
Under review as a conference paper at ICLR 2022

Appendices

A BACKGROUND AND RELATED WORKS

A.1 DIFFERENTIAL PRIVACY

Differential Privacy (DP) (Dwork, 2011; Dwork et al., 2006; 2014) is a theoretical privacy frame-
work for aggregate data analysis. It ensures the output distributions of a randomized algorithm are
indistinguishable with a certain probability when running on two neighboring datasets differing in
one record or bounded by a distance metric.

Definition 1. ((✏, �)-Differential Privacy) A randomized mechanism M : D ! R with domain D
and range R satisfies (✏, �)-differential privacy if for any two adjacent inputs D,D0

2 D and for
any subset of outputs S ✓ R it holds that

Pr(M(D) 2 S)  e✏Pr(M(D0) 2 S) + �,

where ✏ is the privacy budget and � is the probability that privacy is broken.

The common mechanism to achieve (✏, �)-DP is Gaussian Mechanism (GM) that adds calibrated
noise to the output.

Theorem 4. Gaussian Mechanism(Dwork et al., 2014). Let G : Rv
! Rw be an arbitrary w-

dimensional function, and its sensitivity �G = maxD,D0 kG(D)�G(D0)k2. A Gaussian Mechanism
M with � adds element-wise noise N (0,�2) to the output. The mechanism M is (✏, �)-DP, with

✏ 2 (0, 1], � �

p
2 ln(1.25/�)�G/✏.

Gradient Perturbation. Gradient perturbation is a widely used technique that injects perturbation
to the gradient of each parameter to guarantee DP for deep learning models. Gradient perturbation
injects calibrated noise to the gradient during training with the following objective function and
update steps.

J (✓t) =
1

N

NX

i=1

l(xi, yi, ✓t),

✓t+1 = ✓t � ⌘(rJ (✓t) + p),

where ✓t denotes the parameter at training step t, rJ (✓t) denotes the gradient, and p denotes the
gradient perturbation. The gradient rJ (✓t) is bounded by the clipping norm or constrained by
Lipschitz continuity of loss function l.

Song et al. Song et al. (2013) first propose the gradient perturbation method by injecting pertur-
bation to the gradients during parameter updates with stocastic gradient descent (SGD). Bassily et
al. Bassily et al. (2014) improve the gradient perturbation by leveraging privacy amplification via
sampling Beimel et al. (2010) (Lemma II.2 in Bassily et al. (2014)) and strong composition Dwork
et al. (2010) (Lemma II.3 in Bassily et al. (2014)) to achieve a tighter bound. Abadi et al. Abadi
et al. (2016) make further improvement by proposing a novel privacy composition tool: moments
accountant, which can compute the overall privacy cost during training and achieve a tighter bound.
Shokri et al. Shokri & Shmatikov (2015) propose the gradient perturbation method under the dis-
tributed learning scenario. Wang et al. Wang et al. (2017) replace SGD optimizer used in previous
work with stochastic variance-reduced gradient (SVRG) Xiao & Zhang (2014) to achieve a faster
optimization. However, it requires the loss function l to be convex, G-Lipschitz and �-smooth. Lee
et al. Lee & Kifer (2018) and Yu et al. Yu et al. (2019) improve the gradient perturbation method by
dynamically allocating the privacy budget per iteration and leverage zero-concentrated DP (zCDP)
Lee & Kifer (2018) to analyze the privacy cost. In this paper, we mainly leverage the input pertur-
bation designed for certified robustness to achieve DP simultaneously and use additional gradient
perturbation as needed to achieve overall DP.

12

Under review as a conference paper at ICLR 2022

Input Perturbation. Input perturbation is a technique that directly adds calibrated noise to input
data to achieve DP. As a result, the objective function is generalized as,

Jpriv(✓) =
1

N

NX

i=1

l((x̂(i), ŷ(i)), ✓),

✓priv = argminJpriv(✓),

where ✓ denotes the model parameters, Jpriv denotes the perturbed objective function due to the
perturbed input, ✓priv denotes the parameters of the final model, N is the size of the training dataset,
(x̂(i), ŷ(i)) denote the perturbed data and l is the loss function.

Fukuchi et al. Fukuchi et al. (2017) first attempted to use Taylor expansion to transform input pertur-
bation into gradient perturbation. Although input perturbation framework theoretically guarantees
that model trained with perturbed inputs is DP, this work imposes several constraints on the loss
function, which cannot be practically applied with deep learning systems. Kang et al. Kang et al.
(2020b) propose an input perturbation that generalizes the constraints on the loss function to less
strict conditions. They also take a further step by finding that different training data will affect the
model in different ways Kang et al. (2020a). However, this work requires a pre-trained model that
should also be DP, which also requires privacy budget. In summary, all the above works impose
strict constraints on the loss function to analyze DP for input perturbation. These constraints can
not be satisfied by typical deep learning models. In this paper, we relax the constraints of Kang
et al. (2020b), propose tools for transforming the input perturbation into gradient perturbation, and
formally analyze its DP guarantee for deep learning systems. As a result, we can leverage input
perturbation to achieve both certified robustness and DP simultaneously.

