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ABSTRACT
Remote photoplethysmography (rPPG) is a promising technique
for non-contact physiological signal measurement. It has great
potential application in human health monitoring and emotion
analysis. However, existing methods for the rPPG task ignore the
long-tail phenomenon of physiological signal data, especially on
multiple domains joint training. In addition, we find that the long-
tail problem of the physiological label (phys-label) exists in dif-
ferent datasets, and the long-tail problem of domain exists under
the same phys-label. To tackle these problems, in this paper, we
propose a Hierarchical Balanced framework, which mitigates the
bias caused by domain and phys-label imbalance. Specifically, we
propose anti-spurious domain center learning tailored to learn-
ing domain-balanced embeddings space. Then, we adopt compact-
aware continuity regularization to estimate phys-label-wise imbal-
ances and construct continuity between embeddings. Extensive
experiments demonstrate that our method outperforms the state-
of-the-art in cross-dataset and intra-dataset settings.

CCS CONCEPTS
• Experience→Multimedia Applications.

KEYWORDS
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1 INTRODUCTION
Remote photoplethysmography (rPPG) is a non-invasive technique
that leverages video footage of the face to compute a wide range
of physiological indicators. This technology has a variety of ap-
plications in multimedia, including health and fitness monitoring,
emotion recognition, and biometrics [16, 21, 37, 38]. However, phys-
iological signal data inherently exhibits non-uniform patterns. For
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Example of Unbalanced Object Domains in the Phys-label75

normal dark stable movement type1 typeN

Domain: Illumination Domain: Movement Domain: Skin tones
VIPL BUAA V4V UBFCVIPL VIPL

# # #

Figure 1: The phys-labels (e.g., heart rate labels) suffer from a severe
imbalance problem in VIPL, BUAA, UBFC, V4V, and PURE integrated
datasets. Notably, there is also an imbalance problem in the distri-
bution of sample domains (e.g., illumination, movement, and skin
tones) under different phys-labels.

instance, most heart rate data falls within the normal range of 60-
95. Data that significantly deviates from this normal range often
acts as an early indicator of potential health issues. Regrettably,
instances of such atypical data are relatively rare. This imbalance
in data distribution presents a significant challenge for rPPG-based
measurement techniques [9, 19, 22, 26, 29, 32].

The traditional method [10, 17, 23, 28, 43, 44] for measuring
physiological signals uses hand-crafted features. These algorithms
ignore background noise, and it is difficult to obtain reliable results
due to environmental variations. In recent years, deep learning (DL)
networks have emerged as practical tools for rPPG tasks. These DL-
based methods incorporate diverse input representations [13, 25,
26], network structures [6, 34, 47, 53], and loss constraints [7, 12, 33]
to enhance model robustness. Notably, some studies [19, 20] utilize
the integration of multiple datasets to improve the generalization
performance of models.

However, all the existing methods ignore the imbalance problem
on the rPPG task, and none of them consider that multi-dataset
training further exacerbates this. The imbalance problem leads to
the failure of the rPPG measurement task on minority samples.
In this study, we conduct a comprehensive investigation of data
imbalance issues in physiological signaling tasks, uncovering two
distinct challenges:

Domain Imbalance Challenge. We refer to differences in attributes
due to the diversity of environments, devices, subjects, etc., that
the data are sampled from as domain differences in the data. We
define the phenomenon that the number of data samples with the
same phys-label in different domains varies significantly as domain
imbalance. As illustrated in Fig 1, under the same phys-label, multi-
ple datasets with different collection conditions are included. These
datasets significantly differ in the number of instances, indicating
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a domain imbalance among them. This phenomenon may lead to
a bias in the representation of the tail domain towards the head
domain during training, thus weakening the distinguishability of
the representation of the tail domain. Consequently, the first chal-
lenge is addressing the domain imbalance problem to enhance the
model’s ability to represent samples well from the tail domain.

Phys-label-wise Imbalance Challenge. In addition to the domain
imbalance, there is a significant imbalance among different phys-
labels. As shown in Fig. 1, in the distribution of instances, a large
number of instances are concentrated in a minority of phys-labels
in the middle, and a small number of instances are distributed in
a majority of phys-labels at both sides. Furthermore, differently
from the traditional categorization problem, continuous phys-labels
inherently convey meaningful distance information. However, the
existing studies hardly exploit this property to construct conti-
nuity among embeddings under phys-label imbalance conditions.
Therefore, the second challenge is addressing the imbalance among
phys-labels to construct feature continuity among them.

To this end, we propose a Hierarchical Balanced framework
that addresses the imbalance problem from both domain and phys-
label-wise balanced perspectives, resulting a new method called
rPPG-HiBa for short. To tackle with domain imbalance, we intro-
duce an innovative approach called anti-spurious domain-centered
learning (ADL). The method adopts an unsupervised clustering
algorithm to estimate the domain distribution of the samples in
each phys-label. It corrects biased feature centers by maintaining
the feature centers of different domains, effectively improving rep-
resentations’ distinguishability and separability and mitigating the
spurious correlation among embeddings caused by domain imbal-
ance. To tackle with phys-label-wise imbalance, we propose a tech-
nique called compact-aware continuity regularization (CCR), which
estimates the imbalance among physical labels by calculating the
compactness of the embeddings in each phys-label’s memorybank.
In this way, categories with different degrees of imbalance can be
reweighted more accurately. The continuity among embeddings
can then be better constructed in the regression task.

This study intends to make the following new contributions to
the field of rPPG:

• We are the first to systematically study the imbalance prob-
lem in rPPG tasks, and introduce a new challenge, the hier-
archical imbalance problem.

• We develop two effective algorithms, ADL and CCR, for
multi-level imbalance in the rPPG task. They alleviate the
problem of domain imbalance without domain information
and the inability to construct continuity among embeddings
due to the hard-to-estimate degree of imbalance among
phys-labels with continuity.

