
A Appendix
A.1 Derivation of the joint distribution in latent space

Our proof closely follows [6] from the rejection sampling perspective. Before the derivation, we
introduce the following lemma about the resulting probability distribution in rejection sampling:

Lemma 1 (Lemma 1 in [6]) Given a probability distribution p(x) where x 2 X and a measurable

function r : X ! [0, 1], the rejection sampling with the proposal distribution p(x) and acceptance

probability r(x) generates x samples following from the distribution q(x), which satisfies q(x) =
p(x)r(x)/Z0 where Z0 = Ex⇠p(x)[r(x)].

Proof: See the proof of Lemma 1 in [6]. ⇤
Recall that we define the generative model as

p✓(x, c) = pg(x)e
�E✓(c|x)/Z (8)

where pg(x) is an implicit distribution defined by a pre-trained generator g in the form of x = g(z)
with the latent variable z 2 Z and the data x 2 X , and Z is a normalization constant.

When conditioned on the attribute c, we have p✓(x|c) = p✓(x,c)
p✓(c)

. Similar to [6], if we do rejection

sampling with the proposal distribution pg(x) and the acceptance probability p✓(x|c)
M(c)pg(x)

, where M(c)

is a constant (w.r.t. x) satisfying M(c) � p✓(x|c)
pg(x)

, we get samples x from p✓(x|c). As pg(x) is an
implicit distribution induced by the generator x = g(z), this rejection sampling on pg(x) is equivalent
to a rejection sampling on the prior p(z) in the latent space and then applying x = g(z).

Specifically, the corresponding rejection sampling in the latent space has the proposal distribution
p(z) and the acceptance probability

r✓(z, c) =
p✓(g(z)|c)

M(c)pg(g(z))
=

e�E✓(c|g(z))

M(c)p✓(c)Z
(9)

where the second equation follows from Eq. (8). From Lemma 1, we have that conditioned on the
attribute c ⇠ p✓(c), the resulting probability p✓(z|c) of the accepted z samples in the above rejection
sampling procedure satisfies

p✓(z|c) = p(z)r✓(z, c)/Z
0(c) (10)

where Z 0(c) := Ez⇠p(z)[r✓(z, c)]. By substituting Eq. (9) into Eq. (10), we have

p✓(z|c) =
p(z)e�E✓(c|g(z))

p✓(c)Z 00(c)
(11)

where Z 00(c) := M(c)ZZ 0(c), and from Eq. (9) we further have

Z00(c) = Ez⇠p(z)[e
�E✓(c|g(z))]/p✓(c)

= Ex⇠pg(x)[e
�E✓(c|x)]/p✓(c)

=
Z

p✓(c)

Z
p✓(x, c)dx

= Z

(12)

where the second equation follows from the change of variables with x = g(z), and the third equation
follows from marginalizing x in Eq. (8). Thus, Eq. (11) yields

p✓(z, c) = p(z)e�E✓(c|g(z))/Z (13)
which concludes the derivation. ⇤

A.2 Derivation of Eq. (7)

Song et al. [51] define a forward diffusion process that maps samples x0 ⇠ pdata to xT ⇠ pT =
N(0, I) using the VP-SDE:

dx = �1

2
�(t)xdt+

p
�(t)dw (14)

15

for t 2 [0, T]. They also show that a generative SDE can be defined by:

dx = �1

2
�(t)[x+ 2rx log pt(x)]dt+

p
�(t)dw̄ (15)

with time flowing backward from T to 0 and reverse standard Wiener process w̄. For conditional
generation, the generative SDE above becomes:

dx = �1

2
�(t)[x+ 2rx log pt(x, c)]dt+

p
�(t)dw̄ (16)

where pt(x, c) is the join distribution of data and attribute at time t.

Song et al. [51] show that there exists an equivalent ODE whose trajectories share the same joint
probability densities pt(x(t), c) with the reverse SDE defined in Eq. (16):

dx = �1

2
�(t) [x+rx log pt(x, c)] dt (17)

where the idea is to use the Fokker-Planck equation [39] to transform an SDE to an ODE (see
Appendix D.1 for more details in [51]).

Song et al. [51] define rx log pt(x(t), c) := rx log pt(x(t)) +rx log pt(c|x(t)) which requires (i)
estimating the score function rx log pt(x(t)), and (ii) training a time-variant classifier pt(c|x(t))
in the x-space for rx log pt(c|x(t)), both of which make the training and inference challenging.
Instead, in our framework, we solve the ODE in the z-space and transfer the z samples to the data
space with the generator g. Specifically with pt(z(t), c) / e�Et(c|g(z(t)))+log pt(z(t)), we have

dz = �1

2
�(t) [z +rz log pt(z)�rzEt(c|g(z))] dt (18)

Since the distribution of latent variable z in most generative models satisfies p0(z(0)) = N (0, I),
diffusing it with VP-SDE will not change its distribution at time t, i.e., pt(z(t)) = N (0, I) [51].
Since pt(z(t)) is time-invariant and the generator g is fixed, the classifier pt(c|g(z(t))) receives input
g(z(t)) with a time-invariant distribution. Thus, we assume that the classifier is also time-invariant,
and so is the energy function Et(c|g(z(t))) := E(c|g(z(t))). Therefore, the above ODE becomes:

dz =
1

2
�(t)rzE(c|g(z))dt = 1

2
�(t)

nX

i=1

rzE(ci|g(z))dt (19)

which concludes the derivation. ⇤

A.3 More details of experimental setting

Training hyperparameters For the classifier fi(x; ✓), we use a four-layer MLP as the network
architecture when it is trained in the z-space or the w-space of StyleGAN2, as shown in Table 4. We
train the classifier with the Adam optimizer [30] for 100 epochs using a staircase decay schedule.
When we consider the classifier in the pixel space, we directly use the pre-trained WideResNet-28-10
[61] with no batch normalization as the network architecture.