A.2 CERTIFIED ROBUSTNESS

Adversarial Examples. Adversarial examples are designed by adding small perturbations to clean
examples, which are imperceptible to human eyes but can easily fool a deep learning model to
produce incorrect output. Generating an adversarial example x0 can be expressed as a constrained
optimization problem. For untargeted adversarial examples, it can be expressed as: given a clean
input x, its label y, and a classifier f , minimize L(x,x0), such that the prediction score at label y is
not the maximum among all labels: fy(x0) 6= maxj=1,..,c fj(x0), where L is a distance metric, such
as l2 or l1, and c is the number of classes. The quality of adversarial examples is measured by both
the perturbation scale, i.e. L(x,x0), and the misclassfication rate or attack success rate.

Certified Robustness. Certified robustness is a principled technique to defend against adversarial
examples. A classifier f is certified robust if for any input x 2 R

v , its prediction maxj=1,...,c fj(x)
is constant within some set around x, that is:

8⌧ 2 lp() : fy(x+ ⌧) > max
j 6=y

fj(x+ ⌧),

where y is the label of x, and lp() denotes 8⌧ 2 R
v, k⌧kp  .

Randomized Smoothing. Randomized smoothing is the state-of-the-art approach to achieve cer-
tified robustness. Given a classifier f , the random smoothing technique converts f into a smooth
classifier g, s.t., for input x, f̃ returns

f̃(x) = argmax
j=1,...,c

Pr[f(x+ b) = j],

where b ⇠ N (0,�2I). Randomized smoothing calculates a certified radius , s.t.,

8⌧ 2 lp() : f̃(x+ ⌧) = y,

where y is the label of x, and lp() denotes 8⌧ 2 R
v, k⌧kp  . Theoretically, randomized

smoothing only works during the testing phase by injecting input perturbation to the testing samples.
However, there is a common practice during the training phase, which perturbs the training samples
with the input perturbation to improve the utility performance.

PixelDP. Lecuyer et al. Lecuyer et al. (2019) propose PixelDP to achieve certified robustness by
considering an input image as a database in DP parlance and each pixel of the image as each record

13

Under review as a conference paper at ICLR 2022

in DP. PixelDP shows that adding a randomization layer in the model to preserve DP on image pixels
guarantees certified robustness of the model against adversarial examples.

Randomized Smoothing. Randomized smoothing is another technique that adds random noise to
the input for achieving certified robustness and has been shown to outperform PixelDP with tighter
robustness guarantee. Li et al. Li et al. (2019) derive a certified bound for robustness to adversarial
examples using Rényi Divergence Gil (2011) by adding additive random noise to the input. Cohen
et al. Cohen et al. (2019) leveraged Neyman-Person lemma to analyze the correlation between the
highest scored class and the second highest class. Compared to the previous work, they provide a
tight certified robustness guarantee for the model. All above-mentioned work are certified within
an L2 radius which means that the adversary cannot alter the prediction within a L2 unit ball. Lee
et al. Lee et al. (2019) provide certified robustness for discrete cases where the adversary is L0

bounded (the number of pixel changes in a figure). Salman et al. Salman et al. (2019) further
employ adversarial training to improve the certified robustness of models.

To provide more efficient certified robustness, Salman et al. Salman et al. (2020) also propose to
obtain a certified robust classifier from a fixed pre-trained model. Randomized Smoothing is then
applied during testing and provides certified robustness without retraining the pre-trained model. In
this paper, we adopt a similar setting as Salman et al. (2020) but focus on achieving both certified
robustness and DP at the same time via randomized smoothing (input perturbation).

A.3 DIFFERENTIAL PRIVACY WITH CERTIFIED ROBUSTNESS

There are few works on simultaneously achieving both DP and certified robustness. Phan et al. Phan
et al. (2019) first attempt to propose a framework called Secure-SGD to simultaneously achieve cer-
tified robustness and differential privacy. They use a PixelDP Lecuyer et al. (2019) based approach
to achieve certified robustness and propose a Heterogeneous Gaussian Mechanism (HGM) to im-
prove the performance of certified robustness. To achieve DP, they use gradient perturbation and
propose a Heterogeneous Gaussian Mechanism (HGM) by adding heterogeneous Gaussian noise in-
stead of element-wise Gaussian noise. There are two major limitations of this work: 1) The random
perturbation used to achieve certified robustness during training should have contributed a certain
degree of randomness to preserve DP but is ignored. Instead, additional Gaussian perturbation is
added onto the gradient to achieve DP. 2) The robustness bound provided by PixelDP is loose com-
pared with other randomized smoothing Li et al. (2019); Cohen et al. (2019); Lee et al. (2019) based
approaches for certified robustness.

Another work from Phan et al. Phan et al. (2020) developed StoBatch algorithm to guarantee DP
and certified robustness. It first leverages Autoencoder (AE) Hinton & Zemel (1994) and functional
mechanism (objective perturbation) Zhang et al. (2012) to reconstruct input examples with DP. Then,
these reconstructed DP data is used to train a deep neural network for classification. To make the
neural network robust and DP, they apply adversarial training Tramèr et al. (2017) and functional
mechanism as mentioned earlier during training. Although this framework achieves better perfor-
mance compared to their previous work Phan et al. (2019), there are still two limitations: 1) The
approach is only applicable to simple architectures of AE due to the constraints of function mech-
anism and hence cannot learn complicated representation on high-dimensional or complex data. 2)
Similar to Secure-SGD Phan et al. (2019), the robustness bound provided by PixelDP is loose.

Although these works attempt to achieve both DP and certified robustness, there are several major
limitations. In our work, we focus on addressing these limitations and compare our approach with
these two approaches in the experimental studies.

