
A Pre-training Details1

We conduct prompt pre-training on the ImageNet-21K dataset (official winter 2021 released version1).2

We follow the processing methods in [23], which involves cleaning invalid classes, allocating 503

images per class for a validation split, and crop-resizing all the images to 224 resolution. We conduct4

all the experiments on 8×Nvidia V100 GPUs. For pre-training, the learnable vector is randomly5

initialized by drawing from a zero-mean Gaussian distribution with a standard deviation equal to 0.02.6

We use the SGD optimizer with an initial learning rate of 0.002, decayed by the cosine annealing rule.7

The batch size is 32, and the maximum epoch is 20.8

For the mask proposal network and region proposal network pre-training, we strictly follow the9

settings of ZSSeg [29] and Detic [32], respectively. Specifically, we take MaskFormer [3] with10

ResNet-101 [10] as the mask proposal network. We use an AdamW optimizer with the initial learning11

rate of 1e-4, weight decay of 1e-4, a backbone multiplier of 0.1, and a poly learning rate policy12

with a power of 0.9. Besides, we take CenterNet2 [33] detector with ImageNet-21k pre-trained13

ResNet-50 [23] as the region proposal network. We use an Adam optimizer with learning rate 2e-4.14

Other tricks like Federated Loss, repeat factor sampling, and large scale jittering are incorporated15

to further improve the performance. As with Detic, we leverage both region-level and image-level16

supervision. We always first train a converged base-class-only model (4× schedule) and fine-tune it17

with additional image-labeled data for another 4× schedule.18

B Setting for Segmentation and Detection19

Table 1 outlines the settings for semantic segmentation and object detection. We further introduce the20

settings in detail from three perspectives: backbone, data processing, and prompt.21

Backbone. In general, we adopt a two-stage framework for these two tasks. At stage one, we use a22

pre-trained proposal network to generate a set of mask or region proposals. At stage two, we classify23

each proposal with the class features generated by our POMP prompt. For semantic segmentation,24

our POMP shares the same visual backbone as ZSSeg [29], which uses a pre-trained MaskFormer [3]25

with ResNet-101 [10] as default backbone to extract a set of binary masks. For object detection, our26

POMP shares the same visual backbone with Detic [32], which takes CenterNet2 [33] detector with27

ResNet-50 as its backbone, and leverages both region-level and image-level supervision.28

Data Processing. We follow previous work [27, 29, 8, 32] to designate data belonging to two class29

sets as source data and target data, respectively. The proposal networks are pre-trained on the source30

data with the source class set, while conducting zero-shot evaluation on the target data with the target31

class set. There are two protocols for the source-target data split. The first is the open-vocabulary32

protocol, where the class set of one dataset is divided into two disjoint groups for the source and33

target data, respectively. The second protocol is the cross-dataset protocol, in which the source and34

target data are from two independent datasets with potentially overlapping class sets.35

We introduce the details of class set splitting in the open-vocabulary protocol. COCO Stuff and36

Pascal VOC 2012 are the two semantic segmentation datasets using the open-vocabulary protocol.37

Following previous settings [27, 29], a total of 171 annotated classes in COCO Stuff are divided into38

156 seen classes and 15 unseen classes. For Pascal VOC 2012, a total of 20 classes are divided into39

15 seen classes and 5 unseen classes, and the provided augmented annotations are used. LVIS is the40

object detection dataset using the open-vocabulary protocol. The standard LVIS dataset contains41

object detection and instance segmentation labels for 1203 classes. The classes are divided into three42

groups: frequent, common, and rare, based on the number of training images. According to previous43

work [8], the data from the 866 frequent and common classes are considered the source data, while44

those from the remaining 337 rare classes are the target data in testing.45

Prompt. ZSSeg provides two kinds of prompts: hand-crafted prompts and learning-based prompts.46

Hand-crafted prompts include single prompt, i.e., “a sculpture of a [CLASSNAME]”, as well as47

ImageNet prompts [21] and ViLD prompts [8], which are used for prompt ensemble and consist of 8048

and 14 hard prompts, respectively. The learning-based prompt is obtained by fine-tuning a randomly49
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Table 1: Settings for semantic segmentation and object detection.
Task Proposal Network Setting Source Data and Class Set

(for proposal network pre-training)
Target Data and Class Set
(for zero-shot evaluation)

Semantic
Segmentation

MaskFormer
(Mask Proposal Network)

Open-vocab COCO Stuff COCO Stuff (seen) COCO Stuff (unseen)

Open-vocab PASCAL VOC PASCAL VOC (seen) PASCAL VOC (unseen)

Cross-dataset COCO Stuff ADE20K / PASCAL Context

Object
Detection

CenterNet2 detector
(Region Proposal Network)

Open-vocab LVIS LVIS (frequent+common) LVIS (rare)

Cross-dataset LVIS COCO / Object365

Table 2: Datasets in our experiments.