• The superiority of our approach is demonstrated by exten-
sive cross-dataset and intra-dataset testing on five domain-
rich and severely imbalanced datasets.

2 RELATEDWORK
Remote Physiological Measurement. The goal is to estimate the
HR and HRV values in a non-contact manner from the facial video
captured by the camera. Traditional methods [10, 11, 17, 23, 28, 43–
45] focus on converting facial video information into a continuously

varying color space signal and separating the BVP signal utilizing
signal processing. These methods are susceptible to external factors
such as changes in the environment, light intensity, and slight
movements, leading to the failure of the measurement task. In
recent years, physiological signal measurement methods based
on deep learning have shown excellent performance, with some
methods [26, 39, 54, 54] improving the accuracy of measurements
and speeding up inference by designing subtle model structures,
some methods [20, 27, 47] making the extracted features more
discriminative by designing strong feature constraints, and some
methods [6, 19, 38] focusing on the noise brought by the data itself
and eliminating the noise tomake valuable featuresmore significant.
However, all these works ignore the problem of data imbalance. In
contrast, we study the impact of data imbalance on physiological
signal measurement tasks.
Imbalanced Learning. Imbalanced learning aims to improve the
performance under-sample balance evaluation. Some previous work
on imbalanced identification [1, 3, 24] mitigates inter-class imbal-
ance by oversampling the tail data or downsampling the head data
and reweighting the loss function. For imbalanced regression meth-
ods, some previous methods [30, 35, 41] transform the regression
problem into a classification problem, using the idea of classifica-
tion imbalance to solve the imbalanced regression problem. The
method [51] addresses the interactions among successive labels
and recalibrates the weights of different phys-labels of samples.
Although the method considers the interactions of samples be-
tween successive labels, the weights are static versions, which are
computed before training, the representation learning process is
complex during training, and the prior computed weights may be
inaccurate. For imbalanced contrastive methods. [8] points out that
supervised contrastive learning is not directly used for classifying
imbalance problems, and it performs even worse than cross-entropy
loss. Some methods [46, 52] that also learn by contrast addressed
the regression problem. However, all regression-related contrast
learning efforts ignore the imbalance among data. For the domain
balancing approach, recent studies [15, 40, 50] point out that learn-
ing invariant with features or separating domain-specific knowl-
edge to enhance positive migration of domains can alleviate the
domain imbalance problem. Contrary to all these studies, we are
interested in hierarchical imbalance in the regression task.

3 PROPOSED METHOD
In this paper, we propose a hierarchical balanced framework, which
can solve the imbalance problem on both domain and phys-label
perspectives, as shown in Fig. 2. We design Anti-Spurious Domain
Center Learning (ADL) and Compact Awareness Continuous Reg-
ularization (CCR) to address domain and phys-label imbalances,
respectively. Specifically, ADL maintains the centers of the head,
medium, and tail domains in memorybanks for each phys-label,
constructing a new unbiased domain center to alleviate spurious
correlations caused by domain imbalance and acquire more discrim-
inative embeddings. Meanwhile, CCR computes the compactness
of the embeddings stored in the memorybanks, reweights each
category according to the compactness to mitigate the phys-label-
wise imbalance, and constructs the phys-label-wise embeddings
continuity.
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(a) Domains balancing using ADL
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Figure 2: The pipeline of the hierarchical balanced framework. Firstly, the input video sequence is transformed into a common representation,
spatial-temporal map (STMap) [26]. Secondly, a shared feature extractor encodes all samples in the feature space. Thirdly, each phys-label
maintains a memorybank of the same size, which stores the embeddings. Fourthly, the extracted instances’ embeddings are inputted into an
auxiliary estimator(the linear layer with dimension 𝑑 × 𝐶 , where 𝑑 is the dimension of the embedding and𝐶 is the number of physiologically
labeled categories), where the embeddings are optimized using ADL(a) and CCR(b) algorithms. Finally, embeddings are regressed using the
estimator(the linear layer with dimension 𝑑 × 1, where 1 represents a regression value), incorporating Pearson correlation coefficient loss and
L1 loss. Introducing the auxiliary estimator during training aims to learn more discriminative and distinctive embeddings, while only the
estimator outputs physiological predictions during testing.

3.1 Domain Balance

(a)VIPL(balanced subsampled)
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(b) VIPL, V4V, PURE stacking(subsampled)

Figure 3: (a) did not experience spurious correlation, whereas (b) did.
The distribution of the training set data(top) and Pearson correlation
coefficients(bottom) between the average embeddings at anchor on
the test set and the average embeddings under other phys-labels.

Motivation Example. As depicted in Fig. 3(a), in the VIPL
dataset with phys-labels ranging from 70 to 100, 30 samples are
uniformly sampled for each phys-label. We make a balanced VIPL

test set and computed the average embeddings for each phys-label
on the test set. Phys-label 76 was selected as the anchor to calculate
the Pearson correlation coefficient with the average embeddings of
other phys-labels. Given the continuity of phys-labels, the closer
the phys-label’s average embeddings are to the anchor, the higher
the Pearson correlation coefficient [51]. In Fig. 3(b), we uniformly
sampled 190 instances for each phys-label, including VIPL, V4V, and
PURE data. Among them, VIPL remained unchanged for training
and testing, and we ensured that the sample quantity on the anchor
point and phys-labels 87, 88, 89, and 90 of V4V data predominated,
while VIPL was in the minority. Similarly, we tested using balanced
VIPL. Suppose that the other two types of data and VIPL belong
to the same domain. In that case, the expected Pearson correlation
coefficient among the anchor and the average embeddings of other
phys-labels should approximate the distribution in Fig. 3(a). How-
ever, we observed that the Pearson correlation coefficient among
the anchor’s average embedding and the average embeddings of
phys-labels 87 ∼ 90, which are farther away, was higher. We can
observe that these phys-labels are where the quantity of V4V pre-
dominates. This phenomenon arises because the domain of VIPL
is notably different from that of V4V; for example, the lighting
intensity of VIPL is significantly higher than that of V4V. VIPL’s

3
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domain is positioned at the tail on the anchor, weakening the dis-
criminability among VIPL and V4V domain embeddings and leading
to spurious correlation. To address this phenomenon, we should
strive to enhance the discriminability and distinguishability of tail
and head representations under the same phys-label, making the
representations domain-independent.

