
A Extra Algorithm Details463

A.1 Proof of Uncertainty Set Regularized Robust Bellman Equation464

The proof is as follows:465

Q
⇡(s, a) = r(s, a) + � min

w2⌦w

Z

s0
P (s0|s, a;w)V ⇡(s0)ds0

= r(s, a) + �

Z

s0
P (s0|s, a; w̄)V ⇡(s0)ds0 + � min

w2⌦w

Z

s0
(w � w̄)TrwP (s0|s, a; w̄)V ⇡(s0)ds0

= r(s, a) + �

Z

s0
P (s0|s, a; w̄)V ⇡(s0)ds0 � �


max
w̃

Z

s0
�w̃TrwP (s0|s, a; w̄)V ⇡(s0)ds0 � �⌦w̃(w̃)

�

= r(s, a) + �

Z

s0
P (s0|s, a; w̄)V ⇡(s0)ds0 � �

Z

s0
�
⇤
⌦w̃

[�rwP (s0|s, a; w̄)V ⇡(s0)] ds0

(6)

The second line utilizes the first-order Taylor Expansion at w̄. The third line reformulates the mini-466

mization on w to maximization on w̃ and adds an indicator function as a hard constraint on w̃. The467

last line directly follows the definition of convex conjugate function.468

A.2 Convergence of Robust Policy Evaluation469

We now prove that the Bellman operator with an extra regularizer term as the policy evaluation stage470

can converge to the robust action value function given some specific conditions.471

Since V
⇡(s) =

R
a ⇡(a|s)Q

⇡(s, a)da, we define the equivalent operator with respect to Q
⇡ to the472

one proposed in this paper as T such that473

TQ
⇡(s, a) = r(s, a) + �

Z

s0
P (s0|s, a; w̄)

Z

a0
Q

⇡(s0, a0)da0ds0 � ↵

Z

s0
krwP (s0|s, a; w̄)

Z

a0
Q

⇡(s0, a0)da0k2ds0

= r(s, a) + �

Z

s0
P (s0|s, a; w̄)V ⇡(s0)ds0 � ↵

Z

s0
krwP (s0|s, a; w̄)V ⇡(s0)k2ds0

| {z }
The operator proposed in this paper.

.

(7)

To ease the derivation, we will not expand the term V
⇡ as the form of Q⇡ at the beginning in the474

following procedures.475

||TQ⇡
1 � TQ

⇡
2 ||1 = max

s,a

����r(s, a) + �

Z

s0
P (s0|s, a; w̄)V ⇡

1 (s0)ds0 � ↵

Z

s0
krwP (s0|s, a; w̄)V ⇡

1 (s0)k2ds0

� r(s, a)� �

Z

s0
P (s0|s, a; w̄)V ⇡

2 (s0)ds0 + ↵

Z

s0
krwP (s0|s, a; w̄)V ⇡

2 (s0)k2ds0
����

= max
s,a

�����
Z

s0
P (s0|s, a; w̄)

h
V

⇡
1 (s0)� V

⇡
2 (s0)

i
ds

0+

↵

Z

s0

h
krwP (s0|s, a; w̄)V ⇡

2 (s0)k2 � krwP (s0|s, a; w̄)V ⇡
1 (s0)k2

i
ds

0
����

 �max
s,a

����
Z

s0
P (s0|s, a; w̄)

h
V

⇡
1 (s0)� V

⇡
2 (s0)

i
ds

0
����

| {z }
Partition 1.

+

↵max
s,a

����
Z

s0

h
krwP (s0|s, a; w̄)V ⇡

2 (s0)k2 � krwP (s0|s, a; w̄)V ⇡
1 (s0)k2

i
ds

0

| {z }
Partition 2.