Table 4: The four-layer MLP architecture as the attribute classifier when it is trained in the z-space or the w-space
of StyleGAN2. Its output dimension depends on the number of class predictions for the targeted attributes.

input: z 2 R512 or w 2 R512

Linear 384, LeakyReLU
Linear 256, LeakyReLU
Linear 128, LeakyReLU
Linear #logits

Inference hyperparameters By default, we use the ‘dopri5’ ODE solver with the absolute and
relative tolerances (atol, rtol) being set to (1e-3, 1e-3) in LACE-ODE. The time-variant diffusion
coefficient �(t) in the ODE sampler has the form that �(t) = �min + (�max � �min)t, where
�min = 0.1 and �max = 20, and t 2 [0, 1]. Similar to the prior work [18], for the LD sampling in
LACE-LD, the step size ⌘ and the standard deviation of ✏t are chosen separately for faster training,
although it results in a biased sampler [18, 14]. By default, we set the number of steps to be 100, step
size ⌘ = 0.01 and standard deviation of ✏t to be 0.01 in LACE-LD.

We use StyleGAN-ADA as the pre-trained generator for experiments on CIFAR-10 and StyleGAN2
for experiments on FFHQ. StyleGAN-ADA shares the same network architecture with StyleGAN2,
where the truncation trick can be applied in the w-space for better image quality [28]. Since our
EBM formulation does not modify the generator architecture, we can also apply the truncation in the
w-space during sampling. By default, we use the truncation coefficient = 0.7 in our method.

16

Hardware We ran all experiments on one single NVIDIA V100 GPU with 32GB memory size.

Data preparation To train attribute classifier in the z-space or the w-space of StyleGAN2, we first
need a training set of the pairs (z, c) or (w, c), where c represents the class label in CIFAR-10 and
the attribute code in FFHQ. For the experiments on CIFAR-10, we first sample 50k z latent variables
from the standard Gaussian and pass them to the StyleGAN2 generator to get 50k w samples (i.e., the
output of the mapping network) and 50k images (i.e., the output of the synthesis network). Then, we
label the 50k images using a pre-trained DenseNet [25] image classifier with an error rate 4.54% on
CIFAR-10. Accordingly, we get 50k (z, c) pairs and 50k (w, c) pairs as the training sets.

For the experiments on FFHQ, we directly use the 10k (w, c) pairs created by the StyleFlow paper [1]
to train the attribute classifier. We use 12 attributes in most of our experiments, including 5 discrete
attributes: smile, glasses, gender, beard, haircolor, and 7 continuous attributes: yaw, age,
pitch, bald, width, light0, light3. Usually for binary discrete attributes, we denote “1” as the
presence and “0” as the absence. For instance, glasses=1 means wearing glasses and glasses=0
means no glasses. Similarly, smile=1 means smiling and smile=0 means no smiling. For continuous
attributes, we normalize their values to the range of [0, 1].

Metrics To quantify the model performance in controllable generation, we mainly use the following
two metrics: (i) conditional accuracy (ACC) to measure the controllability, and (ii) FID to measure
the generation quality and diversity [21]. Specifically, the ACC score is calculated as follows: We
first generate Na images based on randomly sampled attributes codes, and then pass these generated
images to a pre-trained image classifier to predict the attribute codes. Accordingly, the ACC score
reflects how accurately the predicted attribute codes match the sampled ground-truth ones.

For the experiments on CIFAR-10 and FFHQ, these two metrics are evaluated in slightly different
ways. First, for the ACC score on CIFAR-10, we use the aforementioned DenseNet pre-trained on
CIFAR-10 as the image classifier. For each class, we uniformly sample 1k images, meaning the total
generated images Na = 10k. The final ACC score is then the averaged accuracy of the predicted
class labels over 10 classes. For the FID score on CIFAR-10, we uniformly sample 5k images in each
class and then use the total 50k images to calculate the FID.

Second, for the ACC score on FFHQ, we use the MobileNet [24] as the network backbone of the
image classifier due to its small size and effectiveness in the recognition of face attributes. To improve
the generalization ability of the image classifier, we first train the MobileNet with the Adam optimizer
for 10 epochs on the CelebA dataset [35], and then fine-tune it on the 10k generated FFHQ image
and attribute pairs for another 50 epochs. Similarly, we uniformly sample the attribute codes from
the set of all possible combinations, and generate 1k images to compute the ACC. The final ACC
score is then the averaged accuracy of the predicted attribute codes over all the sampled attribute
combinations. Note that for the continuous attributes ci 2 R, such as yaw and age, we normalize their
values to the range of [0, 1], and the ACC for each continuous attribute is represented by 1� |ĉi � ci|
instead, where ĉi is the predicted continuous attribute from the MobileNet image classifier.

For the FID score on FFHQ, we follow from StyleFlow [1] that uses 1k generated samples StyleGAN2
to compute the FID. Note that the resulting FID scores are not comparable to those reported in the
original StyleGAN2 paper, as it uses 50k real FFHQ images to evaluate the FID. For the reference,
the original unconditional StyleGAN2 with our evaluation protocol has FID=20.87±0.11. Besides,
different from CIFAR-10 where each class has equally distributed samples, the attribute distribution
in the FFHQ data is heavily imbalanced. For instance, the number of images with glasses=0 is at
least 5⇥ larger than that with glasses=1. The number of images with smile=1 is at least 3⇥ larger
than that with smile=0. Thus, if we uniformly sample attributes as before, the resulting generated
image distribution will largely deviate from the reference data distribution, making the FID score
incorrectly reflect the generation quality. To remedy this, we randomly sample attribute codes from

the training set instead to generate 1k images for the FID evaluation on FFHQ.