3.1.1 Compact Embedding Representation. Naturally, the center
loss can make the embeddings more compact within the the same
phys-label, which can concurrently alleviate the problem of em-
bedding overlap among adjacent phys-labels. The center loss func-
tion [48] is :.

L𝐶 =
1
2

∑︁𝐵

𝑖=1
∥ 𝑥𝑖 − 𝑐𝑦𝑖 ∥22 (1)

𝑐𝑦𝑖 ∈ R𝑑 denotes the 𝑦𝑖 th class center of deep embeddings. 𝐵
denotes the mini-batch size.

3.1.2 Anti-Spurious Domain Center Learning. As explained above,
center loss exhibits favorable characteristics. However, the center
loss does not account for domain imbalances within the phys-label.
This can lead the model to incorrectly correlate some embeddings
of the tail domain instances with the labels of the head domain
instances. Consequently, the embedding center 𝑐𝑦𝑖 in Eq. 1 is more
biased towards the head domain. This learning paradigm confuses
embeddings in the tail and head domains, resulting in spurious
correlations among embeddings.

For this reason, we develop Eq. 1 by extending it to a novel
anti-spurious domain center loss, which can extract the domain-
agnostic embeddings against domain imbalance. Specifically, the
anti-spurious domain centers are obtained by calculating the mean
value of the embedding centers maintained by the head, middle, and
tail domain data, respectively. However, the data annotations do
not contain accurate or missing domain labels. Fortunately, we can
adopt an unsupervised approach to deduce whether each prototype
in a class belongs to the head, middle, or tail domain based on its
distance to the remaining embeddings. The distance formula is:

𝜓 (𝑝𝑦𝑖 , 𝑗 ) = log
∑︁𝑀−1

𝑚=1
𝑒𝑠 ·𝑐𝑜𝑠 (𝑒𝑦𝑖 ,𝑚,𝑝𝑦𝑖 ,𝑗 ) (2)

𝑀 − 1 represents the number of embeddings in the memorybank
except for the embedding prototypes. 𝑠 is a scaling hyperparameter.
𝑒𝑖,𝑚 is the m-th embedding in the memorybank with phys-label 𝑦𝑖 ,
𝑦𝑖 ∈ Y, andY is the set of de-duplication of all phys-labels. 𝑝𝑦𝑖 , 𝑗 is
the 𝑗𝑡ℎ embedding prototype in the memorybank with phys-label
𝑦𝑖 , 𝑗 ∈ {1, 2, · · · , 𝑀}. 𝑐𝑜𝑠 (·, ·) is a function measuring the distance
between two embeddings. Ideally, if the embeddings are uniformly
distributed, each embedding will have the same𝜓 (𝑝𝑦𝑖 , 𝑗 ). Otherwise,
the embeddings with larger𝜓 (𝑝𝑦𝑖 , 𝑗 ) are more likely to come from
a tail domain [4]. Hence, the embeddings can be classified into
corresponding domains by clustering algorithms:

S𝑦𝑖 ,𝑑 = 𝑓𝑐 (𝜓 (𝑝𝑦𝑖 ,1),𝜓 (𝑝𝑦𝑖 ,2) · · · ,𝜓 (𝑝𝑦𝑖 ,𝑀 )) (3)

𝑓𝑐 denotes a clustering algorithm, such as K-Means. S𝑦𝑖 ,𝑑 is the set
of embedding distributions within phys-label𝑦𝑖 , where𝑑 represents
the domain embedding distribution, and 𝑑 ∈ D := {ℎ𝑒𝑎𝑑,𝑚𝑖𝑑, 𝑡𝑎𝑖𝑙}.
𝑐𝑡
𝑦𝑖 ,𝑑

is the updated embedding centers of the different distribution
domains.

When obtaining the distribution of embedding domains within
the phys-label 𝑦𝑖 , a center 𝑐𝑡−1𝑦𝑖 ,𝑑

is maintained for the head, middle,
and tail domains at moment 𝑡 − 1. Each center is updated as follows:

△𝑐𝑡−1
𝑦𝑖 ,𝑑

=

∑𝐵
𝑖=1 𝛿 (𝑥𝑖 ∈ S𝑦𝑖 ,𝑑 ) · (𝑐𝑡−1𝑦𝑖 ,𝑑

− 𝑥𝑖 )

1 +∑𝐵
𝑖=1 𝛿 (𝑥𝑖 ∈ S𝑦𝑖 ,𝑑 )

(4)

𝑐𝑡
𝑦𝑖 ,𝑑

= 𝑐𝑡−1
𝑦𝑖 ,𝑑

− 𝛼 · △𝑐𝑡−1
𝑦𝑖 ,𝑑

(5)

where 𝛼 is the hyperparameter, and 𝛿 (·, ·) is the conditional func-
tion. The anti-spurious domain center 𝑐∗𝑦𝑖 is obtained by averaging
the embedding centers of 𝑛 different distribution domains in the
memorybank under phys-label 𝑦𝑖 , as in the following equation:

𝑐∗𝑦𝑖 =
1
𝑛

∑
𝑑∈D𝑐𝑡

𝑦𝑖 ,𝑑
(6)

Anti-spurious domain centers can better separate different dis-
tributional domain embeddings to obtain a domain-balanced em-
bedding space, thus alleviating the problem of spurious correlation
among embeddings. Combined with compact discriminative rep-
resentation learning, the loss of domain-distributed anti-spurious
domain center learning can be expressed by the following equation:

L𝐴𝐷𝐿 =
1
2

∑︁𝐵

𝑖=1
∥ 𝑥𝑖 − 𝑐∗𝑦𝑖 ∥22 (7)

3.2 Phys-label-wise Balance
Motivation Example. Inspired by [51], we utilized two types of
data: (1) the CIFAR100 dataset, which is a 100-class classification
dataset from which we sampled a subset of data, and (2) VIPL data
with continuous phys-labels. We sampled instances from VIPL that
matched the label density distribution of CIFAR100 and had the
same label range, set from 40 to 100 (Fig. 4), as there were almost
no phys-labels below 40 in the heart rate data. We make both test
sets balanced. Subsequently, we trained a regular ResNet-18 model
on these two datasets and plotted their test error distributions. As
depicted in Fig. 4(a), the error distribution exhibits a strong neg-
ative correlation with the label distribution. This phenomenon is
expected because majority classes, having more instances, tend to
perform better than minority classes in learning. However, from
Fig. 4(b), we observe significant differences in error distribution for
VIPL, which has a continuous label space, even though the label
density distribution is the same as CIFAR-100. Notably, the error
distribution appears smoother and is no longer closely correlated
with the label density distribution. This phenomenon is because,
in continuous scenarios, the empirical label distribution does not
necessarily reflect the real label density distribution due to depen-
dencies among data samples from neighboring labels (e.g., images
with nearby physical labels). For this scenario, the method LDS [51]
employs a symmetric kernel convolved with the empirical density
distribution and considers the overlap of nearby label data sample
information. It estimates a label distribution close to the true one,
thereby addressing the imbalance issue by compensating for the
real label density distribution.

However, the problem we need to address is more complex. Our
data consists of multiple domains under the same phys-label. In
contrast, the data addressed by LDS has only one domain under
continuous labels and does not suffer from domain imbalance issues.
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Figure 4: Comparing test error distributions (bottom) across different datasets with the same training label distribution (top): (a) CIFAR-100, a
classification task with a discrete label space. (b) VIPL is a regression task with a continuous label space. (c) V4V is also a regression task with a
continuous label space, but instances in a distinct domain compared to VIPL, such as significantly different lighting conditions between VIPL
and V4V. Here, V4V and VIPL instances are equally distributed within each phys-label. (d) VIPL has only one instance in labels 76-78; the rest
are V4V instances. For other labels, V4V and VIPL instances are equally distributed.

We conducted additional control experiments. We used VIPL and
V4V data with continuous labels but different domains. In Experi-
ment 1, the total amount of VIPL and V4V samples and the density
distribution of labels were the same as those in Fig. 4(a) and Fig. 4(b),
and VIPL and V4V each accounted for half of the samples at each
phys-label. Testing was performed on balanced VIPL data. This
setup aimed to simulate multi-domain scenarios with domain bal-
ance. As shown in Fig. 4(c), the error distribution is similar to that
in Fig. 4(b), which aligns with intuition. Although the data quantity
decreases, VIPL’s data distribution approximates that in Fig. 4(b).
In this scenario, LDS can still estimate the real label distribution. In
Experiment 2, we make slight modifications to the data. The total
amount of VIPL and V4V samples and the density distribution of
labels were the same as those in Fig. 4(c), and VIPL and V4V each
accounted for half of the samples at each phys-label (except for
phys-labels 76 to 78, where only one VIPL data was present, and
the rest were V4V). Testing was also performed on balanced VIPL
data. This setup aimed to simulate multi-domain scenarios with
domain imbalance. Interestingly, as observed in Fig. 4(d), the error
distribution is no longer similar to that in Fig. 4(b) or Fig. 4(c). Com-
pared to Fig. 4(c), the errors at point B in Fig. 4(d) (phys-label=75)
are significantly higher, as the availability of data from the same
domain (VIPL) on the right side of point B in Fig. 4(d) decreases,
thereby altering the error distribution. The multi-domain and im-
balanced domain scenarios make it difficult to estimate the real
label distribution, making it challenging to compensate for phys-
label-wise imbalance based on the real true label distribution. So,
can we mitigate the phys-label-wise imbalance phenomenon from
another perspective?

3.2.1 Continuous Embedding Representation Learning. In the rPPG
measurement task, phys-labels have two essential properties: con-
tinuity and imbalance. When the distribution of continuity labels
is relatively balanced, the work [55] reduces fragmentation of
representation by capturing the continuity of regression tasks in
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Figure 5: The relative compactness of embeddings among head, mid-
dle, and tail phys-labels. The more clustered the embeddings are, the
smaller the relative compactness value is.

scenarios with continuity labels. And learning awareness regres-
sion representations by comparing distances among sample tar-
gets. Given a training mini-batch of 𝑁 input and phys-label pairs
{(𝑥𝑛, 𝑦𝑛)}𝑛∈[𝑁 ] , we augment [20] themini-batch as {(𝑥ℓ , 𝑦ℓ )}ℓ∈[2𝑁 ] ,
where 𝑥2𝑛 , 𝑥2𝑛−1 are randomly augment using input 𝑥2𝑛 , and
𝑦2𝑛 = 𝑦2𝑛−1 = 𝑦2𝑛 , ∀𝑛 ∈ [𝑁 ]. These augmented images are fed
into the encoder, yielding embedding 𝑣ℓ , ∀ℓ ∈ [2𝑁 ]. Thanks to [55]
for continuity embedding representation learning, we have:

L𝐶𝐹𝑅𝐿 = − 1
2𝑁

∑︁2𝑁
𝑖=1

1
2𝑁 − 1

∑︁2𝑁
𝑗=1, 𝑗≠𝑖 log

𝑒𝑥𝑝 (𝑣𝑖 · 𝑣𝑗 /𝜏 )∑2𝑁
𝑘=1 𝑐𝑜𝑛𝑑 · 𝑒𝑥𝑝 (𝑣𝑖 · 𝑣𝑘 /𝜏 )

(8)

𝑐𝑜𝑛𝑑 = 1[𝑘≠𝑖,𝑑 (𝑦𝑖 ,𝑦𝑘 ) ≥𝑑 (𝑦𝑖 ,𝑦 𝑗 ) ] (9)

where 𝜏 is temperature parameter, 𝑑 (·, ·) is 𝐿1 distance function,
1[ · ] ∈ {0, 1} is a conditional function, which is 1 if the condition is
met and 0 otherwise.