����

12

Since Partition 1 is a conventional Bellman operator, following the contraction mapping property476

we can directly write the inequality such that477

�max
s,a

����
Z

s0
P (s0|s, a; w̄)

h
V

⇡
1 (s0)� V

⇡
2 (s0)

i
ds

0
����  �||V ⇡

1 (s0)� V
⇡
2 (s0)||1. (8)

Next, we will process Partition 2. The details are as follows:478

↵max
s,a

����
Z

s0

h
krwP (s0|s, a; w̄)V ⇡

2 (s0)k2 � krwP (s0|s, a; w̄)V ⇡
1 (s0)k2

i
ds

0
����

 ↵max
s,a

����
Z

s0

����rwP (s0|s, a; w̄)
h
V

⇡
2 (s0)� V

⇡
1 (s0)

i����
2

ds
0
����

 ↵max
s,a

����
Z

s0
krwP (s0|s, a; w̄)k2|V ⇡

2 (s0)� V
⇡
1 (s0)|ds0

����

 ↵max
s,a

����max
s

|V ⇡
2 (s0)� V

⇡
1 (s0)|

Z

s0
krwP (s0|s, a; w̄)k2ds0

����

 ↵max
s,a

����
Z

s0
krwP (s0|s, a; w̄)k2ds0

����
| {z }

:=�

max
s0

|V ⇡
1 (s0)� V

⇡
2 (s0)|

= �||V ⇡
1 � V

⇡
2 ||1. (9)

Combining the results of Eq.8 and Eq.9 and expanding the term V
⇡ , we can directly get that479

||TQ⇡
1 � TQ

⇡
2 ||1  (� + �)||V ⇡

1 � V
⇡
2 ||1

 (� + �)max
s0

|V ⇡
1 (s0)� V

⇡
2 (s0)|

 (� + �)max
s0,a0

|Q⇡
1 (s

0
, a

0)�Q
⇡
2 (s

0
, a

0)|

 (� + �)||Q⇡
1 �Q

⇡
2 ||1

To enable T to be a contraction mapping in order to converge to the exact robust Q-values, we have480

to let 0  � + �  1. In more details, the norm of the gradient of transition function with respect481

to the uncertainty set (i.e., krwP (s0|s, a; w̄)k2 inside �) is critical to the convergence of robust Q-482

values under some robust policy. Given the above conditions, the robust value function will finally483

converge.484

A.3 Algorithm on Incorporating Uncertainty Set Regularizer into Soft Actor Critick485

The proposed Uncertainty Set Regularizer method is flexible to be plugged into any existing RL486

frameworks as introduced in Section 3.2. Here, we include a specific implementation on Soft Actor487

Critic algorithm, see Algorithm 1.488

A.4 Algorithm on Generation of Adversarial Uncertainty Set489

This is the pseudo-code to generate the adversarial uncertainty set introduced in the paper.490

B Extra Experimental Setups491

B.1 RWRL Benchmarks492

In this paper, we conduct experiments on six tasks: cartpole balance, cartpole swingup,493

walker stand, walker walk, quadruped walk, quadruped run. All tasks involve a domain and a494

movement. For example, cartpole balance task represents the balance movement on cartpole do-495

main. In this paper, we consider 3 domains with 2 movements each.496

The 3 domains are cartpole, walker and quadruped respectively:497

13

Algorithm 1 Uncertainty Set Regularized Robust Soft Actor Critic

1: Input: initial State s, action value Q(s, a; ✓)’s parameters ✓1, ✓2, policy ⇡(a|s;�)’s parameters
�, replay buffer D = ;, transition nominal parameters w̄, value target update rate ⇢

2: Set target value parameters ✓tar,1 ✓1, ✓tar,2 ✓2

3: repeat
4: Execute a ⇠ ⇡(a|s;�) in the environment
5: Observe reward r and next State s

0

6: D D [{s, a, r, s0}
7: s s

0

8: for each gradient step do
9: Randomly sample a batch transitions, B = {s, a, r, s0} from D

10: Construct adversarial adversarial uncertainty set ⌦w̃ as introduced in Section 3.3 (for ad-
versarial uncertainty set only)

