimension in the output layer. We use an LSTM for the history encoder ψ. We train our499

model and other baselines using 90% of the data and test them on the remaining 10% data. To fit the500

model parameters, we maximize log-likelihood according to (A2), and adopt Adam optimizer [12]501

with a learning rate of 10−3 and a batch size of 32 (event sequences). More details about experimental502

setup can be found in Appendix F.503

For RMTPP, NH and FullyNN, we take the default parameters for model architectures in the original504

papers, with the dimension of hidden embedding to be 64 for all three models, and a fully-connected505

neural network with two hidden layers of width 64 for the cumulative hazard function in FullyNN.506

There is no hyperparameter in ETAS. All the baselines are trained using the Adam optimizer with a507

learning rate of 10−3 and a batch size of 32 for 100 epochs. The experiments are implemented on508

Google Colaboratory (Pro version) with 12GB RAM and a Tesla T4 GPU.509

F.1 Additional experiment results510

3D synthetic data Each row in Figure F4 displays four snapshots of estimated conditional proba-511

bility density functions (PDFs) for a particular 3D testing sequence. It is apparent that our model’s512

estimated PDFs closely match the ground truth and accurately capture the complex spatial and513

temporal point patterns. Conversely, DNSK and ETAS model for estimating spatio-temporal point514

processes fails to capture the heterogeneous triggering effects between events, indicating limited515

practical representational power.516
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(a) Additional T-MNIST series generated by CEG

t0 = 8.64 t1 = 9.05 t2 = 9.13 t3 = 10.75 t4 = 13.57 t5 = 20.97 t6 = 21.39 t7 = 24.00

t0 = 9.71 t1 = 9.81 t2 = 10.89 t3 = 11.10 t4 = 15.17 t5 = 17.34 t6 = 19.30 t7 = 22.05

t0 = 8.01 t1 = 8.10 t2 = 9.20 t3 = 9.37 t4 = 14.10 t5 = 16.58 t6 = 18.66 t7 = 21.50

t0 = 8.26 t1 = 8.76 t2 = 10.73 t3 = 12.10 t4 = 13.70 t5 = 14.35 t6 = 14.35 t7 = 23.01 t8 = 24.00

t0 = 8.55 t1 = 10.15 t2 = 10.30 t3 = 12.22 t4 = 12.36 t5 = 13.81 t6 = 18.34 t7 = 18.34 t8 = 18.34 t9 = 23.94

t0 = 8.17 t1 = 8.57 t2 = 11.32 t3 = 11.52 t4 = 11.52 t5 = 17.98 t6 = 24.00

t0 = 8.97 t1 = 9.25 t2 = 9.88 t3 = 11.54 t4 = 14.64 t5 = 16.99 t6 = 23.86

t0 = 8.27 t1 = 8.90 t2 = 8.90 t3 = 12.18 t4 = 13.02 t5 = 14.81 t6 = 18.58 t7 = 24.00

(b) Additional T-CIFAR series generated by CEG

Figure F5: Additional T-MNIST and T-CIFAR series using CEG and a neural point process baseline
DNSK, with true sequences displayed on the left. Each event series is generated (blue boxes) given the
first two true events (red boxes).

Semi-synthetic image data More generated T-MNIST and T-CIFAR series by CEG are presented in517

Figure F5. As we can see, our generative point process can not only sample images that resemble the518

ground truth, but also recover the intricate temporal dynamics (e.g., clustering effect of self-exciting519

process in T-MNIST, student’s sleeping time in T-CIFAR) and high-dimensional mark dependencies.520

Northern California earthquake catalog Additional results in Figure F6 visualizes the conditional521

PDF estimated by CEG, DNSK, and ETAS for an actual earthquake sequence in testing set, respectively.522

The results indicate that our model is able to capture the heterogeneous effects among earthquakes.523

Particularly noteworthy is our model’s finding of a heightened probability of seismic activity along524

the San Andreas fault, coupled with a diminished likelihood in the basin. These results align with525

current understandings of the mechanics of earthquakes in Northern California. However, both DNSK526

and ETAS fail to extract this geographical feature from the data and suggest that observed earthquakes527

impact their surroundings uniformly, leading to an increased likelihood of aftershocks within a528

circular area centered on the location of the initial event.529
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(a) Proposed CEG

𝑡=10 𝑡=16 𝑡=23 𝑡=30

(b) DNSK

𝑡=10 𝑡=16 𝑡=23 𝑡=30

(c) ETAS

Figure F6: Estimated conditional PDFs of an actual earthquake sequence represented by shaded areas,
with darker shades indicating higher conditional PDF values. Each row contains four sub-figures,
arranged in chronological order from left to right, showing snapshots of the estimated conditional
PDFs. The red dots represent newly observed events within the most recent time period, while the
circles represent historical events.
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