A.4 More details of baselines

We use different baselines for comparing with our method in controllable generation. The first set of
baselines is the EBMs in the pixel space:

JEM [18] It proposes the joint EBM framework of modelling the data and labels in the pixel space.
Its training is composed of two parts: p✓(c|x) for the classifier training and p✓(x) for the generative

17

modelling. In both training and inference of JEM, the LD sampling is applied to draw samples from
p✓(x). We use the default hyperparameter settings in [18] to report its results.

Cond-EBM [12] Based on conditional EBMs, it proposes different ways of composing the energy
functions with logical operators for compositional generation. To train conditional EBMs, it also
applies the LD sampling to draw samples from p✓(x|c). We use the default hyperparameter settings
in [12] to report its results. Particularly during inference, to improve the generation quality, we apply
the following tricks [12]: (i) we combine two training checkpoints, and (ii) we run 50 LD steps
followed by the data augmentations to get a good initialization of the LD sampling.

The second set of baselines is the score-based models with SDEs [51]:

VP-SDE [51] In Variance Preserving (VP) SDE [51], the forward SDE is defined as

dx = �1

2
�(t)xdt+

p
�(t)dw (20)

where �(t) represents a scalar time-variant diffusion coefficient and w is a standard Wiener process.
Then, the conditional sampling from p0(x|c) is equivalent to solving the following reverse SDE:

dx = �1

2
�(t)[x+rx log pt(x, c)]dt+

p
�(t)dw̄ (21)

where w̄ is a standard Wiener process when time flows backwards from T to 0. To sample from Eq.
(21), the Predictor-Corrector (PC) sampler is proposed in [51]. At each time step, the numerical SDE
solver first gives an estimate of the sample at the next time step, playing the role of a “predictor”.
Then, the score-based MCMC approach corrects the marginal distribution of the estimated sample,
playing the role of a “corrector” [51].

VE-SDE [51] In Variance Exploding (VE) SDE, the forward SDE is defined as

dx =

r
d[�2(t)]

dt
dw (22)

where �(t) represents a sequence of positive noise scales and w is a standard Wiener process. Then,
the conditional sampling from p0(x|c) is equivalent to solving the following reverse SDE:

dx = �rx log pt(x, c)d[�
2(t)] +

r
d[�2(t)]

dt
dw̄ (23)

where w̄ is a standard Wiener process when time flows backwards from T to 0. According to [51],
the PC sampler can also be applied to sample from Eq. (23).

To report the controllable generation results of VP-SDE and VE-SDE, we use the pre-trained
models released by the official implementation (https://github.com/yang-song/score_sde),
and also used the default sampling hyperparameters of the PC sampler: the number of predictor steps
N = 1000, the number of corrector steps M = 1, and the signal-to-noise ratio r = 0.16.

The last set of baselines is the methods modelled in the latent space of the pre-trained generator:

StyleFlow [1] It applies the conditional continuous normalizing flows (CNFs) to build an invertible
mapping between the z-space and the w-space of StyleGAN2 conditioned on the attribute codes.
The goal is to enable adaptive latent space vector manipulation by casting the conditional sampling
problem in terms of conditional CNFs using the attributes for conditioning [1].

The conditional sampling task is straightforward: it sets the attribute code to a desired set of values,
and then samples multiple z variables, which are passed to the conditional CNF and the synthesis
network of StyleGAN2 to get the final images. The sequential editing task is mainly composed by
a sequence of Conditional Forward Editing (CFE) and Joint Reverse Encoding (JRE). Meanwhile,
several hand-crafted tricks are applied to improve the editing quality, including the Edit Specific
Subset Selection and re-projection of edited w to the z-space. See the original paper [1] for details.

To get the reported results, we use the pre-trained models released by the official implementations
(https://github.com/RameenAbdal/StyleFlow). As we keep all the hand-crafted tricks men-
tioned above, it implies that we actually use the StyleFlow (V2) [1] for comparison. Besides that, we
use the default sampling hyperparameters. In particular, we use the adjoint method to compute the
gradients and solve the ODE using ‘dopri5’ ODE solver, where the tolerances are set to 1e-5.

18

https://github.com/yang-song/score_sde
https://github.com/RameenAbdal/StyleFlow

Latent-JEM This is a baseline we propose by modelling JEM [18] in the latent space of a pre-
trained generator. Similarly, the Latent-JEM is modelled in the w-space of StyleGAN2. Given the
joint distribution of w varaible and attribute code c:

p✓(w, c) / e�E✓(w,c), (24)

then we assume E✓(w, c) =
Pn

i=1 E✓(w, ci) (i.e., the conditional independence assumption) where

E✓(w, ci) =

⇢
�fi(x, ✓)[ci] if ci is discrete
1

2�2 (ci � fi(x, ✓))2 if ci is continuous
(25)

Similarly, fi(x; ✓) is the output of a multi-class classifier mapping from X to Rmi if the i-th attribute
is discrete or a regression network mapping from X to R if it is continuous. Note that the original JEM
paper [18] has only considered the discrete case, so here we propose a more generalized framework
that also works for the continuous attributes.

By marginalizing out c in Eq. (24), we obtain an unnormalized density model:

p✓(w) / e�E✓(w), (26)

where the marginal energy function is given by

E✓(w) = �
X

i2Idis

log
X

ci
exp(fi(x, ✓)[ci]) (27)

where Idis is the index set of all discrete attributes. Similar to JEM [18], when we compute the
conditional p✓(c|w) via p✓(w, c)/p✓(w) by dividing Eq. (24) to Eq. (26), the normalizing constant
cancels out, yielding the standard Softmax parameterization for the discrete attributes and the squared
L2 norm parameterization for the continuous attributes.