11: Compute robust value target y(s, a, r, s0, w̄) by calculating the RHS of Equation 4
12: Update action State value parameters ✓i for i 2 {1, 2} by minimizing mean squared loss

to the target:
13: r✓i

1
|B|

P
(s,a,r,s0)2B(Q(s, a; ✓i)� y(s, a, r, s0, w̄))2 for i = 1, 2

14: Update policy parameters � by policy gradient:
15: r�

1
|B|

P
(s)2B (mini=1,2 Q(s, ã; ✓i)� ↵ log ⇡(ã|s;�))

16: where ã is sampled from ⇡(a|s;�) and differentiable w.r.t. �
17: Update target value parameters:
18: ✓tar,i (1� ⇢)✓tar,i + ⇢✓i for i = 1, 2
19: end for
20: until convergence

Algorithm 2 Generation of Adversarial Uncertainty Set

1: Input: current state s, current action a, value function V (s; ✓), next state distribution
P (·|s, a; w̄) = N (µ(s, a; w̄),⌃(s, a; w̄))

2: do
3: Sample � ⇠ N (0, I) and calculate next state s

0 = µ(s, a; w̄) + ⌃(s, a; w̄)� (the reparame-
terization trick to sample s

0 ⇠ P (·|s, a; w̄));
4: Forward pass to calculate the next state value V (s0; ✓);
5: Backward pass to compute the derivative g(w̄) = rwV (s0; ✓) =

@V (s0;✓)
@s0

@µ(s,a;w̄)+⌃(s,a;w̄)�
@w ;

6: Normalize the derivative by d(w̄) = g(w̄)/[
PW

i g(w̄)2i]
0.5;

7: Generate the adversarial uncertainty set ⌦w = {w̄ + ↵w̃ : kw̃/d(w̄)k2  1}.
8: done

• Cartpole has an unactuated pole based on a cart. One can apply a one-direction force498

to balance the pole. For cartpole balance task, the pole starts near the upright while in499

cartpole swingup task the pole starts pointing down.500

• Walker is a planar walker to be controlled in 6 dimensions. The walker stand task re-501

quires an upright torso and some minimal torso height. The walker walk task encourages a502

forward velocity.503

• Quadruped is a generic quadruped with a more complex state and action space than cart-504

pole and walker. The quadruped walk and quadruped run tasks encourage a different level505

of forward speed.506

For a detailed description of these tasks, please refer DM CONTROL [45]. For each task, we follow507

the RWRL’s setup by selecting 4 environmental variables and perturbing them during the testing508

phase. The perturbed variables and their value ranges can be found in Table 2. We also report the509

nominal values of these perturbed variables to indicate the differences between training and testing510

environments. Notably, all tasks are run for a maximum of 1000 steps and the max return is 1000.511

14

Table 2: Tasks in RWRL benchmark and the perturbed variables.

Task Name Observation Dimension Action Dimension Perturbed Variables Perturbed Range Nominal Value

cartpole balance

cartpole swingup
5 1

pole length [0.3, 3.0] 1.0
pole mass [0.1, 10.0] 0.1

joint damping [2e-6, 2e-1] 2e-6
slider damping [5e-4, 3.0] 5e-4

walker stand

walker walk
24 6

tigh length [0.1, 0.7] 0.225
torso length [0.1, 0.7] 0.3

joint damping [0.1, 10.0] 0.1
contact friction [0.01, 2.0] 0.7

quadruped walk

quadruped run
78 12

shin length [0.25, 2.0] 0.25
torso density [500, 10000] 1000
joint damping [10, 150] 30
contact friction [0.1, 4.5] 1.5