Dataset Classes Train Size Test Size Metric
Datasets of Image Classification
Caltech-101 [7] 102 3,060 6,086 mean per-class accuracy
Oxford-IIIT Pets [20] 37 3,680 3,669 mean per-class accuracy
Stanford Cars [15] 196 8,144 8,041 accuracy
Oxford Flowers-102 [19] 102 2,040 6,149 mean per-class accuracy
Food-101 [1] 101 75,750 25,250 accuracy
FGVC Aircraft [17] 100 6,667 3,333 mean per-class accuracy
SUN-397 [28] 397 15,880 19,850 accuracy
Describable Textures (DTD) [4] 47 3,760 1,880 accuracy
EuroSAT [11] 10 10,000 5,000 accuracy
UCF-101 [25] 101 7,639 3,783 accuracy
ImageNetV2 [22] 1,000 10,000 10,000 accuracy
ImageNet-S [26] 1,000 50,889 50,889 accuracy
ImageNet-A [13] 200 7,500 7,500 accuracy
ImageNet-R [12] 200 30,000 30,000 accuracy
Datasets of Semantic Segmentation
COCO Stuff [2] 171 117K 5K mIoU (seen/unseen), hIoU
PASCAL VOC [6] 20 11,185 1,449 mIoU (seen/unseen), hIoU
ADE20K [30] 150 20K 3K mIoU, fwIoU, pACC
PASCAL Context [18] 59 10,103 9,637 mIoU, fwIoU, pACC
Datasets of Object Detection
LVIS [9] 1,203 100,170 19,822 APr, APc, APf , AP
COCO [16] 80 118K 5K AP, AP50, AP75, APs, APm, APl

Object365 [24] 365 600K 38K AP, AP50, AP75, APs, APm, APl

initialized soft prompt on the source data. Accordingly, for a fair comparison, we conducted two sets50

of experiments based on whether to use the source data for prompt fine-tuning. (1) The results of51

ZSSeg with various hard-crafted prompts and the pre-trained POMP prompt without access to the52

source data can be found in Table 4 in Appendix E.3. (2) The results of ZSSeg with learning-based53

prompts initialized from random vectors and our pre-trained POMP prompt, both using source data54

for further fine-tuning, can be found in Table 4 and Table 5 in § 4.3.2. Detic has also extensively55

delved into intricate prompts, such as “a photo of a [CLASS] in the scene”. Moreover, it has56

made endeavors to employ synonyms for each category. Nevertheless, its ultimate recommendation57

is to use a simple yet effective prompt, i.e., “a [CLASSNAME]”, and all its released checkpoints are58

based on this prompt. We strictly adhere to Detic’s best practice, the evaluation of Detic and POMP59

in § 4.3.3 are both conducted without any further prompt tuning on the source data.60

C Datasets61

The details of the downstream datasets for image classification, semantic segmentation, and object62

detection are shown in Table 2.63

Image Classification. For cross-dataset image classification, we evaluate the performance of POMP64

on 10 downstream datasets, including Caltech-101 [7], Oxford-Pets [20], Stanford Cars [15], Oxford-65

Flowers102 [19], Food-101 [1], FGVC Aircraft [17], EuroSAT [11], SUN-397 [28], Describable66
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Table 3: Ablation on the sampling distribution in POMP based on CLIP (ViT/B-16) backbone.

Method ImageNet-21K Cross-dataset
(10 Avg.)

Cross-domain
(4 Avg.)

