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1. Abstract
Large language models (LLMs) are rapidly ap-

proaching the level of proficiency in university-level
symbolic mathematics required for applications in
advanced science and technology. However, ex-
isting benchmarks fall short in assessing the core
skills of LLMs in symbolic mathematics—such as in-
tegration, limits, differential equations, and alge-
braic simplification. To address this gap, we intro-
duce ASyMOB, a novel assessment framework fo-
cused exclusively on symbolic manipulation, featur-
ing 17,092uniquemath challenges, organizedby sim-
ilarity and complexity. ASyMOB enables analysis of
LLM failure root-causes and generalization capabil-
ities by comparing performance in problems that
differ by simple numerical or symbolic ‘perturba-
tions’. Evaluated LLMs exhibit substantial degrada-
tion in performance for all perturbation types (up to
-70.3%), suggesting reliance on memorized patterns
rather than deeper understanding of symbolicmath,
even among models achieving high baseline accu-
racy. Comparing LLM performance to computer al-
gebra systems (CAS, e.g. SymPy), we identify ex-
amples where CAS fail while LLMs succeed, as well
as problems solved only when combining both ap-
proaches. Models capable of integrated code exe-
cution yielded higher accuracy compared to their
performance without code, particularly stabilizing
weaker models (up to +33.1% for certain perturba-
tion types). Notably, the most advanced models (o4-
mini, Gemini 2.5 Flash) demonstrate not only high
symbolic math proficiency (scoring 96.8% and 97.6%
on the unperturbed set), but also remarkable robust-
ness against perturbations, (-21.7% and -21.2% vs. av-
erage -50.4% for theothermodels). Thismay indicate
a “phase transition” in the generalization capabilities
of frontier LLMs. It remains to be seen whether the
path forward lies in deeper integration with special-
ized external tools, or in developing models so ca-
pable that symbolic math systems like CAS become
unnecessary.

2. Introduction
In recent years, large language models (LLMs)

have shown remarkable capabilities in domains
such as mathematical reasoning [1, 2, 3, 4, 5, 6] and
code generation [7, 8, 9, 10]. As these models ad-
vance, their potential for real-world research and en-
gineering applications grows. A critical requirement
for such applications is proficiency in university-
level symbolic mathematics, including integration,
limit computation, differential equation solving, and
algebraic simplification.
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Fig. 1: Effect of equivalence-type perturbations.
Note the substantial drop in success rate for most
models, even when performance on the seed set is
high.

However, existing mathematical benchmarks in-
adequately assess symbolic proficiency. Early
benchmarks like GSM8K [11] and MATH [12], while
driving progress in arithmetic reasoning, focus on
pre-university level questions and have been, for the
most part, mastered by frontier LLMs [13]. Further-
more, many popular benchmarks rely on multiple-
choice questions [14], which fail to capture the
open-ended nature of real-world problem-solving,
and artificially lower the difficulty. Word-problem
benchmarks mix two fundamentally different chal-
lenges, text-to-math conversion and symbolic ma-
nipulation, whichmakes it hard to evaluate the LLM
performance in the latter. Conversely, formal proof
datasets (e.g., MiniF2F, MathConstruct [15, 16]) ad-
dress theorem proving but often skip core tasks like
integration or solving differential equations.
The broad topic coverage that most benchmarks

strive for forces small sample sizes per skill category,
hindering robust statistical analysis. For example,
only 150 out of 3709 (4%) questions in MathBench
[17] address university-level math in English. The
5K test dataset by Lample and Charton [18] targets
symbolic integration and differential equations, but
due to its creation method, it mainly contains sim-
ple problems and was immediately saturated [18].
Recent efforts, such as FrontierMath [13] and Hu-
manity’s Last Exam [19], demand that LLMs exhibit
very high proficiency across numerous skills simul-
taneously, thereby impeding conclusions regarding
specific LLM capabilities. Overcoming these limita-
tions can shed light on a fundamental question: do
LLMs solve problems through genuine mathemati-
cal understanding or merely through advanced pat-
tern recognition [20, 21, 22, 23, 24, 25]. Address-
ing this question calls for different types of datasets,
which can separate sophisticated patternmemoriza-
tion from true mathematical abilities.
In response, we present ASyMOB: Algebraic Sym-
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bolic Mathematical Operations Benchmark (pro-
nouncedAsimov, in tribute to the renowned author),
for assessing LLM capabilities through systematic
perturbations of core symbolic tasks; introducing
three key innovations:
1. Focused Scope: Targeting pure symbolic ma-
nipulation (Figure 2).

2. Controlled Complexity: Systematically intro-
duced questions varied by difficulty levels.

3. High Resolution: The large scale and fine-
grained difficulty steps enable statistically ro-
bust measurement of model accuracy, sensitiv-
ity to noise types, and impact of tool use.

Seed Question

<Code / No-Code Prompt>

Solve the following integral.∫ 2

1

ex(x− 1)

x(x+ ex)
dx

Solution:

ln

(
2 + e2

2 + 2e

)

Symbolic Perturbation

<Code / No-Code Prompt>

Solve the following integral.
Assume A, B, F, G are real and positive.∫ 2

1

AeFx(Fx− 1)

Fx (BeFx + FGx)
dx

Solution:

A

BF
· ln

(
e2B + 2G

2(eB +G)

)

No-Code
Prompt

Assume you don’t have access to a com-
puter: do not use code, solve thismanually
- using your internal reasoning.

Code
Prompt

Please use Python to solve the following
question. Don’t show it, just run it inter-
nally.

Fig. 2: Example ASyMOB question and code-use
preambles. A seed question (left) and its symbol-
ically perturbed variant (right). Proceeding text
disallows or encourages code execution (this part
is omitted for models without inherent code exe-
cution capabilities).

Using ASyMOB, we evaluated the performance
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Fig. 3: Degradation of model success rate relative
to seed-set performance. Both code-integrated
models (left) and non-code integrated (right) ex-
hibit performance degradation due to numeric
and symbolic perturbations, but frontier models
are more resilient. Notably, GPT 4.1 is substan-
tially more robust when code-enabled.

of leading open- and closed-weight LLMs, includ-
ing general and mathematical models. Our results
showcase the challenge perturbations pose to LLM
symbolic math skills: the success rate on the unper-
turbed subset is 77% (averaged over all tested mod-
els), vs. 33.4% on the full ASyMOB benchmark. The
most substantial drop in performance already hap-
pens for small perturbations, and is seen across all
types (Figure 3).
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