B BRIEF PROOF OF RANDOMIZED SMOOTHING

Given denoiser g and pre-trained classifier h, let f = g � h, a randomized smoothed classifier f̃
works as follows,

f̃(x) = argmax
j=1,...,c

Pr[f(x+ b) = j], (6)

where input perturbation b ⇠ N (0,�2I).

14

Under review as a conference paper at ICLR 2022

Suppose the probability that f̃ return the class y of x is py = P(f̃(x) = y) and the probability for
“runner-up” class b is pb = P(f̃(x) = b). The smoothed classifier f̃ is certified robust around x
within the radius

 =
�

2
(��1(py)� ��1(pb)),

where ��1 is the inverse of the standard Gaussian CDF. However, computing py and pb is not
practical for deep learning models. To solve this challenge, Cohen et al. (Cohen et al., 2019) used
Monte Carlo sampling to get the estimation py and pb s.t. py  py and pb � pb with arbitrarily high
probability. py and pb is then used to substitute py and pb in Equation (6) and the certified radius 
is obtained.

C THEOREM 5 (WEGM) AND PROOF

w-Element Gaussian Mechanism (wEGM) is actually a rewrite of the traditional Gaussian mech-
anism and can guarantee that M is still DP after applying perturbation to each component of the
output.
Theorem 5. w-Element Gaussian Mechanism. Let G : Rv

! Rw be an arbitrary w-dimensional
function, and �G = maxD,D0 kG(D) � G(D0)k2. A w-Element Gaussian Mechanism M with �
adds noise to each of the w elements of the output. The mechanism M is (✏, �)-DP, with

✏ 2 (0, 1], � �

p
2 ln(1.25/�)�G/✏.

As can be seen in the definition of the theorem, the perturbation in wEGM is i.i.d. with the same
scale �. The proof of Theorem 5 is as follows:

Proof. The privacy loss of an output o is defined as:

L(o;M,D,D0) = ln
Pr[M(D,G,�)] = o

Pr[M(D0,G,�)] = o
(7)

Given v = G(D)� G(D0), we have

|L(o;M,D,D0)|

= |ln
Pr[M(D,G,�)] = o

Pr[M(D0,G,�)] = o
|

= |ln
Pr[G(D) +N (0,�2)] = o

Pr[G(D0) +N (0,�2)] = o
|

= |ln

Qw
k=1 exp(�

1
2�2 (ok � G(D)k)2Qw

k=1 exp(�
1

2�2 (ok � G(D)k + vk)2
|

=
1

2�2
|

wX

k=1

(ok � G(D)k)
2
� (ok � G(D)k + vk)

2
|.

Let p denotes o� G(D), then pk = ok � G(D)k, and pk ⇠ N (0,�2), Then we have

|L(o;M,D,D0)|

=
1

2�2
|

wX

k=1

(p2
k � (pk + vk)

2)|

=
1

2�2
|kpk2 � kp+ vk2|.

According to the fact that a spherically symmetric normal distribution is independent of the orthog-
onal basis, we can always find a basis b1, b2, ..., bw that is aligned with p. Then we can depict
p =

Pw
k=1 p

0
k with p0k being the component on basis bk and p0k ⇠ N (0,�2). Without loss of

15

Under review as a conference paper at ICLR 2022

generality, we assume b1 is parallel to v, which means that

kpk2 =
wX

k=1

kp0kk
2,

kp+ vk2 = kp01 + vk2 +
wX

k=2

kp0kk
2.

Therefore, we have

|L(o;M,D,D0)|

=
1

2�2
|kpk2 � kp+ vk2|

=
1

2�2
|kp01 + vk2 � kp01k

2
|


1

2�2
|�2

G + 2|p01|�G |

Following the proof of Theorem A.1 in Dwork et al. (2014), we can show that the mechanism M is
(✏, �)-DP, with

✏ 2 (0, 1],� �

p
2ln(1.25/�)�G/✏.

D PROOF OF THEOREM 1 (MGM)

Proof. The privacy loss of an output o is defined as:

L(o;M,D,D0) = ln
Pr[M(D,G,⌃)] = o

Pr[M(D0,G,⌃)] = o

Given ⌃, we have

|L(o;M,D,D0)|

= |ln
Pr[M(D,G,⌃)] = o

Pr[M(D0,G,⌃)] = o
|

= |ln
Pr[G(D) +N (0,⌃)] = o

Pr[G(D0) +N (0,⌃)] = o
|

= |ln
exp(� 1

2 (o� G(D))|⌃�1(o� G(D))

exp(� 1
2 (o� G(D0))|⌃�1(o� G(D0))

|

Given the transformation matrix A(i), we denote M as a2A(i)A
|
(i), which is a symmetric matrix.

Therefore, M can be decomposed by Singular Value Decomposition as:

M = U⇤U|,

where U,⇤ 2 Rw⇥w, and ⇤ is a diagonal matrix with each element on its diagonal being the
singular values of M. We construct a matrix K 2 Rw⇥w, s.t., K = U⇤