POMP (uniform distribution) 25.3 67.0 60.8
POMP (frequency distribution) 24.9 (-0.4) 66.2 (-0.8) 60.1 (-0.7)
POMP (similarity distribution) 23.6 (-1.7) 64.2 (-2.8) 59.2 (-1.6)

Textures (DTD) [4], UCF-101 [25]. We also conduct zero-shot evaluation on 4 out-of-domain datasets67

derived from ImageNet [5], including ImageNetV2 [22], ImageNet-S [26], ImageNet-A [13], and68

ImageNet-R [12], to evaluate the domain generalization capability of our method.69

Semantic Segmentation. We perform open-vocab semantic segmentation on COCO Stuff [2] and70

Pascal VOC 2012 [6]. Following previous notation and settings [27, 29], we split the class set into71

seen and unseen classes, where data for seen classes is considered the source data and data for unseen72

classes is considered the target data. The major measures for evaluation include mIoU and the73

harmonic mean IoU (hIoU) among both seen and unseen classes [29]. The hIoU is defined as:74

hIoU =
2×mIoUseen ×mIoUunseen

mIoUseen +mIoUunseen

We also conduct cross-dataset evaluation, which takes the standard COCO Stuff dataset as the75

source dataset for pre-training a mask proposal network, and then conducts zero-shot inference on76

ADE20K [30] and PASCAL Context [18].77

Object Detection. We evaluate the performance of POMP on the object detection dataset LVIS [9]78

under the open-vocabulary setting proposed by [8]. The data from the 866 frequent and common79

classes are considered the source data, while those from the remaining 337 rare classes are the target80

data in testing. We take APr, i.e., AP on rare classes, as the major measure. APf and APc, i.e., AP81

on frequent and common classes, are also reported. In the cross-dataset setting, the region proposal82

network is pre-trained on the source dataset of standard LVIS, and then directly conducts inference on83

two target datasets, including COCO [16] and Object365 [24]. We use AP, AP50, AP75, APs, APm,84

and APl the evaluation metrics.85

D Qualitative Results for Semantic Segmentation and Object Detection86

In this section, we provide more qualitative results of our POMP for semantic segmentation and object87

detection. Figure 1 shows another three cases on open-vocabulary COCO-Stuff segmentation. POMP88

demonstrates a stronger ability than ZSSeg in the recognition of background classes. In case (1),89

POMP correctly identified the dirt and plant-other in the scene, instead of marking all these areas90

as grass. In case (2) and (3), POMP recognizes the classes of clouds and tree, respectively, while91

ZSSeg misclassifies them as sky-other and bush. However, POMP misses some objects of sheep92

located at the edge in case (2) and neglects the object of branch in case (3), indicating it still has93

insufficient recognition of small objects. For object detection, Figure 2 illustrates qualitative results94

on LVIS images. Base and novel categories are shown in purple and green, respectively. POMP95

identifies regions from the novel class without using the corresponding 1.2K detection annotations,96

demonstrating its generalization in the wild.97

E More Ablation Study98

E.1 Ablation on Proposal Distribution99

As introduced in § 3.2, we also investigate other types of proposal distribution for local contrast and100

negative class sampling. The first is the frequency distribution Q(f), which samples the negative101

class i based on the number of training samples belonging to this class. Note that the original102

ImageNet-21K is class-imbalanced, i.e., the number of training samples belonging to common classes103

is larger than those belonging to rare classes, which can roughly reflect the long-tail distribution of104
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Figure 1: More qualitative results on open-vocabulary COCO-Stuff segmentation.

Figure 2: Qualitative results on LVIS images. Base and novel categories are shown in purple and
green colors respectively. We use a score threshold of 0.5 and show the most confident class for each
box.
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Figure 3: Ablation study on #shot and prompt length. When varying #shot, the prompt length is 4,
and when varying the prompt length, #shot is 16.

object categories in nature. The frequency distribution will allow for more sampling of common105

classes while suppressing the exposure of rare classes in prompt tuning. Let Mi be the number of106

training samples belonging to the negative class i, the frequency distribution is defined as:107

Q
(f)
i =

Mi∑N
j=1 Mj

. (1)

The second is the similarity distribution Q(s), which aims to sample more hard negative classes.108

Hard negative classes are those that have a higher similarity between their features and the features109

of the input images, and are more likely to be confused with the positive class. Accordingly, in the110

similarity distribution, the likelihood of a negative class being sampled increases as the similarity111

between its feature and the image feature increases. To achieve this, we pre-encode features of all112

classes represented by a hand-crafted prompt (i.e., “a photo of a [CLASSNAME]”). The feature of113

class i is denoted as wi. The likelihood of sampling a negative class is determined by the similarity114

between the class feature wi and the image feature x:115

Q
(s)
i (x) =

exp(x⊤wi/τ)∑N
j=1 exp(x

⊤wj/τ)
. (2)