B.2 Practical Implementations of Robust-AUC512

To calculate Robust-AUC in RWRL experiments, each agent is trained with 5 random seeds. During513

the testing phase, for each environmental variable P , we uniformly sample 20 perturbed values v in514

the range of [vmin, vmax]. For each value v, the environment variable P is first modified to value515

v and the agent is tested for 100 episodes (20 episodes per seed). We then select the 10%-quantile516
1 as the return r at value v. By doing so we roughly have an approximated curve C(v, r) and can517

calculate Robust-AUC defined previously. We also report the area between 5%-quantile and 15%-518

quantile as the statistical uncertainty of the reported Robust-AUC.519

B.3 Model Structure520

The model structure for all experimental baselines is based on the Yarats and Kostrikov [46]’s im-521

plementation of Soft Actor Critic (SAC) [27] algorithm. The actor network is a 3-layer feed-forward522

network with 1024 hidden units and outputs the Gaussian distribution of action. The critic network523

adopts the double-Q structure [47] and also has 3 hidden layers with 1024 hidden units on each524

layer, but only outputs a real number as the action State value.525

B.4 Hyperparameters526

To compare all algorithms fairly, we set all hyperparameters equally except the robust method and527

its coefficient. All algorithms are trained with Adam optimizer [28]. The full hyperparameters are528

shown in Table 3. For regularizer coefficients of all robust update methods, please see Table 4.529

We can see that this parameter is pretty robust and do not need very handy work to finetune. All530

experiments are carried out on NVIDIA GeForce RTX 2080 Ti and Pytorch 1.10.1.531

B.5 Extra Setups of Sim-to-real Task532

We use the Unitree A1 robot [34] and the Bullet simulator [35] as the platform for sim-to-real533

transfer. The Unitree A1 is a quadruped robot with 12 motors (3 motors per leg). The Bullet534

simulator is a popular simulation tool specially designed for robotics.535

It is well known that there is a non-negligible difference between simulators and real robots due536

to:(1) the simulator possesses a simplified dynamics model and suffers from accumulated error [33]537

and (2) there are significant differences between simulators and real hardware in robot’s parameters,538

such as a quadruped example in Table 5. Therefore, training policies in simulation and applying539

them to real robots (sim-to-real) is a challenging task for robotics.540

110%-quantile as a worst-case performance evaluates the robustness of RL algorithms more reasonably than
common metrics.

15

Table 3: Hyperparameters of Robust RL algorithms.

HYPERPARAMETERS VALUE DESCRIPTION

BATCH SIZE 1024 THE NUMBER OF TRANSITIONS FOR EACH UPDATE
DISCOUNT FACTOR � 0.99 THE IMPORTANCE OF FUTURE REWARDS
REPLAY BUFFER SIZE 1E6 THE MAXIMUM NUMBER OF TRANSITIONS STORED IN MEMORY
EPISODE LENGTH 1E3 THE MAXIMUM TIME STEPS PER EPISODE
MAX TRAINING STEP 1E6 THE NUMBER OF TRAINING STEPS
RANDOM STEPS 5000 THE NUMBER OF RANDOMLY ACTING STEPS AT THE BEGINNING
ACTOR LEARNING RATE 1E-4 THE LEARNING RATE FOR ACTOR NETWORK
ACTOR UPDATE FREQUENCY 1 THE FREQUENCY FOR UPDATING ACTOR NETWORK
ACTOR LOG STD BOUNDS [-5, 2] THE OUTPUT BOUND OF LOG STANDARD DEVIATION
CRITIC LEARNING RATE 1E-4 THE LEARNING RATE FOR CRITIC NETWORK
CRITIC TARGET UPDATE FREQUENCY 2 THE FREQUENCY FOR UPDATING CRITIC TARGET NETWORK
CRITIC TARGET UPDATE COEFFICIENT 0.005 THE UPDATE COEFFICIENT OF CRITIC TARGET NETWORK FOR SOFT LEARNING
INIT TEMPERATURE 0.1 INITIAL TEMPERATURE OF ACTOR’S OUTPUT FOR EXPLORATION
TEMPERATURE LEARNING RATE 1E-4 THE LEARNING RATE FOR UPDATING THE POLICY ENTROPY
SAMPLE SIZE 1 THE SAMPLE SIZE TO APPROXIMATE THE ROBUST REGULARIZOR

Table 4: Regularization coefficients of Robust RL algorithms.