1
2U|, then

M = KK|,

Let p denotes o� G(D), then p ⇠ N (0,⌃). Construct a Gaussian random variable p̃ ⇠ N (0,�2).
We can have p = Kp̃. Given v = G(D)� G(D0), we have

|L(o;M,D,D0)|

=
1

2
|(p+ v)|⌃�1(p+ v)� p|⌃�1p|

16

Under review as a conference paper at ICLR 2022

Construct v̂ = K�1v, then the above formula becomes

|L(o;M,D,D0)|

=
1

2
|(Kp̃+Kv̂)|⌃�1(Kp̃+Kv̂)� p|⌃�1p|

=
1

2�2
|(Kp̃+Kv̂)|(KK|)�1(Kp̃+Kv̂)�

(Kp̃)|(KK|)�1(Kp̃)|

=
1

2�2
|(p̃+ v̂)|K|(KK|)�1K(p̃+ v̂)�

p̃|K|(KK|)�1Kp̃|

=
1

2�2
|(p̃+ v̂)|(p̃+ v̂)� p̃|p̃|

=
1

2�2
|kp̃k2 � kp̃+ v̂k2|,

where p̃k ⇠ N (0,�2) and v̂ = K�1v. This is very similar to the proof in 5, except for the v̂. We
can get the similar result as,

|L(o;M,D,D0)|

=
1

2�2
|kp̃k2 � kp̃+ v̂k2|

=
1

2�2
|kp̃01 + v̂k2 � kp̃01k

2
|

=
1

2�2
|kp̃01 +K�1vk2 � kp̃01k

2
|

=
1

2�2
|kK�1vk2 + 2|p̃01K

�1v||


1

2�2
|kK�1

k
2
2�

2
G + 2|p̃01|kK

�1
k2�G |

=
1

2�2
|�̂2

G + 2|p01|�̂G |,

where �̂G = kK�1
k2�G = Smax(K�1)�G = �G

Smin(M)
1
2

, and Smin(M) is the minimum singular

value of M

Following the proof of Theorem A.1 in Dwork et al. (2014), we can show that the mechanism M is
(✏, �)-DP, with

✏ 2 (0, 1],� �

p
2ln(1.25/�)�̂G

a✏
.

Consequently, the theorem holds.

E PROOF OF LEMMA 1 (PERTURBATION TRANSFORMATION)

Proof. We leverage the Taylor expansion to rewrite l(znon(i) , ✓) at the data point xnon
(i) as follows,

l(znon(i) , ✓) = l(xnon
(i) , ✓)+

(znon(i) � xnon
(i))|rx(i)non l(x

non
(i) , ✓) + o(znon(i) � xnon

(i))
(8)

Since the only mild constraint on l(znon(i) , ✓) is C-Lipschitz continuous, the higher order terms
o(z(i) � x(i)) is non-negative for “non-negative cases”. Therefore, Equation 8 can be further ap-
proximated as,

l(znon(i) , ✓) � l(xnon
(i) , ✓) + (znon(i) � xnon

(i))|rxnon
(i)

l(xnon
(i) , ✓), (9)

17

Under review as a conference paper at ICLR 2022

which essentially tightens the privacy budget. Calculating the gradient of the above loss function,
we can have:

r✓l(z
non
(i) , ✓)

�r✓l(x
non
(i) , ✓) +r✓((z

non
(i) � xnon

(i))|rxnon
(i)

l(xnon
(i) , ✓))

=r✓l(x
non
(i) , ✓) + (znon(i) � xnon

(i))|J✓rxnon
(i)

l(xnon
(i) , ✓),

x (10)

where J✓rxnon
(i)

l(xnon
(i) , ✓) denotes the Jacobian matrix. We assume the gradient perturbation p(i)

is defined as p(i) = J✓rxnon
(i)

l(xnon
(i) , ✓)b(i), which is transformed from the input perturbation b(i).

The gradient can thus be rewritten as Equation 3:

r✓l(z
non
(i) , ✓) = r✓l(x

non
(i) , ✓) + p(i).

To analyze the statistics of J✓rxnon
(i)

l(xnon
(i) , ✓), we vectorize b(i), znon(i) and ✓, and let A(i) =

J✓rxnon
(i)

l(xnon
(i) , ✓). Therefore, the problem becomes that given p(i) = A(i)b(i), where

znon(i) ,b(i) 2 Rv⇥1, b(k)
(i) ⇠ N (0,�2), ✓ 2 Rw⇥1,A(i) 2 Rv⇥1⇥w, what is the scale of p(i).

Denoting M(i) as A(i)A
|
(i), then according to the linear transformation of Gaussian random vari-

able, we can conclude that p(i) ⇠ N (0,⌃(i)), where ⌃(i) is the covariance matrix of p(i) and
⌃(i) = M(i)�

2.

F THEOREM 6 (HGM) AND PROOF

Theorem 6. Heterogeneous Gaussian Mechanism. Let G : Rv
! Rw be an arbitrary w-dimensional

function, and �G = maxD,D0 kG(D) � G(D0)k2. A Heterogeneous Gaussian Mechanism M with
the diagonal matrix ⌃ 2 Rw⇥w adds noise to each of the w elements of the output. The mechanism
M is (✏, �)-DP, with

✏ 2 (0, 1],�min �

p
2ln(1.25/�)�G/✏.

where ⌃ is a diagonal matrix with each element being �2
1 ,�

2
2 , ...,�

2
w and �min = mini2{1,2,...,w} �i.

The proof is as follows:

Proof. The privacy loss of an output o is defined as:

L(o;M,D,D0) = ln
Pr[M(D,G,⌃)] = o

Pr[M(D0,G,⌃)] = o

Given ⌃, we have

|L(o;M,D,D0)|

= |ln
Pr[M(D,G,⌃)] = o

Pr[M(D0,G,⌃)] = o
|

= |ln
Pr[G(D) +N (0,⌃)] = o

Pr[G(D0) +N (0,⌃)] = o
|

= |ln
exp(� 1

2 (o� G(D))|⌃�1(o� G(D))

exp(� 1
2 (o� G(D0))|⌃�1(o� G(D0))

|

According to the theorem, ⌃ is a diagonal matrix with each element being �2
1 ,�

2
2 , ...,�

2
w. We can

construct a diagonal matrix K 2 Rw⇥w, s.t., the diagonal elements of K are �1,�2, ...,�w, then

M = KK|,
K = K|.

