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A. Appendix 421
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Figure A.1. Qualitative Comparisons, Motion Transfer.

A.1. Motion Transfer Implementation Details 422

• We record and inject only the Q features from the conditional forward pass. 423
• When recording Q features, we use the same noise seed across different noise levels. During generation, however, we start 424

from a random initialization. 425
• In VideoCrafter2, to ensure consistency with the video model’s latent space, we follow [19]: we add minor noise to the 426

source video latent (two steps) and then denoise it back to a clean latent before extracting Q features. 427
• For quantitative results, we used Q injection ending at t = 600. For qualitative results with VideoCrafter2, we selected 428

videos with Q injection ending between t = 800 and t = 600: closer to t = 800 for camera motion, and closer to t = 600 429
for non-rigid movement. 430

A.1.1. DiT-Based Models 431

• For both WAN and LTX-Video, we used a 50-step flow-matching denoising scheduler as described by Esser et al. [7]. This 432
schedule shifts the timestep allocation so that more steps are concentrated in the high-noise region. Specifically, we used 433
the FlowMatchEulerDiscreteScheduler from huggingface, with their default µ = 3.065 hyperparam. 434

• Similar to VideoCrafter2, to transfer the full magnitude of motion we had to inject Q features for a substantial amount of 435
steps. For WAN, we injected Q features for 58% or 60% of the denoising schedule; for LTX-Video, we used 40%. 436

• In WAN, we inject Q features only in layers 20–30. In all other models, Q injection is applied to all layers. 437
• Current motion transfer benchmarks consist of short 16- or 24-frame videos, which is significantly shorter than the standard 438

length of WAN 2.1 videos (81 frames). Therefore, for motion transfer in WAN, we repeat each frame twice and pad the 439
last frame one additional time, therefore mapping 16 → 33 and 24 → 49. Accordingly, we double the frame rate of the 440
generated videos to keep the duration the same as in the source video. 441

• For LTX-Video only, we found that injecting Q features between different initial noise seeds preserved the findings about 442
identity leakage but introduced visual artifacts. To mitigate this, we used identical seeds for different prompts and matched 443
the global statistical moments of the Value features, improving compatibility with the injected Query features. 444

A.2. Background: Self-Attention in T2V models 445

Our method manipulates the activations of the spatial self-attention in T2V diffusion models. We start by outlining its 446
mechanism and introducing key notations. 447
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Figure A.2. Identity Leakage and Motion Transfer with Other Text-to-Video Models.

Figure A.3. Limitations. The source subject shape may affects the target object.

Recent T2V diffusion models are based on a latent video diffusion model (LVDM) architecture where a U-Net denoiser448
is trained to estimate the noise in the noisy latent codes input. The denoising U-Net is a 3D U-Net architecture consisting449
of a stack spatio-temporal blocks comprised of convolutional layers, spatial transformers (ST), and temporal transformers450
(TT). The ST operate independently on each video frame, without awareness of the temporal structure, while the TT operate451
independently on each temporal patch, without awareness of the spatial structure. In this work, we focus on manipulating the452
self-attention mechanism of the spatial transformer layers.453
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Figure B.1. Video Storyboarding Architecture: Our consistent denoising process has two phases: Q Preservation and Q Flow. We first
generate and cache video shots using “vanilla” VideoCrafter2. In Q Preservation (T → tpres), we use Vanilla Q Injection to maintain
motion structure by replacing our Q values with vanilla ones. In Q Flow (tpres → t0), we use a flow map from vanilla key frames to guide
Q feature injection. This phase maintains character identity by allowing the use of Q features from our consistent denoising process, while
the flow map ensures that these identity-preserving features are applied in a way that’s consistent with the original motion. Throughout,
we employ two complementary techniques: framewise subject-driven self-attention for visual coherence, and refinement feature injection
(Section B.4) to reinforce character consistency across diverse prompts.

B. Consistent Video Generation - Supplementary Detalis 454

B.1. Notations 455

Our method manipulates spatial self-attention activations in T2V diffusion models. We denote by {Q,K, V,O} the respective 456
Query, Key, Value and Output features of a single self-attention layer (see Appendix A.2 for background). In our method, 457
these features interact across frames, enabling cross-frame attention and consistency. We denote by Qv the Q features of 458
a layer during a “vanilla”, non-consistent, forward pass in a pretrained network, Qc the query features from our subject- 459
consistent model, and Qf as the flow-based query features. For brevity, we omitted the frame index i 460

B.2. ConsiStory details 461

ConsiStory [26] operates in three steps. (1) Subject-Driven localization with extended Self-Attention (SDSA) – localizes 462
the subject across a set of noisy generated images by aggregating cross-attention maps across layers and timesteps. To 463
ensure subject consistency, SDSA enables each image to attend to patches of the main subject present in other image frames. 464
This is done by extending the self-attention mechanism, allowing it to share K, V features of the subject between multiple 465
images. Unfortunately, SDSA alone diminishes layout diversity in the generated images. Therefore, (2) Layout Diversity 466
– reinforces diversity through two techniques: First, it incorporates Q features from a vanilla, non-consistent sampling step. 467
Second, it applies an inference-time dropout to the shared K, V features. Finally, (3) Refinement Injection – improves 468
consistency in finer details by injecting the O features between corresponding subject patches. 469