3.2.2 Compact-Aware Continuity Regularization. For the phys-label-
wise imbalanced rPPG measurement task, mitigating the imbalance
problem among labels when performing continuum embedding
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representation learning is necessary to construct discriminative
representations [8]. In addition, it is difficult for the label distribu-
tion to fully reflect the degree of imbalance in the data due to the
complex dependency problem among consecutive labels. Thus, it
is inaccurate to directly reweight the samples based only on the
distribution of labels. Within phys-labels, we construct compact
representations. In short, the representation of easy samples (e.g.,
head samples) will be more compact than that of hard samples (e.g.,
tail samples). We can see from Fig. 5 that the head embeddings were
more compact in the experiment. Inspired by this, we can more
accurately estimate the imbalance among phys-labels by calculating
the compactness of the representations for re-weighting.

Calculating the distance among all sample embeddings in the
phys-label and the central embedding is inefficient. In order to
improve computational efficiency, we design a memorybank for
each phys-label, which is used to store a certain amount (𝑀=16
or𝑀=32 or𝑀=64) of embeddings. The degree of compactness (𝜇)
of all representations within each bank can then be calculated as
follows:

𝜇𝑦𝑖 =
log

∑𝑀
𝑚=1 𝑒

𝑠 ·𝑐𝑜𝑠 (𝑒𝑦𝑖 ,𝑚,𝑐∗𝑦𝑖 )∑𝑁
𝑖=1 log

∑𝑀
𝑚=1 𝑒

𝑠 ·𝑐𝑜𝑠 (𝑒𝑦𝑖 ,𝑚,𝑐∗𝑦𝑖 )
(10)

where 𝑀 represents the size of memorybank, 𝑁 represents the
number of phys-labels, 𝑒𝑦𝑖 ,𝑚 represents the m-th embedding in the
𝑖-th phys-label memorybank, 𝑐∗𝑦𝑖 is the center embedding of the
𝑖-th phys-label memorybank, the distance of two embedding 𝑒𝑦𝑖 ,𝑚 ,
𝑐∗𝑦𝑖 is formulated as 𝑠 · 𝑐𝑜𝑠 (𝑒𝑖,𝑚, 𝑐∗𝑦𝑖 ), 𝑠 represents the expansion
coefficient. We can dynamically estimate the corresponding weight
w of the updated memorybank for each physical label based on the
embedding compactness of the 𝑖-th phys-label, and the following
equation gives the weight vector ®𝑤 composed of𝑤𝑦𝑖 :

®𝑤 := 𝑛𝑜𝑟𝑚( 1
𝜇𝑦1

∑𝑁
𝑖=1 𝜇𝑦𝑖 , · · · ,

1
𝜇𝑦𝑁

∑𝑁
𝑖=1 𝜇𝑦𝑖 ) (11)

𝑛𝑜𝑟𝑚 denotes the normalization operation. ®𝑤 is the normalized
weights vector.

To build a learning process for labeling semantically continu-
ous embeddings with imbalance, we introduce a compact-aware
continuity regularization based on continuous embedding repre-
sentation learning (Eq. 8). The regular term is then computed over
the embeddings as:

L𝐶𝐶𝑅 = − 1
2𝑁

∑︁2𝑁
𝑖=1

1
2𝑁 − 1

∑︁2𝑁
𝑗=1, 𝑗≠𝑖 log

𝑤𝑦𝑖 · 𝑤𝑦𝑗 · 𝑒𝑥𝑝 (𝑣𝑖 · 𝑣𝑗 /𝜏 )∑2𝑁
𝑘=1 𝑐𝑜𝑛𝑑 · 𝑤𝑦𝑖 · 𝑤𝑦𝑗 · 𝑒𝑥𝑝 (𝑣𝑖 · 𝑣𝑘 /𝜏 )

(12)

𝑐𝑜𝑛𝑑 = 1[𝑘≠𝑖,𝑑 (𝑦𝑖 ,𝑦𝑘 ) ≥𝑑 (𝑦𝑖 ,𝑦 𝑗 ) ] (13)

𝑤𝑦𝑖 ,𝑤𝑦 𝑗
are denoted as the weights of the embeddings labeled 𝑦𝑖 ,

𝑦 𝑗 , which are the 𝑖, 𝑗-th elements in ®𝑤 .
CCR mitigates the imbalance problem among phys-labels by

compactness awareness and constructs the continuity of embed-
dings. At a high level, it can increase the weight of hard samples
(tail data or data that is difficult to rely on continuous data to sup-
plement information on itself) when the head data has learned
more discriminative embeddings than the tail data. When the hard
samples have acquired more compact representations, increasing
the head samples that have been slowed down for learning is ap-
propriate. So on and so forth, both head and tail samples are fully
learned.