Following the proof of Theorem 1, we can show that the mechanism M is (✏, �)-DP, with

✏ 2 (0, 1], 1 �

p
2ln(1.25/�)�̂G/✏.

18

Under review as a conference paper at ICLR 2022

where �̂G = �G
�min

, and �min = mini2{1,2,...,w} �i. Consequently, the theorem holds.

Next, we will prove that this mechanism indeed describe the same fact as HGM in Phan et al. (2019)
but from different views.

We define �2 = 1
w

Pw
i=1 �

2
i , and construct a vector r 2 Rw with each element being ri =

�2
iPw

i=1 �2
i

. Then we have �2
i = �2

⇥ wri, and each element of the diagonal matrix K becomes
p
wr1�,

p
wr2�, ...,

p
wrw�.

Given v = G(D) � G(D0) and vi denotes i-th element of v, we construct a vector v̂ =qPw
i=1

1
wri

v2i . Then we can show that,

|L(o;M,D,D0)|

=
1

2
|kK�1vk2 + 2|p̃01K

�1v||

=
1

2�2
|kv̂k2 + 2|p̃01v̂||


1

2�2
|�̂2

G + 2|p01|�̂G |,

where �̂G = maxD,D0
p

kv̂k2 represents the new sensitivity.

Following the proof of Theorem 1, we can show the similar conclusion as in Phan et al. (2019) that
this mechanism is (✏, �)-DP, with

✏ 2 (0, 1],� �

p
2ln(1.25/�)�̂G/✏.

Compared with Phan et al. (2019), Theorem 6 gives different definitions on the sensitivity �G and
perturbation scale �. However, we have shown in the proof that these two mechanisms indeed
describe the same fact from different views.

G PROOF OF LEMMA 2

In vanilla SGD, the algorithm picks one example at each iteration. Thus, the subscript t is eqivalent
to (i). Lemma 2 can be easily derived from the following lemma:

Lemma 3. Given perturbed example znont = xnon
t + bt with b(k)

t ⇠ N (0,�2), the number of
training steps T , and C-Lipschitz continuous loss l. The gradient r✓t l(z

non
t , ✓t) at each step of

vanilla SGD can be reformulated as the gradient with respect to the original sample with a gradient
perturbation:

r✓t l(z
non
t , ✓t) � r✓t l(x

non
t , ✓t) + pt, (11)

where pt is the transformed perturbation with pt ⇠ N (0,⌃t), ⌃t = TMt�2, Mt = A(i)A
|
(i),

A(i) = J✓trxnon
(i)

l(xnon
(i) , ✓t)

The T in Lemma 3 comes from the fact that compared to traditional gradient perturbation added at
each iteration, the input perturbation is only added at the start of training for one single time. The
variance is amplified by a coefficient T when input perturbation is transformed into the gradient
perturbation.

Given two neighbouring datasets D and D
0, training data size N , the transformation matrix Mt

and minimum singular value Smin(Mt) are calculated to analyze DP contribution from input per-
turbation. However, because the sample at each iteration is randomly picked and Smin(Mt) is
data-dependent, it is challenging to bound the difference of the transformed gradient perturbation p
between the optimization processes on these two datasets.

To solve this, we first claim that the minimum singular value of the transformation matrix,
Smin(Mt) determines how much DP guarantee MGM can provide. According to Corollary 1,
this DP guarantee is equivalent to the guarantee provided by a traditional Gaussian Mechanism with
its perturbation following a Gaussian distribution N (0, TSmin(Mt)�2). Therefore, Lemma 2 is
derived.

19

Under review as a conference paper at ICLR 2022

H PERTURBATION TRANSFORMATION IN MINI-BATCH SGD

In mini-batch SGD, the algorithm randomly picks a batch of samples at each iteration and feeds
them into the model for optimization. Given the initial parameters ✓0, iteration t, the parameters are
updated as:

✓t+1 = ✓t � ⌘
1

B

BX

i=1

(r✓l(✓t, z
non
t) +r✓l(✓t, z

neg
t)), (12)

where ⌘ denotes the learning rate, B denotes the batch size, znont denotes the perturbed samples of
“non-negative cases” and znegt denotes the perturbed samples of “negative cases”. Both znont and
znegt are randomly picked at iteration t.

According to the definition of r✓t l(✓t, z
non
t) in Equation (11), we have that

1

B

BX

i=1

r✓t l(✓t, z
non
t) �

1

B

BX

i=1

r✓l(x
non
t , ✓) + pt, (13)

where pt is the transformed perturbation with pt ⇠ N (0,⌃t), ⌃t = TMt�2, Mt =
1
B2

PB
i=1 A(i)A

|
(i), A(i) = Jxnon

(i)
r✓l(xnon

(i) , ✓).

This gradient is similar to that of vanilla SGD in Lemma 3, except that Mt is 1
B2

PB
i=1 A(i)A

|
(i)

instead of A(i)A
|
(i). We can directly follow the processes in vanilla SGD and derive Theorem 2 and

Corollary 2 with Mt =
1
B2

PB
i=1 A(i)A

|
(i).