Task Name Algorithms
None-Reg L1-Reg L2-Reg L1-USR L2-USR Adv-USR

cartpole balance - 1e-5 1e-4 5e-5 1e-4 1e-5
cartpole swingup - 1e-5 1e-4 1e-4 1e-4 1e-4
walker stand - 1e-4 1e-4 5e-5 1e-4 1e-4
walker walk - 1e-4 1e-4 1e-4 1e-4 5e-4
quadruped walk - 1e-5 1e-4 1e-4 1e-4 5e-4
quadruped run - 1e-4 1e-4 5e-5 1e-4 7e-5

Specifically, we perform 2 sim-to-real tasks: standing and locomotion following previous work [36].541

The detailed description of the experiment is as follows:542

Observation The observation contains the following features of 3 steps: motor angles (12 dim),543

root orientation (4 dim, roll, pitch, roll velocity, pitch velocity), and previous actions (12 dim). So544

the observation space is 84 dimensions.545

Action All 12 motors can be controlled in the position control mode, which is further con-546

verted to torque with an internal PD controller. The action space for each leg is defined as547

[p � o, p + o]. The specific values for different parts (hip, upper leg, knee) in the stand-548

ing task are p = [0.00, 1.6,�1.8], o = [0.8, 2.6, 0.8]. The values in the locomotion task are549

p = [0.05, 0.7,�1.4], o = [0.2, 0.4, 0.4].550

Reward For the standing task, the reward consists of 3 parts: r(s, a) = 0.2⇤rHEIGHT+0.6⇤rPOSE+551

0.2 ⇤ rVEL. rHEIGHT = 1� |z � 0.2587|/0.2587 is rewarded for approaching the standing position on552

the z-axis. rPOSE = exp{�0.6⇤
P

|mtarget�m|} is for correct motor positions. rVEL is punished for553

positive velocity (standing should be still in the end). For the locomotion task, the reward function554

is inspired by Smith et al. [48]. r(s, a) = rv(s, a) � 0.1 ⇤ v2YAW. vYAW is angular yaw velocity and555

rv(s, a) = 1 for vx 2 [0.5, 1.0], = 0 for vx � 2.0 and = 1 � |vx � 0.5| otherwise, is rewarded for556

velocity in x-axis.557

Simulation Training We first train SAC agents with and without Adv-USR in simulations. Each558

step simulates 0.033 seconds so that the control frequency is 33 Hz. Agents are trained for 1e6 steps559

in the standing task and 2e6 steps in the locomotion task. The model structures and hyperparameters560

are the same as in RWRL experiments and can be referred to Appendix B.3 and B.4. The regularizer561

coefficients for Adv-USR are 1e-3 and 1e-4 for two tasks.562

16

Real Robot Evaluation After training, we directly deploy the learned policies on real robots.563

Since all sensors are internal on robots, there are no external sensors required. The control frequency564

is set as 33 Hz. We run each policy 50 episodes with 1000 steps and report the 10%-quantile of the565

final return and 5%� 15%-quantile as the error bar in Figure 3.566

Table 5: Unitree A1’s Parameters in Simulation and Real Robot.

Parameters Simulation Real Robot
Mass (kg) 12 [10, 14]
Center of Mass (cm) 0 [-0.2, 0.2]
Motor Strength (⇥ default value) 1.0 [0.8, 1.2]
Motor Friction (Nms/rad) 1.0 [0.8, 1.2]
Sensor Latency (ms) 0 [0, 40]
Initial position (m) (0, 0, 0.25) ([-1, 1], [-1, 1], [0.2, 0.3])