3.3 Overall Loss
For the rPPG measurement task, it is necessary to construct the
𝐿1 loss L𝐿1 between the target label and the predicted label. Also,
constructing a negative Pearson correlation coefficient loss L𝑃 for
data with BVP signals can make the predicted physiological signal
value distribution closer to the true value distribution. In addition,
introducing L𝐴𝐷𝐿 loss and L𝐶𝐶𝑅 loss can make the embeddings
more discriminative and generalizable. However, the L1 loss and P
loss are first given more considerable weight in the early stage of
training, which can accelerate the convergence of the model [14].
Therefore, we introduce the adaptation factor 𝛾 = 2

1+𝑒𝑥𝑝 (−10·𝑔) ,

𝑔 =
𝑖𝑡𝑒𝑟𝑐𝑢𝑟𝑟𝑒𝑛𝑡
𝑖𝑡𝑒𝑟𝑡𝑜𝑡𝑎𝑙

, and the stabilization factor 𝑘1 − 𝑘4. The overall loss
function is as follows:

L = 𝑘1 · L𝐿1 + 𝑘2 · L𝑃 + 𝛾 · (𝑘3 · L𝐴𝐷𝐿 + 𝑘4 · L𝐶𝐶𝑅) (14)

4 EXPERIMENTS
4.1 Datasets and Implementation Details

PURE BUAA UBFC VIPL V4V

Figure 6: Samples from five different datasets.

Datasets. We conduct our evaluation on five widely used datasets,
which are PURE [36], BUAA [49], UBFC [2], VIPL [26], and V4V [31].
These datasets contain rich scenarios such as different lighting con-
ditions, motions, skin tone types, etc. A more detailed description
of these datasets can be found in Appendix. B.
Implementation details. Our framework is implemented based
on pytorch. For the input processing of the model, the generation
process of STMap is the same as that of [26]. For fair comparison,
we utilize the same model ResNet-18, augmentation method, and
evaluation method as [20]. The memorybank is a matrix of dimen-
sion𝐶 ×𝑀 ×𝑑 , where𝐶 is the number of categories,𝑀 is the size of
the memorybank, and 𝑑 is the dimension of the stored embeddings.
Memorybank can perform the insertion of new embeddings and
the push out of old embeddings. The super parameters 𝑘1 − 𝑘4 are
set as 1,1,0.01, 0.1. According to the scale of the loss function. s, 𝜏 , 𝛼 ,
M are set as 1, 0.07, 0.7, 64 respectively. The learning rate of Adam
was set to 0.001, and batchsize was set to 2048 under cross-dataset
testing protocol(Train on four source domains and test on another
unknown domain. e.g. Train on V4V, BUAA, PURE, UBFC, test on
VIPL), 512 under intra-dataset testing protocol(Train on VIPL,
test on VIPL), and the total number of learning inters was set to
20000.
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Metric indicator. The common indicator for evaluating HR es-
timation in physiological signal measurement are mean absolute
error(MAE), root mean square error (RMSE), and Pearson’s correla-
tion (r). For the dataset with BVP signals, the Heart Rate variability
(HRV) (i.e., Low Frequency (LF), High Frequency (HF), LF/HF, HR-
BVP) is evaluated using MAE, RMSE, r.

GT:85 bpm Pred:83 bpm GT:63 bpm Pred:63 bpmGT:60 bpm Pred:64 bpm

GT:80 bpm Pred:80 bpm GT:75 bpm Pred:76 bpmGT:86 bpm Pred:88 bpm

GT:92 bpm Pred:90 bpm GT:83 bpm Pred:85 bpmGT:136 bpm Pred:134 bpm

(a)UBFC (b)BUAA (c)PURE

Figure 7: Visualization of model predictions (Red) and ground truths
(Blue) on cross-dataset testing on UBFC, BUAA, and PURE.

4.2 Intra-dataset Testing
We selected VIPL data sets is the most challenging datasets for
rPPG task, obviously, there is an the long tail problem. As shown
in Tab. 1, our method was compared with many SOTA method
including traditional measurement methods (SAMC, POS, CHROM)
and DL-based measurement methods (I3D, DeepPhy, BVPNet, CVD,
Physformer, Dual-GAN, NEST, Baseline (base on RhythNet)). These
results are derived from [19, 20, 25]. rPPG-HiBa significantly im-
proved baseline method and achieved optimal performance. This
shows that the imbalance problems of both domain and labels are
important problems that hinder model performance, and our ap-
proach can significantly solve this problem.

4.3 Cross-dataset Testing
4.3.1 HR Estimation. To further evaluate the generalization per-
formance of our algorithm, we applied a more challenging cross-
dataset testing protocol for heart rate estimation [20]. In addition
to the existing rPPG method, we also reproduced two long-tail algo-
rithms specifically designed for regression problems, namely LDS
and BMSE. As illustrated in Tab. 2, our proposed method outper-
forms the existing methods on all datasets. These results highlight
that the hierarchical long-tail problem poses a significant obsta-
cle to the model’s generalization performance, and our algorithm
effectively mitigates this issue through the use of anti-spurious
domain center and compact-aware continuity regularization. More-
over, as shown in Fig. 7, we randomly sampled video clips on the
datasets(UBFC, BUAA, PURE) with BVP signals and visualized the
rPPG estimates.

4.3.2 Domain Balance Analysis on BUAA, VIPL. We selected VIPL
and BUAA, two datasets rich in domain-specific information, to
assess the performance of our proposed algorithms across various
domains. Previous research in physiological signal estimation has
introduced tailored algorithms, including NEST, Dual-GAN and

DOHA, designed to address domain-specific challenges. NEST fo-
cuses on domain generalization, while the Dual-GAN and DOHA
methods aim to reduce non-signal domain information. We con-
duct a comparative analysis of these two algorithms. The results are
shown in Tab. 3 and Tab. 4. And we performed ablation experiments
on the 𝛼 and𝑀 parameters in ADL, which can be found in Appen-
dix. C. Significantly, our proposed method not only enhances but
also balances the performance across each domain. More detailed
metrics can be found in Appendix. D.