The pipeline is illustrated in Fig. B.1. 470

B.3. Framewise Subject-Driven Self-Attention 471

Our first step builds on the Subject-Driven Self-Attention (SDSA) mechanism [26] to incorporate subject features across 472
multiple video shots by extending the self-attention mechanism. We identified two critical challenges when adapting SDSA 473
to video generation: (1) reliably localizing the subject during video denoising, and (2) ensuring motion fluidity is not com- 474
promised. 475

For subject localization, we propose using the estimated clean image x̂0 for mask generation instead of relying on internal 476
network activations, ensuring reliable masks even in early denoising steps. For motion fluidity, we introduce a framewise 477
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attention scheme, where frames with matching temporal indices across shots selectively attend each other. This prevents478
artifacts and frozen motion.479

We term this component Framewise-SDSA. Further technical details, including the mask estimation process and the formal480
definition of Framewise-SDSA, are provided in Appendix B.10..481

When generating multiple video shots with consistent subjects, we face a fundamental trade-off between subject consis-482
tency and motion quality. Our experiments show that while Framewise-SDSA improves subject consistency, it often results483
in side-effects, leading to excessive synchronization of motion layout across video shots and introduces motion artifacts484
(Fig. 6(4th row)). These artifacts arise from the model’s attempt to simultaneously satisfy both the text prompt and the485
undesired synchronization across shots.486

Prior work in ConsiStory (Sec. B.2) demonstrated success in maintaining layout diversity for image generation through487
SDSA dropout and query injection. However, our experiments show that directly extending this approach to video generation488
produces poor results, with significant visual artifacts and compromised consistency between shots (Fig. B.3). This likely489
occurs because (1) Consistory’s query injection is applied for shorter periods compared to the amount required in video490
models, and (2) since ConsiStory’s vanilla-network queries are derived from latents that are influenced by consistency-491
preserving mechanisms in earlier steps, rather than following an independent denoising trajectory.492

Our analysis (Fig. 6) reveals that query features encode both motion patterns and subject identity. Injecting only vanilla493
query features (Qv) preserves dynamic motion but results in inconsistent subjects across shots (row 3). Conversely, using494
only consistency-aware query features (Qc) ensures subject consistency but produces rigid, unnatural, and synchronized495
movements (row 4). This observation motivates our two-phase approach that leverages both feature types.496

Phase 1: Motion Structure Establishment. In early denoising steps (t ∈ [T, tpres]), we focus on establishing a robust497
initial motion structure using a process we call Q Preservation. During this phase, we directly inject vanilla query features498
(Qv) from pre-generated video shots. This allows us to retain the motion patterns present in the vanilla videos. Without this499
initial phase, later denoising steps may deviate from the original motion patterns, leading to degraded motion quality.500

Phase 2: Flow-based Consistency Integration. As denoising progresses (beyond tpres), subject consistency becomes501
increasingly important. To address this, we introduce Q Flow, a technique inspired by TokenFlow [10], where flow-based502
query features (Qf ) are injected to incorporate subject-consistent information while preserving the original motion. Similar503
to [10], in this phase, we derive a flow map from vanilla-generated keyframes (Qv), which provides the motion structure.504
We then blend subject-consistent query features (Qc) from nearby frames, as dictated by the flow. This blending process505
produces Qf , that adhere to the original motion patterns while maintaining subject consistency across frames.506

By following this approach, we maintain the natural flow of motion established in Phase 1 and progressively integrate507
subject-consistent features without sacrificing motion quality. The formal definition of our flow-based query injection process508
is provided in Appendix B.11.509

B.4. Refinement Feature Injection for Enhanced Consistency510

Despite improved motion preservation and subject consistency, fine details in subject appearance can still vary across frames.511
We address this by adapting the refinement feature injection technique.512

However, naively applying refinement feature injection solely to the conditional denoising step, as in ConsiStory, intro-513
duces unnatural motion artifacts. This is likely due to the conditional step uses a correspondence map to inject features from514
different frames, while the unconditional step does not, resulting in inconsistent feature injection. To mitigate this, we extend515
refinement feature injection to the unconditional denoising step, using the same DIFT correspondence map. We also utilize516
the entire frame set of each anchor video for refinement injection. This synchronized approach improves overall consistency517
and reduces motion artifacts. For qualitative results, see Fig. B.3.518