During training, we follow from [18] to optimize p✓(c|w) using standard cross-entropy and optimize
p✓(w) using Eq. (2) with the LD where gradients are taken with respect to the marginal energy
function (27). In practice, we find a trade-off between the generation quality and controllability
in Latent-JEM controlled by the step size ⌘. Thus, after a grid search, we use both two step sizes:
⌘ = 0.1 and ⌘ = 0.01 to get the reported results, while the number of LD steps N = 200 and the
standard deviation of noise � = 0.01 work the best for Latent-JEM.

Besides, we use the reply buffer of size 10,000 during training and inference, as suggested by [18],
to improve the results of Latent-JEM on CIFAR-10. For the experiments of Latent-JEM on FFHQ,
instead of sampling w from an uniform distribution as the initialization point of the LD [18], we get a
better initialization of w by first randomly sampling z from the standard Gaussian and passing z to
the pre-trained mapping network of StyleGAN2. By doing so, the performance of Latent-JEM on
FFHQ improves significantly.

LACE-PC This is another baseline we propose by replacing the ODE sampler with the Predictor-
Corrector (PC) sampler from the SDE perspective [51]. We keep the EBM formulation in Eq. (5)
unchanged. In experiments, we first perform a grid search on the hyperparameters of the PC sampler:
the number of predictor steps N , the number of corrector steps M and the signal-to-noise ratio r.
Similarly, we find a trade-off between generation quality and controllability in LACE-PC, controlled
by the the number of predictor steps. Thus, we use both two numbers of predictor steps: N = 100
and N = 200 to get the reported results while the number of corrector steps M = 1 and the
signal-to-noise ratio r = 0.05 work the best for LACE-PC.

A.5 Which space to train the classifier?

We use StyleGAN-ADA [27] pre-trained on CIFAR-10 [33] to investigate which space works the
best to train the classifier. In particular, we compare the performances of our method in three spaces
of StyleGAN-ADA: z-space, w-space and pixel space (or i-space). The results are shown in Table 5
for the ODE and LD sampler, respectively. We can see that in different hyperparameter settings, our
method works the best in the w-space for both samplers. The reason why z-space works worse is that
the classifier in the z-space has lower accuracy than that in the more disentangled w-space. The fact
that we get the worst performance in the i-space is mainly because of its difficulty in convergence.
Therefore, we focus on the w-space to train the classifier for our method.

19

Table 5: The FID and ACC scores of the ODE and LD sampler in different spaces of StyleGAN-ADA on
CIFAR-10, where "default" means the default hyperparameter setting for each sampler, "best_acc" and "best fid"
denote the hyperparameter settings with the best ACC and the best FID, respectively, in grid research.

Sampler Space default best_acc best_fid
ACC" FID# ACC" FID# ACC" FID#

ODE
z 0.929 7.34 0.933 7.94 0.912 6.66
w 0.971 6.69 0.979 8.52 0.957 5.40
i 0.473 20.18 0.473 20.18 0.413 9.98

LD
z 0.924 10.27 0.990 23.62 0.549 2.93
w 0.935 4.34 0.992 14.36 0.769 2.89
i 0.394 10.85 0.468 74.76 0.134 3.28

A.6 More results of conditional sampling on CIFAR-10
We report the results of our method and baselines on CIFAR-10 with error bars in Table 6. Note
that in Table 6, the reported FID is slightly higher than that of the pre-trained StyleGAN-ADA [27]
(FID: 2.92 ± 0.05). This is because our goal is to turn an unconditional generative model into a
conditional one for better controllable generation, and the controllable sampling process changes the
generated data distribution. Specifically, the original StyleGAN-ADA randomly samples the latent z
(by following a standard Gaussian) for image generation, while our method controllably samples the
latent z (to satisfy the conditional attribute specifications) with the ODE/LD sampler. The resulting
data distributions of the two sampling methods will be different, thus making the FID different.

The visual samples of our method (LACE-ODE) and baselines conditioned on each class of CIFAR-10
can be seen in Figure 8 and Figure 9.

Table 6: Comparison of our method and baselines for conditional sampling on CIFAR-10. For notations, Train –
training time, Infer – inference time (m: minute, s: second), which refer to the single GPU time for generating a
batch of 64 images, ⌘ is the LD step size, and N is the number of predictor steps in the PC sampler.

Methods Train Infer FID# ACC"
JEM [18] 2160m 135s 52.35±.09 0.645±.008

Cond-EBM [12] 2280m 24.5s 41.72±.01 0.792±.003

VP-SDE [51] 52800m 438s 19.13±.04 0.643±.003

VE-SDE [51] 52800m 448s 2.97±.04 0.662±.002

Latent-JEM (⌘=0.1) 21m 0.63s 8.75±.13 0.950±.003

Latent-JEM (⌘=0.01) 21m 0.63s 5.65±.09 0.821±.001

LACE-PC (N=100) 4m 0.84s 2.99±.01 0.747±.001

LACE-PC (N=200) 4m 1.86s 2.94±.02 0.722±.001

LACE-LD 4m 0.68s 4.30±.05 0.939±.002

LACE-ODE 4m 0.50s 6.63±.06 0.972±.001

A.7 More results of conditional sampling on FFHQ
We report the results of our method and baselines on the glasses and gender_smile_age of FFHQ
with error bars in Table 7. The 1024⇥1024 conditional sampling visual samples of our method (LACE-
ODE) and StyleFlow conditioned on {glasses=1} and {gender=female,smile=1,age=55} of
FFHQ can be seen in Figure 10 and Figure 11, respectively.

On reducing inference time As we can see from Table 7, the inference time of our method
increases with the number of attributes. In our current setting, each attribute classifier is parametrized
by a separate (384-256-128) MLP network (Table 4 in the Appendix). That is, when conditioning
on n attributes, we have n separate MLP networks. We found that the inference time of our method
largely depends on the number of MLP networks. Accordingly, if we use a single MLP network
with the same size and multiple prediction heads, each of which corresponds to one attribute, we can
reduce the inference time without sacrificing the controllable generation performance.