C Extra Experimental Results567

C.1 Constant Perturbation on System Parameters568

Extra experimental results for task cartpole balance, walker walk and quadruped run can be found569

in Table 6. We can observe similar results as in the main paper that both L2-USR and L1-USR can570

outperform the default version under some certain perturbations (e.g. L1-USR in cartpole balance571

for pole mass, L2-USR in walker walk for thigh length), while Adv-USR achieves the best average572

rank among all perturbed scenarios, showing the best zero-shot generalization performance in con-573

tinuous control tasks. Notably, L2-Reg in walker walk and L1-Reg in quadruped run also achieve574

a competitive robust performance compared with Adv-USR. A possible reason is that, for environ-575

ments with high-dimensional state and action spaces, some of them are redundant and direct regu-576

larization on value function’s parameters is effective to perform dimensionality reduction and thus577

learns a generalized policy.578

Table 6: Robust-AUC of all algorithms and their uncertainties on RWRL benchmark.

Task Name Variables Algorithms
None-Reg L1-Reg L2-Reg L1-USR L2-USR Adv-USR

cartpole balance

pole length 981.45 (5.92) 989.85 (3.74) 989.33 (8.32) 798.07 (22.93) 944.89 (23.33) 959.66 (26.58)
pole mass 623.88 (28.64) 605.35 (55.60) 607.79 (23.18) 632.54 (14.74) 588.13 (38.33) 627.00 (22.90)
joint damping 970.83 (21.89) 978.97 (9.95) 982.71 (15.24) 985.57 (10.01) 978.62 (17.52) 982.43 (130.03)
slider damping 999.44 (0.26) 999.30 (0.43) 999.34 (0.57) 999.45 (0.31) 999.49 (0.48) 999.55 (0.32)
average rank 4.00 4.00 3.25 2.75 4.50 2.50

walker walk

thigh length 315.64 (37.24) 237.90 (25.04) 345.12 (40.30) 316.61 (37.86) 350.01 (34.37) 318.88 (53.73)
torso length 498.01 (54.04) 300.39 (114.06) 533.96 (47.73) 550.44 (50.83) 543.39 (42.52) 543.91 (54.36)
joint damping 364.70 (50.33) 283.19 (30.18) 420.23 (51.84) 357.39 (56.04) 356.22 (49.74) 368.35 (64.76)
contact friction 885.01 (27.47) 714.94 (27.15) 907.13 (18.94) 897.65 (23.49) 900.58 (21.46) 902.03 (24.68)
average 4.50 6.00 2.00 3.25 3.00 2.25

quadruped run

shin length 204.14 (91.36) 280.11 (61.49) 168.95 (38.19) 246.43 (117.07) 214.18 (56.06) 250.07 (79.37)
torso density 321.24 (76.70) 417.68 (88.55) 252.37 (88.41) 319.43 (90.79) 225.32 (80.49) 383.14 (67.34)
joint damping 367.05 (139.61) 641.08 (19.12) 687.42 (12.85) 324.38 (14.73) 692.02 (6.98) 664.25 (19.35)
contact friction 654.43 (57.94) 614.21 (76.60) 473.58 (61.72) 632.64 (95.18) 624.32 (124.39) 537.19 (76.22)
average rank 3.75 3.00 5.00 3.00 3.25 3.00

C.2 Constant Perturbation on Multiple System Parameters579

In real-world scenarios, there would be uncertainties in all system parameters. We provide the fol-580

lowing additional experimental results to show the robustness when all parameters are perturbed581

simultaneously. The specific environmental setup is that all 4 parameters are perturbed simultane-582

ously during testing. The perturbation intensity grows from 0 to 1. 0 resembles training environ-583

ments without perturbations and 1 represents the allowed maximum perturbed values in Table 2. We584

adopt the same metric Robust-AUC and report it in the following table. All methods become less585

robust due to the increasing difficulty of perturbations, but Adv-USR still outperforms others.586

17

Table 7: Robust-AUC of all algorithms and their uncertainties on RWRL benchmark.