Table 3 illustrates the performance of different proposal distributions. Compared to the uniform116

distribution, using the frequency distribution for sampling leads to degraded performance, particularly117

in cross-dataset and cross-domain settings, due to reduced sampling of rare categories. This highlights118

the importance of a large number of long-tail categories in the ImageNet-21K dataset for the119

generalization of the soft prompt. Additionally, the performance of the similarity distribution is also120

not as strong as that of the uniform distribution. The reason for this may be that as the soft prompt121

evolves, the features of hard negative classes change. However, the negative features used in (2) are122

obtained from the hard prompt, creating a fixed proposal distribution that is unable to adapt to these123

changes, potentially causing the soft prompt to converge to a local optimum. In contrast, POMP with124

the simple uniform distribution considers both common and rare classes, as well as easy and difficult125

classes, leading to the best performance for both the soft prompt and class features.126

E.2 Ablation on #shot and Prompt Length127

We further conduct ablation on the number of pre-training instances per class (#shot) and the prompt128

length to analyze their influence on the generalization ability of POMP. The left panel in Figure 3129

illustrates the results of #shot. The green curve represents the average accuracy of 10 datasets under130

the cross-dataset evaluation, while the purple curve represents the avergaed accuracy of 4 datasets131
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under the cross-domain evaluation. Overall, the performance of POMP improves as #shot increases.132

We find that POMP can achieve decent cross-dataset and cross-domain accuracy even with #shot=1.133

This is due to the huge number of classes in ImageNet-21K. Even if there are only one instance per134

class, the overall amount of data (21K instances for 21K classes) is enough for training a soft prompt135

with only 0.012 M learnable parameters.136

The right panel in the figure shows the results of the prompt length. The soft prompt of length 16137

achieves 65.0% accuracy across datasets, which is lower than the soft prompt of length 4 with 67.0%138

cross-dataset accuracy. It indicates that the prompt with too large lengths impairs its generalization,139

which consistent with the findings from previous work [31, 14].140

E.3 Ablation on Prompt Types for Semantic Segmentation141

Table 4: Cross-dataset evaluation for semantic segmentation. All methods share the same visual
backbone with ZSSeg, but use different prompts.

Method
Source Dataset:

Standard COCO Stuff
Target Dataset:

ADE20K
Target Dataset:

PASCAL Context

mIoU fwIoU mACC pACC mIoU fwIoU mACC pACC mIoU fwIoU mACC pACC

ZSSeg (single prompt) 40.5 47.8 53.5 61.7 17.8 44.0 31.0 52.9 51.8 64.6 69.9 74.3
ZSSeg (ImageNet prompts) 40.9 48.4 54.7 62.3 17.7 46.5 31.8 57.1 52.0 64.7 70.3 75.4
ZSSeg (ViLD prompts) 40.9 48.6 54.2 62.3 20.2 49.1 33.4 60.7 51.8 63.8 69.6 73.8
ZSSeg (POMP prompt, ours) 41.2 49.0 54.7 62.6 20.6 49.3 35.0 61.7 52.4 65.3 70.6 76.4

We perform an ablation study on prompt types for cross-dataset semantic segmentation to further142

demonstrate the superior generalization ability of our prompt on downstream tasks. Specifically, we143

take ZSSeg as the backbone and evaluate the performance of four types of prompts, as described in144

Appendix B. As shown in Table 4, ZSSeg with our POMP prompt achieves the highest performance145

on the three datasets. It is noteworthy that, despite using 80 hard prompts for ImageNet prompts and146

14 for ViLD prompts for prompt ensemble, their performance was consistently worse than our POMP147

with just one soft prompt, highlighting the effectiveness of our method.148

F Limitations149

To facilitate future research, we analyze the limitations in our work and propose potential solutions.150

(1) We present the local contrast and use the loss within a subsampled class set as an empirical151

estimation for the expected contrastive loss within the full class set. However, the theoretical risk of152

such an estimation is urged to be investigated. (2) ImageNet-21k comprises a vast number of classes153

that are organized based on a semantic structure. By leveraging the hyponym and hypernym relations154

provided by WordNet synsets, we can derive the parent class and a list of child classes for each class.155

We believe that utilizing the semantic information holds the potential to further enhance performance.156

(3) Despite the excellent performance exhibited by our pre-trained prompt, its interpretability poses a157

significant challenge because the context vectors are optimized in a continuous space. We leave it as158

future work.159
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