We run our method for conditional sampling with the increasing number of attributes (1-5).
Without loss of generality, we consider the test case: “glasses” (1), “age, glasses” (2),
“smile, age, glasses” (3), “gender, smile, age, glasses” (4), “yaw, gender, smile,

age, glasses” (5). The inference time for different numbers of attributes is listed in Table 8(a).
Note that “separate” denotes the current setting where we use n separate MLP networks for n at-
tributes, and “single” denotes the new setting where we use a single MLP network with the same size
and n prediction heads for n attributes. We can see that although the inference time increases with
the number of attributes in both cases, the new setting (“single”) has much smaller inference time,

20

OursVE-SDE Latent-JEM (=0.1)�Cond-EBM

Plane

OursVE-SDE Latent-JEM (=0.1)�Cond-EBM

C
ar

OursVE-SDE Latent-JEM (=0.1)�Cond-EBM

B
ird

OursVE-SDE Latent-JEM (=0.1)�Cond-EBM

C
at

OursVE-SDE Latent-JEM (=0.1)�Cond-EBM

D
eer

Figure 8: Conditionally generated images of our method (LACE-ODE) and baselines on each class of CIFAR-10
(0-4): plane, car, bird, cat, and deer. We can see that our method can achieve good controllability with high
image quality and diversity. On the contrary, Cond-EBM suffers from the poor image quality and diversity,
VE-SDE suffers from the poor controllability (with many samples inconsistent with the given class label), and
the proposed baseline Latent-JEM tends to have worse image diversity than ours.

and the advantage becomes larger with more attributes. Meanwhile, the performances remain similar.
For instance, in the case of conditioning “yaw, gender, smile, age, glasses” (5), the ACCs
of the two settings “separate” and “single” are shown in Table 8(b).

A.8 More results of sequential editing

In sequential editing, we apply the subsection selection strategy as proposed in StyleFlow [1] to alle-
viate the background change and the reweighting of energy functions to improve the disentanglement
quality. We now introduce them in the following.

21

OursVE-SDE Latent-JEM (=0.1)�Cond-EBM

D
og

OursVE-SDE Latent-JEM (=0.1)�Cond-EBM

Frog

OursVE-SDE Latent-JEM (=0.1)�Cond-EBM

H
orse

OursVE-SDE Latent-JEM (=0.1)�Cond-EBM

Ship

OursVE-SDE Latent-JEM (=0.1)�Cond-EBM

Truck

Figure 9: Conditionally generated images of our method (LACE-ODE) and baselines on each class of CIFAR-10
(5-9): dog, frog, horse, ship, and truck. We can see that our method can achieve good controllability with high
image quality and diversity. On the contrary, Cond-EBM suffers from the poor image quality and diversity,
VE-SDE suffers from the poor controllability (with many samples inconsistent with the given class label), and
the proposed baseline Latent-JEM tends to have worse image diversity than ours.

Subsection selection By observing the hierarchical structure of StyleGAN2 [29], we can apply
the updated w only to a subset (with different indices) of the W+ 2 R18⇥512 space, depending on
the nature of each edit [1]. For instance, the head pose (such as yaw and pitch) is a coarse-grained
feature and is expected to only affect the early layers of the StyleGAN2 generator. Thus, it will cause
less unintentional changes (such as background and other fine-grained attributes) by applying the
updated w to the early layers only during editing the head pose. StyleFlow has empirically identified
the index subsets of the edits that work the best for their method, including smile (4 – 5), yaw (0 –

22

Table 7: Comparison between our method and baselines for conditional sampling on the glasses and
gender_smile_age of FFHQ, respectively. For notations, Train – training time, Infer – inference time
(m: minute, s: second), which refer to the single GPU time for generating a batch of 16 images, ⌘ is the LD step
size, and N is the number of predictor steps in the PC sampler.

Methods Train glasses gender_smile_age
Infer FID# ACCgl" Infer FID# ACCge" ACCs" ACCa"

StyleFlow [1] 50m 0.61s 42.08±.38 0.899±.007 0.61s 43.88±.73 0.718±.031 0.870±.010 0.874±.009

Latent-JEM (⌘=0.1) 15m 0.69s 22.83±.19 0.765±.012 0.93s 22.74±.08 0.878±.001 0.953±.005 0.843±.001

Latent-JEM (⌘=0.01) 15m 0.69s 21.58±.10 0.750±.004 0.93s 21.98±.14 0.755±.003 0.946±.009 0.831±.002

LACE-PC (N=100) 2m 1.29s 21.48±.26 0.943±.005 2.65s 24.31±.36 0.951±.007 0.922±.007 0.896±.001

LACE-PC (N=200) 2m 2.20s 21.38±.37 0.925±.003 4.62s 23.86±.08 0.949±.004 0.914±.008 0.894±.001

LACE-LD 2m 1.15s 20.92±.15 0.998±.001 2.40s 22.97±.14 0.955±.004 0.960±.002 0.913±.001
LACE-ODE 2m 0.68s 20.93±.14 0.998±.001 4.81s 24.52±.94 0.969±.004 0.982±.006 0.914±.001

Table 8: (a) Inference time (Infer) vs. number of attributes (#attributes), and (b) ACCs of the two settings
“separate” and “single” in the case of conditioning “yaw, gender, smile, age, glasses” (5), where
“separate” means that we use n separate MLP networks for n attributes (i.e., the current setting), and “single”
means that we use a single MLP network with the same size and n prediction heads for n attributes (i.e., the new
setting). We can see that the new setting (“single”) has much smaller inference time.