4.3.3 Phys-label Balance Analysis on V4V, VIPL. We chose two
datasets with challenging data imbalances, V4V and VIPL. We com-
pared our algorithms using NEST, a state-of-the-art estimation
algorithm for physiological data, and LDS, a superior algorithm
for data with continuity and imbalance. As can be seen from the
comparison results of VIPL and V4V in Tab. 5, the NEST algorithm
focuses more on the performance of the head data but adversely
affects the performance of the tail data. On the contrary, the LDS
algorithm performs well in the tail but poorly in the head. In con-
trast, our proposed CCR algorithm employs a dynamic reweighting
approach that more accurately estimates the degree of imbalance
among the data. It demonstrates excellent performance on both
head and tail data. More detailed metrics can be found in Appen-
dix. E. And we performed ablation experiments on the 𝛼 and 𝑀

parameters in CCR, which can be found in Appendix. C

4.3.4 HRV Estimation. The HRV is used to evaluate the model’s
performance on data with BVP signals. We use two datasets for
training (any two of UBFC, PURE, BUAA) and one other for testing
fellowing [20]. As shown in Appendix. F, compared with the tradi-
tional methods GREEN, CHROM, POS, and Baseline, our proposed
method has achieved the best evaluation on LF, HF, LF/HF, and
HR-bmp indicators. The results show that alleviating the hierarchi-
cal long-tail problem is an efficient and direct way to improve the
physiological signal measurement task.

(c) With rPPG-HiBa(a) Phys-label Distribution (b) Without rPPG-HiBa
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Figure 8: Pearson correlation among embeddings with anchor HR75
and embeddings labeled HR60-HR120.

4.3.5 Embedding Correlation and Continuity Analysis. For the re-
gression task, embeddings with continuity can mitigate the frag-
mentation of the representation. We calculated the Pearson cor-
relation coefficients with other HRs using HR75 as an anchor. As
can be inferred from Fig. 8, the correlation among embeddings is
smoother with the rPPG-HiBa framework. In addition, it can effec-
tively mitigate the imbalance among labels and the a priori that the
tail data directly inherits from the head data, thus mitigating the
spurious correlation of the tail data.
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Method SD↓ MAE↓ RMSE↓ r↑

SAMC [42] 18.0 15.9 21.0 0.11
POS [44] 15.3 11.5 17.2 0.30
CHROM [10] 15.1 11.4 16.9 0.28
I3D [5] 15.9 12.0 15.9 0.07
DeepPhy [6] 13.6 11.0 13.8 0.11
BVPNet [9] 7.75 5.34 7.85 0.70
CVD [27] 7.92 5.02 7.97 0.79
Physformer [54] 7.74 4.97 7.79 0.78
Dual-GAN [19] 7.63 4.93 7.68 0.81
NEST [20] 7.49 4.76 7.51 0.84
DOHA [38] 7.69 4.95 7.73 0.80

Baseline [26] 8.04 5.21 8.07 0.77
rPPG-HiBa w/o L𝐶𝐶𝑅 7.57 4.83 7.61 0.82
rPPG-HiBa w/o L𝐴𝐷𝐿 7.33 4.54 7.34 0.84
rPPG-HiBa 7.26 4.47 7.28 0.85

Table 1: Comparison of the HR estimation results
of our method with some other state-of-the-art
methods on the VIPL-HR database. Bold indicates
the best result of all compared methods. The sym-
bol ↑ higher is better, and ↓ lower is better.

UBFC PURE BUAA VIPL V4V

Method MAE↓RMSE↓ r↑ MAE↓RMSE↓ r↑ MAE↓RMSE↓ r↑ MAE↓RMSE↓ r↑ MAE↓RMSE↓ r↑

GREEN [43] 8.02 9.18 0.36 10.32 14.27 0.52 5.82 7.99 0.56 12.18 18.23 0.25 15.64 21.43 0.06
CHROM [10] 7.23 8.92 0.51 9.79 12.76 0.37 6.09 8.29 0.51 11.44 16.97 0.28 14.92 19.22 0.08

POS [44] 7.35 8.04 0.49 9.82 13.44 0.34 5.04 7.12 0.63 14.59 21.26 0.19 17.65 23.22 0.04

DeepPhys [6] 7.82 8.42 0.54 9.34 12.56 0.55 4.78 6.74 0.69 12.56 19.13 0.14 14.52 19.11 0.14
TS-CAN [18] 7.63 8.25 0.55 9.12 12.38 0.57 4.84 6.89 0.68 12.34 18.94 0.16 14.77 19.96 0.12

Dual-GAN∗ [19] 5.55 7.62 0.79 7.24 10.27 0.78 3.41 5.23 0.84 8.88 11.69 0.50 10.04 14.44 0.35
BVPNet∗ [9] 5.43 7.71 0.80 7.23 10.25 0.78 3.69 5.48 0.81 8.45 11.64 0.51 10.01 14.35 0.36
NEST∗ [20] 4.77 7.03 0.85 6.89 9.98 0.84 2.67 3.89 0.90 7.57 10.87 0.60 9.87 13.53 0.40
DOHA [38] 4.83 7.19 0.83 6.97 10.03 0.84 3.05 4.62 0.87 7.89 11.13 0.56 9.92 13.48 0.38

LDS∗+ [51] 4.06 6.43 0.87 7.35 10.80 0.81 2.68 3.88 0.90 7.94 11.35 0.56 10.68 13.70 0.34
BMSE∗+ [30] 4.26 6.78 0.87 7.81 10.46 0.84 2.74 4.09 0.89 7.80 11.27 0.55 10.69 13.75 0.30

Baseline∗ [26] 5.79 7.91 0.78 7.39 10.49 0.77 3.38 5.17 0.84 8.97 12.16 0.49 10.16 14.57 0.34
rPPG-HiBa∗+ w/o L𝐶𝐶𝑅 4.00 7.10 0.85 7.19 11.28 0.82 2.84 3.74 0.96 7.67 10.60 0.60 9.72 13.29 0.39
rPPG-HiBa∗+ w/o L𝐴𝐷𝐿 3.93 6.87 0.86 6.79 9.90 0.85 2.76 3.63 0.96 7.51 10.58 0.60 9.72 12.84 0.40

rPPG-HiBa∗+ 3.75 6.60 0.88 6.43 9.44 0.87 2.45 3.28 0.98 7.34 10.41 0.61 9.69 12.54 0.42

Table 2: HR estimation results on cross-dataset testing protocol (Train on four source
domains and test on another unknown domain. e.g. Train on V4V, BUAA, PURE, UBFC,
test on VIPL). ∗ means that STMap is used as input, and + means that the imbalanced
method is applied to a baseline (baseline without GRU).

