Under review as a conference paper at ICLR 2023

A THE ASSOCIATED LIE OPERATOR OF THE KOOPMAN OPERATOR

Besides the linear system in Eq. (9)) in the main text, we can also consider the generator operator
of such a Koopman operator, which is referred to as the Lie operator because it is the Lie derivative
of g (+) along the vector field -y (-) Koopman| (1931); Abraham et al|(2012); |Chicone & Latushkin
(1999)

K:tJre _
Lig = lim 800 —8(0) 1)
t+e—t t+e—t
The generator operator also defines a linear system of g (-;) because
g 8w _ . KiTg () —g ()
g (1) = lim =————=— = lim =Lig (M) - (22)
e—0 £ t+e—t 15

Although our work primarily focuses on the Koopman operator, one can also model the Lie operator
in application.

B MATHEMATICAL DETAILS OF IMPLEMENTED PDES
In our experiments, we consider the 1-dimensional Bateman—Burgers equation Benton & Platz-
man|(1972) and the 2-dimensional Navier-Stokes equation Wang| (1991)). Below, we introduce their

mathematical definitions.

Bateman-Burgers equation. The 1-dimensional Bateman—Burgers equation is

2
Oy (w0) + s (7 ;“) By (2), € (0,1) % (0,1], 3 € (0,1) x (0,1], (23)
’Y(.’IJO) =1, Zo S (07 1) X {0}7 (24)

where 77 is a periodic initial condition 7 € L2 04 [(0, 1) ; R], parameter v € (0, 00) is the viscos-

ity coefficient, which is set as ¥ = 100 in our experiments. The data set of Eqs. (23}{24) is provided
by Li et al.|(2020a). Please see [Li et al.|(2020a) for details of data generation.

Navier-Stokes equation. Mathematically, the incompressible 2-dimensional Navier-Stokes equa-
tion in a vorticity form is defined as

Ay (1) 4+ x (@) Vv (m¢) = vAYy (1) + 1 (1), @ € (0,1) x (0,00), (25)
Vyx (z1) =0, ; € (0,1) x (0,00), (26)
Y (.’170) =71, X0 S (07 1) X {0}7 (27)

where v (-) measures the vorticity, x () defines the velocity, ¥ (-) denotes a time-independent forc-
ing term. The viscosity coefficient is set as v € {1072,107}. Similar to the situation of Bate-
man-Burgers equation, the data of Egs. is provided by [Li et al.[(2020a). Please see|L1 et al.
(2020a) for details.

C ABLATION EXPERIMENT RESULTS

Our objective in the ablation experiment is to compare between the performance of KNO models
with (8 > 0) and without (8 = 0) the reconstruction term of loss function in Eq. (20). When 8 > 0,
the prediction is undertaken by a learned Koopman operator (a linear layer of o x o) associated
with a convolutional layer in Parts 2-5 while encoder (Part 1) and decoder (Part 6) contribute to
reconstruction. In such a case, the performance is mainly contributed by the Koopman operator
because the convolutional layer only serves as the complement of high-frequency information (as
suggested by|Li et al.|(2020a), a pure convolutional network only achieves poor performance in PDE
solving). Once 8 = 0, encoder and decoder become to be trained for prediction as well, making
the whole network a unified predictor (similar to FNO |Li et al.| (2020a)). The Koopman operator
is validated as important if the prediction performance mainly realized by it (3 > 0) is same as or
better than the performance achieved by the whole network as a unified predictor (3 = 0). The
ablation experiment is implemented as a 1-second prediction task on the data of 1-dimensional
Bateman—Burgers equation with 2% grids. As shown in Table 2, KNO models generally perform
better when 5 > 0, suggesting the significance of the Koopman operator.

14

Under review as a conference paper at ICLR 2023

Operator size 0 Mode number f Iteration number r | « J6] MSE
8 64 10 50 05]243x107°
8 64 10 50 0 2.67 x 107°
16 10 16 50 05]1.05x10°°
16 10 16 50 0 1.10 x 1072
32 10 16 50 05]5.37x10°6
32 10 16 50 0 6.04 x 1076
32 64 16 50 05] 5.47x10°°
32 64 16 50 0 5.78 x 1076
128 10 16 50 05]3.53x10°°
128 10 16 50 0 4.34 x 106

Table 4: Results of ablation experiment.