(a) Inference time vs. number of attributes
#attributes 1 2 3 4 5

Infer ("separate") 0.68 2.34 4.36 6.65 7.84
Infer ("single") 0.68 1.70 2.25 2.58 2.63

(b) ACCs of the two settings: “separate” and “single”
attribute name yaw gender smile age glasses

ACC ("separate") 0.927 0.956 0.953 0.897 0.994
ACC ("single") 0.904 0.973 0.954 0.892 0.984

3), pitch (0 – 3), age (4 – 7), gender (0 – 7), glasses (0 – 5), bald (0 – 5) and beard (5 – 7 and
10). To keep it simple, we directly use the above index subsets of the edits for our method.

Reweighting of energy functions In reweighting of energy functions, we slightly modify the term
E✓(z, {cj}ij=1) in the joint energy function of the i-th edit into

E✓(z, {cj}ij=1) = ↵0

i�1X

j=1

E✓(cj |g(z)) + ↵1E✓(ci|g(z)) +
1

2
kzk22

where we introduce two reweighting coefficients: ↵0 for previous edited attributes and ↵1 for the
current i-th attribute. If we set ↵0 = ↵1 = 1, the above equation reduces to Eq. (5). We find that
slightly increasing ↵1 and decreasing ↵0 can make our method pay more attention the current edit
while less modifying previously edited attributes. In experiments, we set ↵0 = 0.2, and we set
↵1 = 10 for continuous attributes and ↵1 = 5 for discrete attributes.

We report both the final results after all edits and the results of every individual edit with error bars in
Table 9, where we edit the attributes [yaw, smile, age, glasses] in a sequential order. Besides, we
also perform ablation studies on the impact of subset selection and reweighting of energy functions
(see Appendix A.3 for details) on our method. From Table 9, we can see that adding subset selection
or reweighting of energy functions does not change much the final ACC and FID scores. However,
the disentanglement quality (DES) and identity preservation (ID) both get improved, after adding
both subset selection and reweighting of energy functions.

The 1024⇥1024 sequential editing visual samples of our method (LACE-ODE) and StyleFlow on
FFHQ with a sequence of [yaw,smile,age,glasses] can be seen in Figure 12.

Randomize ordering of attributes We also randomly perturb the ordering of attributes and report
the quantitative results in Table 10, where we edit the attributes [age, yaw, glasses, smile] in a
sequential order. The results remains similar to Table 9: 1) our method largely outperform StyleFlow
regarding editing quality and image quality, and 2) adding both subset selection and reweighting of
energy functions can largely the disentanglement quality (DES).

A.9 More results of compositional generation

A.9.1 Zero-shot generation

The 1024⇥1024 visual samples of our method (LACE-ODE) and StyleFlow in zero-shot gen-
eration on the unseen attribute combinations {beard=1,smile=0,glasses=1,age=15} and

23

Table 9: Comparison between our method and StyleFlow [1] for sequential editing on FFHQ, where we edit each
attribute of [yaw, smile, age, glasses] in a sequential order. Note that "w/o ss" means no subset selection,
"w/o rw" means no reweighting of energy functions, and denotes the truncation coefficient of StyleGAN2.

Methods +yaw +smile +age
DES1" ID# DES2" ID# DES3" ID#

StyleFlow 0.568±.012 0.188±.014 0.570±.029 0.062±.001 0.398±.004 0.327±.015

LACE-ODE (=0.5, w/o ss, w/o rw) 0.534±.016 0.179±.011 0.745±.017 0.117±.006 0.381±.010 0.175±.008

LACE-ODE (=0.5, w/o rw) 0.475±.012 0.141±.012 0.633±.029 0.103±.006 0.260±.039 0.151±.008
LACE-ODE (=0.5) 0.623±.014 0.204±.016 0.875±.026 0.082±.007 0.453±.016 0.197±.012

LACE-ODE (=0.7) 0.559±.015 0.211±.011 0.825±.024 0.091±.007 0.408±.005 0.216±.011

+glasses All
DES4" ID# DES" ID# FID# ACCy" ACCs" ACCa" ACCg"

0.741±.033 0.188±.006 0.569±.009 0.549±.016 44.13±1.62 0.947±.004 0.773±.022 0.817±.007 0.876±.009

0.956±.018 0.213±.016 0.654±.009 0.523±.005 27.46±0.16 0.941±.003 0.968±.017 0.897±.003 0.975±.004

0.942±.010 0.205±.019 0.578±.015 0.492±.008 27.90±0.09 0.940±.004 0.969±.009 0.884±.005 0.975±.005

0.989±.007 0.216±.019 0.735±.009 0.501±.009 27.94±0.08 0.938±.004 0.956±.013 0.881±.006 0.997±.001
0.971±.014 0.209±.015 0.691±.010 0.532±.006 21.90±0.23 0.933±.004 0.941±.015 0.871±.008 0.983±.003

Table 10: Comparison between our method and StyleFlow [1] for sequential editing on FFHQ, where we
edit each attribute of [age, yaw, glasses, smile] in a sequential order. Note that "w/o ss" means no subset
selection, "w/o rw" means no reweighting of energy functions, and denotes the truncation coefficient of
StyleGAN2.