Task Name Algorithms
None-Reg L1-Reg L2-Reg L1-USR L2-USR Adv-USR

cartpole swingup 867.42 (0.27) 856.87 (0.52) 866.99 (0.23) 867.61 (0.44) 867.45 (0.26) 881.36 (0.21)
walker stand 254.04 (32.91) 235.36 (25.29) 254.64 (35.01) 262.57 (25.02) 263.35 (24.85) 266.97 (7.75)
quadruped walk 522.98 (34.93) 524.24 (85.03) 525.51 (24.58) 525.14 (85.68) 506.17 (54.92) 534.61 (18.25)

C.3 Noisy Perturbation on System Parameters587

One may also be interested in the noisy perturbation setup where system parameters keep changing588

at every time step. This setup extends the Robust RL framework where the perturbation is fixed589

throughout the whole episode. The specific experimental setup noisy perturbation is as follows: the590

environmental parameter starts from the nominal value and follows a zero-mean Gaussian random591

walk at each time step. The nominal value and the standard deviation of the Gaussian random592

walk are recorded in Table 8. The experimental result on quadruped walk is shown in Figure 4. In593

this experiment, L1-Reg achieves the best robustness, while our method Adv-USR achieves Top-2594

performance in 3 out of 4 perturbations. While L1-Reg performs less effectively in the case of fixed595

perturbation, it implies that different regularizers do have different impacts on these two types of596

perturbations. For noisy perturbation, environmental parameters walk randomly around the nominal597

value and reach the extreme value less often, which requires a less conservative robust RL algorithm.598

Our algorithm Adv-USR, originally designed for fixed perturbation problem, achieves good but not599

the best performance, which leads to an interesting future research direction on the trade-off between600

robustness and conservativeness.601

Table 8: The perturbed variables for the noise perturbation experiment.

Task Name Perturbed Variables Start Value Step Standard Deviation Value Range

quadruped walk

shin length 0.25 0.1 [0.25, 2.0]
torso density 1000 500 [500, 10000]
joint damping 30 10 [10, 150]
contact friction 1.5 0.5 [0.1, 4.5]

Figure 4: The parameter-return bar graph of all algorithms. All bars represent 10%-quantile value
of episodic return under noisy environmental parameters.

C.4 Computational Cost of All Algorithms602

We report the average computation time (in milliseconds) for a single value update of all algorithms603

in Table 9. We notice that the computation of all algorithms increases as the environment’s com-604

plexity grows, and L1-Reg, L1-Reg, Adv-USR’s complexities are acceptable compared with other605

baselines (⇥ 1 ⇠ 1.25 time cost). The computation only becomes a problem when applying USR606

methods to dynamics with millions of parameters (common in model-based RL [44]). To tackle this607

issue, we can identify important parameters to reduce computation costs, as stated in Section 7.608

18

Table 9: The computational cost (in milliseconds) for each value update of Robust RL algorithms.

Task Name Algorithms
None-Reg L1-Reg L2-Reg L1-USR L2-USR Adv-USR

cartpole balance

cartpole swingup 14.72 ± 1.57 16.48 ± 1.68 17.05 ± 1.63 17.62 ± 1.49 22.48 ± 3.21 22.48 ± 3.21
walker stand

walker walk 15.71 ± 1.23 18.89 ± 1.58 17.52 ± 1.92 18.06 ± 1.80 18.39 ± 1.90 23.16 ± 1.72
quadruped walk

quadruped run 15.93 ± 1.68 19.47 ± 1.47 19.56 ± 1.67 20.79 ± 4.20 19.13 ± 1.98 25.23 ± 2.14