Method v1/s v2/s v3/s v4/s v5/s v6/s v7/s v8/s v9/s s1/v s2/v s3/v all

Baseline∗ [26] 9.53 8.28 11.61 7.62 8.29 8.36 7.95 9.12 12.21 9.39 8.47 9.26 8.97
Dual-GAN [19] 8.81 9.16 9.74 8.70 7.78 8.11 9.29 8.63 10.87 8.84 8.74 9.12 8.88
DOHA∗ [38] 7.94 7.61 8.49 6.21 8.22 7.25 8.38 9.15 10.06 7.85 7.67 8.20 7.89
NEST∗ [20] 7.05 7.33 8.21 5.82 7.94 7.12 8.07 9.39 10.11 7.66 7.10 8.08 7.57

Baseline∗+L𝐴𝐷𝐿 7.82 7.52 8.37 7.00 7.61 7.58 7.37 7.64 8.93 7.80 7.50 7.78 7.67
rPPG-HiBa∗+ 7.20 7.26 7.81 6.34 7.73 7.32 7.29 7.33 8.68 7.31 7.33 7.39 7.34

Table 3: Cross-dataset testing results (MAE↓) on different domains on VIPL to validate
domain balancing (+ADL). The dataset contains nine different scenarios (v1-v9), which are
captured with three different devices (s1-s3). We consider the data of different acquisition
devices for the same scenario as one domain, e.g., the v1/s domain represents all the data
captured by the s1,s2, and s3 devices in the v1 scenario. The same acquisition devices
for different scenarios are also considered as one domain, e.g., the s1/v domain, which
represents all the data of v1-v9 captured by the s1 device. More detailed descriptions of
the scenarios and devices can be found in Appendix. 2.

Method NI MI HI all

Baseline∗ [26] 3.84 3.30 3.02 3.38
Dual-GAN [19] 3.88 3.07 3.30 3.41
DOHA∗ [38] 3.29 2.94 3.09 3.05
NEST∗ [20] 3.11 2.45 2.47 2.67

Baseline∗+L𝐴𝐷𝐿 2.93 2.81 2.77 2.84
rPPG-HiBa∗+ 2.56 2.38 2.41 2.45

Table 4: Cross-dataset testing results (MAE↓) on dif-
ferent domains on BUAA to validate domain bal-
ancing (+ADL). The dataset contains rich "illumina-
tion" domain information. We set the samples with
10.0lux and 15.8lux as "normal illumination" (NI),
the samples with 25.1lux and 39.8lux as "medium
illumination" (MI), and the samples with 63.1 lux
and 100 lux as "high illumination" (HI).

Method head medium tail overall
>50 ≤50 & ≥23 < 23

Baseline∗ [26] 5.76 11.24 21.35 8.97
NEST∗ [20] 4.81(+0.95) 9.05(+2.19) 19.21(+2.14) 7.57(+1.40)
LDS∗+ [51] 6.07(-0.31) 8.52(+2.72) 16.78(+4.57) 7.94(+1.03)

Baseline∗+L𝐶𝐶𝑅 5.34(+0.42) 8.35(+2.89) 17.31(+4.04) 7.51(+1.46)
rPPG-HiBa∗+ 5.15(+0.61) 8.33(+2.91) 16.95(+4.40) 7.34(+1.63)

Method head medium tail overall
>14 ≤14 & ≥8 < 8

Baseline∗ [26] 7.23 11.82 20.02 10.16
NEST∗ [20] 6.46(+0.77) 12.17(-0.35) 20.70(-0.68) 9.87(+0.29)
LDS∗+ [51] 8.48(-1.25) 11.34(+0.48) 19.12(+0.90) 10.68(-0.52)

Baseline∗+L𝐶𝐶𝑅 6.97(+0.26) 11.17(+0.65) 19.09(+0.93) 9.72(+0.44)
rPPG-HiBa∗+ 6.90(+0.33) 11.29(+0.53) 18.98(+1.04)9.69(+0.47)

Table 5: Cross-dataset testing on VIPL(left) and V4V(right) datasets to validate phys-label-wise balancing (+CCR). Results (MAE↓) of different
methods on three disjoint subsets. For VIPL, We classify phys-labels with more than 50 samples as head, fewer than 23 as tail, and the remaining
as medium. For V4V, We classify phys-labels with more than 14 samples as head, fewer than 8 as tail, and the remaining as medium. Green
indicate how the method performance exceeds the baseline. Red indicate how the method performs inferior to the baseline.

5 CONCLUSION
The imbalanced distribution of physiological signal data poses a
significant challenge to remote physiological measurement based
on rPPG in multimedia applications. This study proposes a novel
hierarchical balanced framework to address this issue. For the do-
main imbalance, the framework obtains a domain-balanced em-
bedding space by learning the anti-spurious domain center. For

the phys-label-wise imbalance, the framework mitigates the imbal-
ance problem among labels by using compactness awareness and
constructs the continuity of embeddings. Exhaustive experimental
results demonstrate that alleviating the hierarchical imbalance en-
hances the generalization and discriminative of the model, thereby
greatly advancing the state of the art in the area of rPPG.
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