Methods +age +yaw +glasses
DES1" ID# DES2" ID# DES3" ID#

StyleFlow 0.402±.003 0.329±.011 0.599±.010 0.187±.004 0.727±.032 0.187±.006
LACE-ODE (=0.5, w/o ss, w/o rw) 0.491±.013 0.167±.009 0.498±.007 0.192±.011 0.889±.014 0.219±.009

LACE-ODE (=0.5, w/o rw) 0.497±.012 0.167±.009 0.499±.014 0.192±.012 0.882±.016 0.220±.009

LACE-ODE (=0.5) 0.558±.009 0.222±.011 0.693±.011 0.273±.016 1.003±.010 0.196±.012

LACE-ODE (=0.7) 0.504±.005 0.254±.007 0.624±.014 0.281±.012 0.974±.011 0.198±.008

+smile All
DES4" ID# DES" ID# FID# ACCy" ACCs" ACCa" ACCg"

0.533±.007 0.055±.002 0.565±.011 0.550±.010 44.02±1.45 0.821±.008 0.948±.001 0.870±.008 0.764±.012

0.800±.048 0.099±.003 0.669±.013 0.537±.011 27.33±0.04 0.910±.006 0.937±.003 0.995±.002 0.920±.006

0.787±.051 0.098±.004 0.666±.009 0.537±.011 27.28±0.16 0.910±.007 0.938±.003 0.995±.002 0.918±.005

0.929±.030 0.091±.007 0.796±.007 0.541±.010 27.22±0.22 0.905±.007 0.937±.003 0.992±.002 0.964±.005
0.853±.032 0.100±.007 0.739±.013 0.570±.013 21.76±0.30 0.897±.005 0.929±.003 0.980±.009 0.939±.001

{gender=female,smile=0,glasses=1,age=10} of FFHQ can be seen in Figure 13 and Figure
14, respectively.

A.9.2 Compositions of energy functions

The 1024⇥1024 visual samples of our method (LACE-ODE) in compositions of energy functions
with different logical operations: conjunction (AND), disjunction (OR), negation (NOT), and their
recursive combinations on FFHQ can be seen in Figure 15 and Figure 16, respectively.

A.10 Continuous control on discrete attributes

When the controlling attributes are discrete or binary, a smooth interpolation between discrete or
binary attribute values could be a challenge of methods in controllable generation [10]. For example,
can we smoothly control the amount of beard in the generated images even if its provided ground-truth
labels are binary (0: without beard, 1: with beard)? To this end, we can add a temperature variable T
to the energy function of discrete attributes defined in Eq. (4), which becomes

E✓(ci|x) = � log softmax
✓
fi(x; ✓)[ci]

T

◆
:= �fi(x; ✓)[ci]

T
+ log

X

ci

exp

✓
fi(x; ✓)[ci]

T

◆

where ci is a discrete attribute. Thus, the temperature T 2 (�1, 0) can be varied to adjust the impact
of the attribute signal on the energy function. Its impact on the energy function becomes larger with
a smaller value of T , resulting in a more significant visual appearance of the attribute value in the
generated images, such as the increasing amount of beard on faces.

24

Table 11: Ablation results of LACE-euler (i.e., the Euler discretization method) with its hyperparameter
“step_size” being set to 1e-2 or 1e-3. For notations, Infer – inference time (s: second), which refers to the single
GPU time for generating a batch of 64 images.

Methods Infer# FID# ACC"
LACE-LD 0.68s 4.30 0.939

LACE-euler (step_size=1e-2) 0.68s 6.31 0.969
LACE-euler (step_size=1e-3) 6.80s 5.36 0.964

LACE-ODE 0.50s 6.63 0.972

In Figure 17, we show the 1024⇥1024 visual examples of continuous control on two binary attributes:
(a) beard and (b) smile on the FFHQ data, where the visual appearance of both two attributes
smoothly increases as we gradually decrease the temperature T .

A.11 More results of ODE sampling vs. LD sampling

A.11.1 Hyperparameter settings

To compare the ODE and LD sampler more thoroughly, we perform a grid search in a large range
of hyperparameter settings in each sampling method. In particular, The ODE sampler has two
hyperparameters: (atol, rtol), which stand for the absolute and relative tolerances, respectively.
The LD sampler has three hyperparameters: (N , ⌘, �), which denote the number of steps, step size
and standard deviation of the noise in LD, respectively.

For ODE, the grid search is performed with atol 2 [1e-1, 5e-2, 1e-2, 5e-3, 1e-3, 5e-4, 1e-4, 5e-
5, 1e-5] and rtol 2 [1e-1, 5e-2, 1e-2, 5e-3, 1e-3, 5e-4, 1e-4, 5e-5, 1e-5]. Thus, there are 81
hyperparameter settings for the ODE sampler. For LD, the grid search is performed with N 2
[50, 100, 200, 300, 400, 500, 600, 1000], ⌘ 2 [0.1, 0.05, 0.01, 0.005, 0.001] and � 2 [0.1, 0.05, ⌘].
Thus, there are 104 hyperparameter settings for the LD sampler.

A.11.2 Impact of each individual hyperparameter

To dissect how sensitive the samplers are to each individual hyperparameter, Figure 18 shows the
impact of (atol, rtol) in the ODE sampler (top row) and the impact of (N , ⌘, �) in the LD sampler.
We can see that with different rtol values, a smaller atol tends to have a higher ACC score (though
it slightly decreases after atol < 10�3) and a lower FID score. Hence, we could always use small
values of (atol, rtol) to get both good generation quality and controllability, which implies the
hyperparameters in the ODE sampler are easy to tune.

In the LD sampler, however, there exists a clear ACC-FID trade-off controlled by the standard
deviation of the noise �: a smaller value of � results in a better ACC score but a worse FID score.
Meanwhile, increasing the number of steps N will also cause a better ACC score but a worse FID
score when the value of � is small. Therefore, both values of N and � in the LD sampler should not
be too large or too small, and a sweet pot of these hyperparameters varies with different downstream
tasks as we see in our experiments, which implies it tends to be more difficult to find the optimal
hyperparameter setting for the LD sampler.