According to Corollary 2, the DP guarantee that MMGA provides at iteration t for “non-negative
cases” is equivalent to that provides by a GM with N (0, ⇠2up).

On the other hand, we have the following for “negative cases”:

1

B

BX

i=1

r✓t l(✓t, z
neg
t) =

1

B

BX

i=1

r✓l(x
neg
t , ✓) +N (0, ⇠2up). (14)

Therefore, we can also claim that Corollary 2 is applicable to both “non-negative cases” and “nega-
tive cases” in mini-batch SGD.

I PROOF OF THEOREM 8 (MMGA WITH MA)

Given a multivariate Gaussian mechanism M, two neighboring datasets D and D
0, the output o, we

first define the log moments of the privacy loss random variable as follows,

m(o;M,D,D0) , log
Pr(M(D) 2 o)

Pr(M(D0) 2 o)
. (15)

Then the log of the moment generating function at the value ↵ is defined as follows,

�M(↵;D,D0) , log Eo⇠M(D)(e
↵m(o;M,D,D0)). (16)

We take the maximum over all possible neighboring pairs of D and D
0 to obtain the moments

accountant:
�M(↵) , max

D,D0
�M(↵;D,D0). (17)

With the moments accountant �M(↵), we have the following lemma and theorem,
Theorem 7. For any ✏ > 0, the mechanism M is (✏, �)-differentially private for

� = min
↵

exp(�M(↵)� ↵✏).

The proof of Theorem 7 is the same as the proof of Theorem 2.2 in (Abadi et al., 2016).

20

Under review as a conference paper at ICLR 2022

Lemma 4. Given a function f : Rv
! Rw with kf(.)k2 � 1. Let ⇠up  1, Ca be the gradient

clipping coefficient and L be the sample from origin data with the sampling probability q = B
N <

1
16⇠up

. Then for any positive integer ↵  ⇠2upln
1

q⇠up
, the mechanism M(d) =

P
di2L f(di) +

N (0,⌃(i)�
2) satisfies

�M(↵) 
q2↵(↵+ 1)

(1� q)⇠2up
+O(

q3↵3

⇠3up
)

The detailed proof of the lemma 4 is in Appendix J.
Theorem 8. There exist constants c1 and c2 so that given the sampling probability q = B

N and the
number of training steps T , for any ✏ < c1q2, Algorithm 1 is (✏, �)-differential private for any � > 0
if

⇠up � c2
q
p
T log(1/�)

✏
(18)

With Lemma 4, the proof is similar as the proof of Theorem 1 in Abadi et al. (2016).

J PROOF OF LEMMA 4 (MA)

Proof. Given a function f : Rv
! Rw, we fix D and let D = D

0
[d(n). Without loss of generality,

let kf(d(n))k = 1 and
P

i2B\[n] f(d(i)) = 0, and let ⇣0 denotes the pdf of N (0,⌃), ⇣1 denotes the
pdf of N (d(n),⌃), then we can have:

M(D0) ⇠ ⇣0,

M(D) ⇠ ⇣ , (1� q)⇣0 + q⇣1.

We want to show that

Es⇠⇣ [(
⇣(s)

⇣0(s)
)↵]  �, (19)

Es⇠⇣0 [(
⇣0(s)

⇣(s)
)↵]  �, (20)

for certain �.

For the Equation (19), we have

Es⇠⇣ [(
⇣(s)

⇣0(s)
)↵]

=Es⇠⇣0 [(
⇣(s)

⇣0(s)
)↵+1]

=Es⇠⇣0 [1 + (
⇣(s)� ⇣0(s)

⇣0(s)
)↵+1]

=
↵+1X

i=0

✓
↵+ 1

i

◆
Es⇠⇣0 [(

⇣(s)� ⇣0(s)

⇣0(s)
)i]. (21)

We find that the first term of (21) is 1, and the second term is 0 since

Es⇠⇣0 [
⇣(s)� ⇣0(s)

⇣0(s)
] =

Z �1

1
⇣0(s)

⇣(s)� ⇣0(s)

⇣0(s)
ds

=

Z �1

1
⇣(s)� ⇣0(s) ds

=

Z �1

1
⇣(s) ds�

Z �1

1
⇣0(s) ds

= 0

21

Under review as a conference paper at ICLR 2022

The third term of (21) is:
✓
↵+ 1

2

◆
Es⇠⇣0 [(

⇣(s)� ⇣0(s)

⇣0(s)
)2]

=

✓
↵+ 1

2

◆
q2Es⇠⇣0 [(

⇣1(s)� ⇣0(s)

⇣0(s)
)2]

Leveraging the fact that for any a 2 Rv , Es⇠⇣0 [exp(a
|⌃�1s)] = exp(a|⌃�1a/2), then:

Es⇠⇣0 [(
⇣1(s)� ⇣0(s)

⇣0(s)
)2]

=Es⇠⇣0 [(
⇣1(s)

⇣0(s)
� 1)2]

=1� 2Es⇠⇣0 [(
⇣1(s)

⇣0(s)
)] + Es⇠⇣0 [(

⇣1(s)

⇣0(s)
)2] (22)

Given that ⇣0 , N (0,⌃), ⇣1 , N (d(n),⌃), we have

⇣1(s)

⇣0(s)
=exp(�

1

2
((s� d(n))

|⌃�1(s� d(n))� s|⌃�1s))

=exp(�
1

2
(s|⌃�1s� 2s|⌃�1d(n)+

d|
(n)⌃

�1d(n) � s|⌃�1s))