Theoretically, the additional computational cost largely depends on the norm term609

krwP (s0|s, a; w̄)V ⇡(s0)k2 in Equation 5, time complexity is O(W) (W is the number of610

parameters).611

D Extra Related Work612

Action Perturbation. Early works in Robust RL concentrated on action space perturbations. Pinto613

et al. [42] first proposed an adversarial agent perturbing the action of the principle agent, training614

both alternately in a mini-max style. Tessler et al. [49] later performed action perturbations with615

probability ↵ to simulate abrupt interruptions in the real world. Afterwards, Kamalaruban et al. [50]616

analyzed this mini-max problem from a game-theoretic perspective and claimed that an adversary617

with mixed strategy converges to a mixed Nash Equilibrium. Similarly, Vinitsky et al. [51] involved618

multiple adversarial agents to augment the robustness, which can also be explained in the view of a619

mixed strategy.620

State Perturbation. State perturbation can lead to the change of state from s to sp, and thus might621

worsen an agent’s policy ⇡(a|s) [52]. Zhang et al. [53], Oikarinen et al. [54] both assume an Lp-622

norm uncertainty set on the state space (inspired by the idea of adversarial attacks widely used in623

computer vision [55]) and propose an auxiliary loss to encourage learning to resist such attacks. It is624

worth noting that state perturbation is a special case of transition perturbation, which can be covered625

by the framework proposed in this paper, as further explained in Appendix E.626

Reward Perturbation. The robustness-regularization duality has been widely studied, especially627

when considering reward perturbations [21, 22, 23]. One reason is that the policy regularizer is628

closely related to a perturbation on the reward function without the need for a rectangular uncertainty629

assumption. However, it restricts the scope of these works as reward perturbation, since it can630

be shown to be a particular case of transition perturbation by augmenting the reward value in the631

state [22]. Besides, the majority of works focus on the analysis of regularization to robustness,632

which can only analyze the effect of existing regularizers instead of deriving novel regularizers for633

robustness as in the work we present here.634

Bayesian RL. One commonality between Bayesian RL and Robust RL is that they both store un-635

certainties over the environmental parameter (posterior distribution q(w) in Bayesian RL and uncer-636

tainty set ⌦w in Robust RL). Uncertainties learned in Bayesian RL can benefit Robust RL in two637

ways: (1) Robust RL can define an uncertainty set ⌦w = {w : q(w) > ↵} to learn a robust policy638

that can tolerate model errors, which is attractive for offline RL and model-based RL; (2) A soft639

robust objective with respect to the distribution q(w) can ease the conservative behaviours caused640

by the worst-case scenario [18].641

Adaptive RL Adaptive RL (often referred as Meta RL [56]) is another popular technique to deal642

with the perturbations in environments parallel to Robust RL introduced in this paper. The main643

difference between Robust RL and Adaptive RL is whether policy parameters are allowed to change644

when environmental parameters vary. Robust RL is a zero-shot learning technique aiming to learn645

one single robust policy that can be applied to various perturbed environments. Adaptive RL is a646

few-shot learning technique aiming to quickly change policy to adapt to the changing environments.647

19

These two techniques can be combined to increase the robustness in real-world robots. One can first648

use Robust RL to learn a base policy as the warm start and fine-tune the policy on certain perturbed649

environments with Adaptive RL.650

E Comparison with State Perturbation651

State perturbation describes the uncertainties in the output space of the dynamics model, which is652

a special case of transition perturbation. We illustrate how to transform the State perturbation into653

transition perturbation in the following case.654

Considering a L2 uncertainty set on the output of the dynamics model, ⌦sp = {sp|s0 ⇠655

P (·|s, a; w̄), ks0 � spk  1}. We can rewrite the next State distribution s
0 ⇠ P (·|s, a; w̄) as656

s
0 = f(s0|s, a; w̄) + ⌘, where ⌘ is a random noise ⌘ ⇠ N (0, 1). Then the perturbed State can657

be written as sp = f(s0|s, a; w̄) + ⌘ + �, k�k  1. Viewing � as one additional parameter in the658

dynamics model, the uncertainty set on � is actually ⌦� = {k�k  1}. Based on this uncertainty set659

on �, one can further design corresponding regularizers on value function to increase the robustness660

as discussed in the paper.661

If the uncertainty set on state space is unknown, denoted as ⌦� , it is still feasible to include � as an662

additional parameter in the dynamics model. As a result, Adv-USR could still be used to handle this663

unknown uncertainty set on �.664

20