A.11.3 Ablation on a simple Euler method

By default, LACE-ODE applies the adaptive-step “dopri5” solver (i.e., Runge-Kutta of order 5)
because of its adaptivity in step size for better efficiency. But how does our ODE formulation in Eq.
(7) work with a simple Euler discretization method? To this end, we run our ODE sampler with the
Euler method (called LACE-euler) on CIFAR-10, with an extra hyperparameter “step_size” being set
to 1e-2 or 1e-3. The results are shown in Table 11. We can see that 1) LACE-ODE with the default
“dopri5” method is faster than LACE-euler (0.50s vs 0.68s) for getting similar performance, which
confirms our intuition of adaptive step size vs. fixed step size, and 2) our method also works decently
well with the Euler method, and its performance lies in-between that of LACE-LD and LACE-ODE.

25

(a) Ours (glasses=1)

(b) StyleFlow (glasses=1)
Figure 10: Uncurated 1024⇥1024 conditional sampling results of our method (LACE-ODE) and StyleFlow on
{glasses=1} of FFHQ, where our method outperforms StyleFlow in terms of image quality (or diversity) and
controllability.

26

(a) Ours (gender=female,smile=1,age=55)

(b) StyleFlow (gender=female,smile=1,age=55)
Figure 11: Uncurated 1024⇥1024 conditional sampling results of our method (LACE-ODE) and StyleFlow on
{gender=female,smile=1,age=55} of FFHQ, where our method outperforms StyleFlow in terms of image
quality (or diversity) and controllability.

27

Original +yaw=left +smile=0 +age=28 +glasses=0

O
urs

StyleFlow

Original +yaw=left +smile=1 +age=28 +glasses=1

O
urs

StyleFlow

Original +yaw=front +smile=0 +age=55 +glasses=1

O
urs

StyleFlow

Original +yaw=right +smile=0 +age=28 +glasses=0

O
urs

StyleFlow

Figure 12: The sequential editing results of our method (LACE-ODE) and StyleFlow on FFHQ with a sequence
of [yaw,smile,age,glasses]. Note that ‘+’ means the current editing is built upon the last edited images.
For instance, +smile=0 refers to changing the last edited images to make them not smile. Overall, compared to
StyleFlow, our method can successfully perform each edit while less affecting other attributes and face identities.

28

(a) Ours (beard=1,smile=0,glasses=1,age=15)

(b) StyleFlow (beard=1,smile=0,glasses=1,age=15)
Figure 13: Uncurated 1024⇥1024 zero-shot generation results of our method (LACE-ODE) and StyleFlow on the
unseen attribute combinations {beard=1,smile=0,glasses=1,age=15} of FFHQ, where where our method
excels at zero-shot generation while StyleFlow performs significantly worse by either generating low-quality
images or completely missing the conditional information.

29

(a) Ours (gender=female,smile=0,glasses=1,age=10)

(b) StyleFlow (gender=female,smile=0,glasses=1,age=10)
Figure 14: Uncurated 1024⇥1024 zero-shot generation results of our method (LACE-ODE) and StyleFlow on
unseen attribute combinations {gender=female,smile=0,glasses=1,age=10} of FFHQ, where our method
excels at zero-shot generation while StyleFlow performs significantly worse by either generating low-quality
images or completely missing the conditional information.

30

(a) glasses=1 AND yaw=front

(b) glasses=1 OR yaw=front
Figure 15: Uncurated 1024⇥1024 generation results of our method (LACE-ODE) in compositions of energy
functions with different logical operations: (a) conjunction (AND), and (b) disjunction (OR). We can see that
our method closely follows the rule of the given logical operators, and also produces diverse images that cover
all possible logical cases.

31

(a) glasses=1 AND (NOT yaw=front)

(b) (glasses=1 AND yaw=front) OR (glasses=0 AND (NOT yaw=front))
Figure 16: Uncurated 1024⇥1024 generation results of our method (LACE-ODE) in compositions of energy
functions with different logical operations: (a) negation (NOT), and (b) recursive combinations of logical
operations on FFHQ. We can see that our method closely follows the rule of the given logical operators, and also
produces diverse images that cover all possible logical cases.

32

T=2 T=1 T=0.84 T=0.68 T=0.52 T=0.4
(a) beard=1 with the temperature T varying from 2 to 0.4.

T=2 T=1 T=0.92 T=0.86 T=0.81 T=0.76
(b) smile=1 with the temperature T varying from 2 to 0.76.

Figure 17: Continuous control of discrete attributes (a) beard and (b) smile by varying the temperature T .
Even if the ground-truth labels of the above discrete attributes are binary only, our method can learn to smoothly
perform continuous control of them. As we decrease the temperature T , the visual appearance of the controlling
attributes becomes more significant in the generated images.

Figure 18: The impact of hyperparameters (top: ODE, bottom: LD). We can see that we could always use
small values of (atol, rtol) to get both good generation quality and controllability in the ODE sampler, which
implies the hyperparameters in the ODE sampler are easy to tune. On the contrary, there exists a clear ACC-FID
trade-off controlled by the standard deviation of the noise � and the number of steps N , which implies it tends
to be more difficult to find the optimal hyperparameter setting for the LD sampler.

33

	Introduction
	Method
	Energy-based models
	Modelling joint EBM in the latent space
	Sampling through an ODE solver

	Experiments
	Conditional sampling
	Sequential editing
	Compositional generation
	Ablation study on the ODE and LD sampler
	Results on other high-resolution images

	Related work
	Discussions and limitations
	Broader impact
	Appendix
	Derivation of the joint distribution in latent space
	Derivation of Eq. (7)
	More details of experimental setting
	More details of baselines
	Which space to train the classifier?
	More results of conditional sampling on CIFAR-10
	More results of conditional sampling on FFHQ
	More results of sequential editing
	More results of compositional generation
	Zero-shot generation
	Compositions of energy functions

	Continuous control on discrete attributes
	More results of ODE sampling vs. LD sampling
	Hyperparameter settings
	Impact of each individual hyperparameter
	Ablation on a simple Euler method