=exp(�
1

2
(d|

(n)⌃
�1d(n) � 2s|⌃�1d(n)))

=exp(�
1

2
d|
(n)⌃

�1d(n))⇥ exp(s|⌃�1d(n))

Then (22) becomes:

Es⇠⇣0 [(
⇣1(s)� ⇣0(s)

⇣0(s)
)2]

=1� 2Es⇠⇣0 [(
⇣1(s)

⇣0(s)
)] + Es⇠⇣0 [(

⇣1(s)

⇣0(s)
)2]

=1� 2Es⇠⇣0 [exp(�
1

2
d|
(n)⌃

�1d(n))⇥ exp(s|⌃�1d(n))]+

Es⇠⇣0 [exp(�d|
(n)⌃

�1d(n))⇥ exp(s|⌃�1(2d(n)))]

=1� 2exp(�
1

2
d|
(n)⌃

�1d(n))⇥ exp(
1

2
d|
(n)⌃

�1d(n))+

exp(�d|
(n)⌃

�1d(n))⇥ exp(2d|
(n)⌃

�1d(n)) (23)

=1� 2 + exp(d|
(n)⌃

�1d(n))

=exp(d|
(n)⌃

�1d(n))� 1 (24)

Therefore, the third term of (21) is:
✓
↵+ 1

2

◆
Es⇠⇣0 [(

⇣(s)� ⇣0(s)

⇣0(s)
)2]

=

✓
↵+ 1

2

◆
q2Es⇠⇣0 [(

⇣1(s)� ⇣0(s)

⇣0(s)
)2]

=

✓
↵+ 1

2

◆
q2(exp(d|

(n)⌃
�1d(n))� 1) (25)

22

Under review as a conference paper at ICLR 2022

To bound (25), we need to determine that

max
d(n)2Rv

d|
(n)⌃

�1d(n)

= max
d(n)2Rv

d|
(n)⌃

� 1
2⌃� 1

2d(n)

= max
d(n)2Rv

(
kd|

(n)⌃
� 1

2 k2

kd(n)k2
)2

=Smax(⌃
� 1

2)2

=
1

Smin(⌃)
, (26)

Therefore, the third term of (21)
✓
↵+ 1

2

◆
Es⇠⇣0 [(

⇣(s)� ⇣0(s)

⇣0(s)
)2]



✓
↵+ 1

2

◆
q2(exp(

1

Smin(⌃)
)� 1)



✓
↵+ 1

2

◆
q2

2

Smin(⌃)

=
q2(↵+ 1)↵

Smin(⌃)
(27)

For the Equation (20), we have

Es⇠⇣0 [(
⇣0(s)

⇣(s)
)↵]

=Es⇠⇣ [(
⇣0(s)

⇣(s)
)↵+1]

=Es⇠⇣ [1 + (
⇣0(s)� ⇣(s)

⇣(s)
)↵+1]

=
↵+1X

i=0

✓
↵+ 1

i

◆
Es⇠⇣ [(

⇣0(s)� ⇣(s)

⇣(s)
)i]. (28)

Similar to the analysis of (19), the first term of (28) is 1, and the second term is 0. The third term is
slightly different:

✓
↵+ 1

2

◆
Es⇠⇣ [(

⇣0(s)� ⇣(s)

⇣(s)
)2]

=

✓
↵+ 1

2

◆
q2Es⇠⇣ [(

⇣0(s)� ⇣1(s)

⇣(s)
)2]

Because ⇣ , (1� q)⇣0 + q⇣1, we can get that ⇣(s) � (1� q)⇣0(s), and rewrite the above equation
as:

✓
↵+ 1

2

◆
Es⇠⇣ [(

⇣0(s)� ⇣(s)

⇣(s)
)2]



✓
↵+ 1

2

◆
q2

1� q
Es⇠⇣0 [(

⇣0(s)� ⇣1(s)

⇣0(s)
)2]

23

Under review as a conference paper at ICLR 2022

The following analysis is similar to that of (19), and we obtain the third term of (28)
✓
↵+ 1

2

◆
Es⇠⇣ [(

⇣0(s)� ⇣(s)

⇣(s)
)2] (29)



✓
↵+ 1

2

◆
q2

1� q
Es⇠⇣0 [(

⇣0(s)� ⇣1(s)

⇣0(s)
)2]


q2(↵+ 1)↵

(1� q)Smin(⌃)
(30)

Compared with the proof of Lemma 3 in Abadi et al. (2016), it’s obvious that the only difference be-
tween Gaussian mechanism and multivariate Gaussian mechanism is the noise scale. The covariance
⌃ of MGM can be decomposed into singular vectors and singular values, and the minimum singu-
lar value Smin(⌃) actually solely determines the upper bound of the moment accountant �M(↵),
which is the counterpart of C�2 of GM with C being the gradient clipping norm.