D CoDE

The basic implementation of the Koopman neural operator is demonstrated here. The full version of
our code will be released once the double-blind review finishes.

import torch

import numpy as np

import torch.nn as nn

import torch.nn.functional as F

torch . manual_seed (0)

class encoder (nn.Module):
def __init__(self, t_len, op_size):
super (encoder, self). __init__ ()
self.layer = nn.Linear(t_len, op_.size)
def forward(self, x):
x = self.layer (x)
x = torch.tanh (x)
return X

class decoder (nn.Module):

def __init__(self, t_len, op_size):
super (decoder, self). __init__ ()
self.layer = nn.Linear(op_size, t_len)
def forward(self, x):
X = torch.tanh(x)
x = self.layer(x)
return X

class Koopman_OperatorlD (nn.Module) :

def __init__(self, op-size, modes.x = 16):
super (Koopman_OperatorlD, self). __init__ ()
self .op_size = op_size
self .scale = (1 / (op.size = op_size))
self . modes_x = modes_x

self.koopman_matrix = nn.Parameter(self.scale % torch.rand
(op-size , op-size, self.modes_.x, dtype=torch.cfloat))
Complex multiplication
def time_marching(self, input, weights):
(batch, t, x), (t, t+1, x) —> (batch, t+1, x)
return torch.einsum("btx, tfx —>bfx”, input, weights)
def forward(self, x):

15

Under review as a conference paper at ICLR 2023

batchsize = x.shape[0]

Fourier Transform

x_ft = torch. fft.rfft(x)

Koopman Operator Time Marching

out_ft = torch.zeros(x_ft.shape, dtype=torch.cfloat,
device = x.device)

out_ft[:, :, :self.modes.x] = self.time_marching(x_ft[:,
:, :self.modes_x], self.koopman_matrix)

#Inverse Fourier Transform

x = torch. fft.irfft(out_ft, n=x.size(-1))

return Xx

class KNOId(nn.Module) :
def __init__(self, op_size, modes.x = 16, decompose = 4, t_len

= 1):
super (KNOId, self). __init__()
Parameter
self .op_size = op_size
self .decompose = decompose
Layer Structure

self .enc = encoder(t_len, op_size)

self .dec = decoder(t_len, op-size)

self.koopman_layer = Koopman_OperatorlD(self.op_size ,
modes_x = modes_Xx)

self .w0 = nn.Convld(op_size, op-size, 1)
def forward(self, x):

Reconstruct

X_reconstruct

X_reconstruct

X_reconstruct

self .enc(x)
torch.tanh(x_reconstruct)
self .dec(x_reconstruct)

Predict

x = self.enc(x) # Encoder

X = x.permute(0, 2, 1)

X_.W = X

for i in range(self.decompose):
x1 = self.koopman_layer(x) # Koopman Operator
X = torch.tanh(x + x1)
x = x + xl

X self . wO(x_-w) + x

X = x.permute (0, 2, 1)
x = self.dec(x) # Decoder
return X, X_reconstruct

class Koopman_Operator2D (nn.Module) :

def __init__(self, op-size, modes):
super (Koopman_Operator2D, self). __init__ ()
self.op_size = op_size
self .scale = (1 / (op.size = op_size))

self . modes_x = modes

self .modes_y = modes

self .koopman_matrix = nn.Parameter(self.scale * torch.rand
(op-size , op.size, self.modes_x, self.modes.y, dtype=
torch.cfloat))

Complex multiplication

def time_marching(self, input, weights):
(batch, t, x,y), (t, t+1, x,y) —> (batch, t+1, x,y)
return torch.einsum("btxy, tfxy—>bfxy”, input, weights)

16

Under review as a conference paper at ICLR 2023

def forward(self, x):
batchsize = x.shape[0]
Fourier Transform
x_ft = torch. fft.rfft2 (x)
Koopman Operator Time Marching
out_ft = torch.zeros(x_ft.shape, dtype=torch.cfloat
device = x.device)

>

out_ft[:, :, :self.modes_.x, :self.modes_.y] = self.
time_marching (x_ft[:, :, :self.modes_.x, :self.modes.y
], self.koopman_matrix)

out_ft[:, :, —self.modes_x:, :self.modes_.y] = self.
time_marching (x_ft[:, :, —self.modes_x:, :self.modes.y

], self.koopman_matrix)
#Inverse Fourier Transform

x = torch.fft.irfft2 (out_ft, s=(x.size(-2), x.size(-1)))

return X

class KNO2d(nn.Module) :

def __init__(self, op-size, modes = 10, decompose = 6, t_len =
10):
super (KNO2d, self). __init__ ()
Parameter
self .op_size = op_size
self .decompose = decompose
self . modes = modes
Layer Structure
self .enc = encoder(t_len, op-size)
self .dec = decoder(t_len, op-size)
self.koopman_layer = Koopman_Operator2D(self.op_size, self
. modes)

self .w0 = nn.Conv2d(op_size, op-size, 1)
def forward(self, x):

Reconstruct

Xx_reconstruct

Xx_reconstruct

X_reconstruct

self .enc(x)
torch.tanh(x_reconstruct)
self .dec(x_reconstruct)

Predict

x = self.enc(x) # Encoder

X = x.permute(0, 3, 1, 2)

X_W = X

for i in range(self.decompose):
x1 = self.koopman_layer(x) # Koopman Operator
X = torch.tanh(x + x1)

x = self . wO(x_.w) + x

X = x.permute(0, 2, 3, 1)

x = self.dec(x) # Decoder

return X, XxX._reconstruct

17

	Introduction
	Framework of Koopman neural operator
	Experiments
	Conclusion
	The associated Lie operator of the Koopman operator
	Mathematical details of implemented PDEs
	Ablation experiment results
	Code