Following the proof of Lemma 3 in Abadi et al. (2016), and given ⌃ , Smin(M)�2

C2 , we can get
Lemma 4:

Given a function f : Rv
! Rw with kf(.)k2 � 1. Let Smin(M)�2

C2  1, C be the gradient clipping
norm and L be the sample from origin data with the sampling probability q < 1

16

r
Smin(M)�2

C2

. Then

for any positive integer ↵ 
Smin(M)�2

C2 ln 1

q

r
Smin(M)�2

C2

, the mechanism M(d) =
P

di2L f(di) +

N (0,⌃�2) satisfies

�M(↵) 
q2↵(↵+ 1)

(1� q)Smin(M)�2

C2

+O(
q3↵3C3

Smin(M)
3
2�3

)

K THE IMPLEMENTATION OF C-LIPSCHITZ

In practice, the gradient r✓l(z(i), ✓) is always clipped by a norm threshold C:

Clipped(r✓l(z(i), ✓)) ,
r✓l(z(i), ✓)

max(1, kr✓l(z(i), ✓)k2/C)
(31)

Lemma 5. Given perturbed example z(i) = x(i) + b(i) with b(k)
(i) ⇠ N (0,�2), and denoting a

clipping coefficient a = 1/max(1, kr✓l(z(i), ✓)k2/C). The gradient r✓l(z(i), ✓) clipped by a
norm threshold C can be reformulated as the gradient with respect to the original sample with a
gradient perturbation:

Clipped(r✓l(z(i), ✓)) = ar✓l(x(i), ✓) + p(i), (32)

where p(i) is the transformed perturbation with p(i) ⇠ N (0,⌃(i)), ⌃(i) = M(i)�
2, M(i) =

a2A(i)A
|
(i) and A(i) = rx(i)

r✓l(x(i), ✓).

L PARAMETERS SLICING

The AE can have a complex structure in order to remove the perturbation and reconstruct the input
samples effectively. This complex structure results in a high-dimensional parameter space, and leads
to an inefficient perturbation transformation. According to the definition of A(i) and M , when the
dimension of ✓ is high, the calculation will incur a significant computation cost.

A solution we employ is to slice the parameter ✓ 2 Rw into several parts, e.g., ✓1 2 Rw1 , ✓2 2 Rw2

and ✓3 2 Rw3 , corresponding to the first, intermediate, and last layers, respectively, as shown in

24

Under review as a conference paper at ICLR 2022

Figure 5: Denoiser with sliced parameters

Figure 5. The input perturbation transformation is then applied on ✓1, ✓2 and ✓3 separately with
each sub-parameter slice having smaller size.

In the training stage, different optimizers work on different parameter slices and update them inde-
pendently. Because the optimization is separated and each one can be regarded as an independent
process, the perturbation transformation in Section ??, MGM in Section ?? and MMGA in Section
2.3 can be applied to each process respectively. Without loss of generality, we use ✓ directly in the
following subsections and sections.

M DETAILED EXPERIMENTS

Pre-trained classifiers. Pre-trained classifiers are trained on public datasets. The pre-trained clas-
sifier for MNIST is a customized 12 layers deep convolutional network with residual blocks, which
achieves 99.3% accuracy on test dataset. The pre-trained classifier for CIFAR-10 is a deep convolu-
tional network transfered from VGG16 (Simonyan & Zisserman, 2014). We replace the top layers
of VGG16 with customized fully connected layers and initialize all bottom layers with VGG16 pa-
rameters. This classifier achieves 86% accuracy on test dataset. Both classifiers are treated as public
in all experiments.

Denoiser. We use convolutional and transposed convolutional layers to build the autoencoder based
denoiser for both MNIST and CIFAR10 datasets. Layer normalization (Ba et al., 2016), residual
(He et al., 2016) and skip structures are applied to avoid gradient vanishment. Drop out technique is
applied to mitigate overfitting. The details of these two denoisers are shown in Figure 6a and Figure
6b.

(a) Detailed architecture of de-
noiser for CIFAR10

(b) Detailed architecture of de-
noiser for MNIST

Figure 6: Denoiser for two datasets, where each box denotes the layer, the digits in each box denotes the shape
of convolutional filter, “Conv” denotes and “Trans Conv” denotes the boxes are convolutional and transposed
convolutional layers respectively.

25

Under review as a conference paper at ICLR 2022

Implementation details. All models are implemented using Tensorflow 1.14 and trained with
a system equipped with Nvidia V-100 GPU. We use the open source code of SecureSGD
(https://github.com/haiphanNJIT/SecureSGD) and StoBatch (https://github.
com/haiphanNJIT/StoBatch) to conduct experiments, and we fix an error in SecureSGD
code where variance is used incorrectly as standard deviation. Our code is available at https:
//anonymous.4open.science/r/14d3ec7c-ab5b-4c76-be92-1f3b0454563a/.

Empirical defense. We show ConvAcc against four different adversarial attacks: FGSM, I-FGSM,
Momentum Iterative Method (MIM) and MadryEtAl. As can be seen in Figure 7, the results for
MIM and MadryEtAl are similar to those shown in Section 3 (Figure 3). TransDenoiserdominates
all baselines and ablation cases over four different attacks and different attack norm bound.

(a) TransDenoiser and baselines on CIFAR10

(b) TransDenoiser and ablation cases on CIFAR10

(c) TransDenoiser and baselines on MNIST

(d) TransDenoiser and ablation cases on MNIST

Figure 7: More comparison among TransDenoiser, baselines and ablation cases for conventional accuracy vs.
l2 radii on two datasets. The input perturbation scale on CIFAR10 = 0.1, on MNIST = 0.25, the overall gradient
perturbation scale = 2.0 (� 2.0 for TransDenoiser), and guarantee (1.0, 1e�5)-DP for private models.

26

https://github.com/haiphanNJIT/SecureSGD
https://github.com/haiphanNJIT/StoBatch
https://github.com/haiphanNJIT/StoBatch
https://anonymous.4open.science/r/14d3ec7c-ab5b-4c76-be92-1f3b0454563a/
https://anonymous.4open.science/r/14d3ec7c-ab5b-4c76-be92-1f3b0454563a/