B.5. Consistent Video Generation - Comparisons to Baselines519

We compare Video Storyboarding with strong baselines, starting with a qualitative comparison that shows improved subject-520
consistency and better motion-alignment. We then conduct an ablation study to examine how self-attention query (Q) tokens521
affect motion and identity, highlighting the contributions of the components in our method. Finally, quantitative evaluation522
follows, including a large-scale user study, which demonstrates that users typically favor our results.523

B.6. Evaluation baselines524

We compare our method to several baselines: (1) VideoCrafter2: A baseline “vanilla” text-to-video model, without adap-525
tations. VideoCrafter2 is a public SoTA video model [12]. (2) Tokenflow-Encoder: A combination of TokenFlow [10]526
with IP-Adapter, a Personalization-Based Encoder [31]. We personalize TokenFlow by conditioning the IP-Adapter on the527
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Figure B.2. Qualitative Comparisons. The first frame of each video shot is displayed along with a spatiotemporal y–t slice to visualize
motion. Ours (top row) shows improved character consistency across shots while maintaining natural motion. VideoCrafter2 (row 2) is
the vanilla model, showing diverse motion but inconsistent characters. Tokenflow-Encoder (row 3) preserves original motion but struggles
with character consistency and introduces coloring artifacts. ConsiS Im2Vid (bottom row) fails to maintain consistency and exhibits limited
motion adherence to prompts. See more examples in Fig. B.7.

first frame of one video generated by the vanilla model. For IP-Adapter we use a high-scale hyper-parameter to push the 528
model toward stronger consistency. (3) ConsiS Im2Vid: A combination of SoTA image-consistency approach [26], with a 529
subsequent Image-to-Video variant of VideoCrafter. First, we generate a set of consistent reference images. Then, we use 530
them as inputs to an Image-to-Video model. We chose VideoCrafter, as it is a public image-to-video model that has an overall 531
quality equivalent to that of the text-to-video VideoCrafter2 model according to the VBench benchmark [12]. (4) VSTAR: 532
A method for generating a long video with dynamic evolution [15]. We directly provide the multiple prompts and sample 16 533
frames per prompt, then splitting the result into individual shots. (5) Turbo-V2: A recent state-of-the-art text-to-video model 534
[14] that we use to demonstrate our method’s adaptability to other architectures. 535

B.7. Qualitative Results 536

To visually assess both multi-shot consistency and motion quality in videos, we present two elements per video shot: the 537
initial frame for comparing consistency between shots, and a spatiotemporal slice of the space-time volume, termed ”y–t 538
slice” [6], to visualize motion quality. The selected column for the y–t slice is marked by a yellow line. Typically, we choose 539
the column with the maximum variance in the vanilla-generated video shot. Occasionally, we manually select the y–t column 540
to highlight specific motion characteristics. For ConsiS Im2Vid, the max-variance column is chosen independently, as it does 541
not directly correspond to the vanilla model. 542

In Fig. B.2 and Fig. B.7, we showcase qualitative comparisons between our approach, the vanilla model, and the baselines. 543
Our method demonstrates the ability to alter subject identities consistently across shots, while guiding them towards a unified 544
appearance. This consistency is evident when comparing image frames from different shots. Additionally, an examination of 545
the y–t motion slices reveals that our approach successfully adheres to the motion guided by the vanilla model. 546

The Tokenflow-Encoder baseline preserves the original motion from vanilla models while primarily affecting the color 547
palette and color style of objects and scenes in videos. However, its impact on the identity of the subject is less pronounced 548
than our approach. Additionally, the combination with a high-scaled IP-Adapter often degrades video quality, causing blur- 549
ring and color artifacts. See the bird example in Fig. B.2 (3rd row) and the boy in Fig. B.7 (3rd row). 550

The ConsiS Im2Vid baseline maintains consistency in its reference images. However, the subsequent image-to-video 551
model introduces certain limitations. It lacks awareness of the consistency requirement and the capability to maintain it, 552
causing the subject identity to vary between video shots. Although consistency is maintained within each shot, overall 553
consistency with the reference image is compromised, as seen in the bird example in Figure 1 (4th row). Additionally, the 554
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image-to-video model fails to account for the action specified in the text prompt. This results in either minimal motion or555
movement that does not align with the prompt, as the model relies solely on the conditioning image and cannot effectively556
utilize the textual information. See the limited motion in the y–t slices in Fig. B.2 (4th row) and the corresponding videos in557
the supplemental material.558

VSTAR (Fig. B.7, Appendix) produces large motion dynamics, but struggles with prompt control, often resulting in entire559
videos misaligning with text descriptions. As it maintains consistency through continuous video generation, it better suits560
scene transitions than independent shots.561

When applied to Turbo-V2 (Fig. B.6), our method enables subject consistency while leveraging Turbo-V2’s enhanced562
motion capabilities.563

Figure B.3. Ablation Study on ConsiStory Components for Video Generation. “Ours” (top row) demonstrates improved motion
richness and identity preservation. VideoCrafter2 (second row) shows diverse motion but inconsistent characters. “ConsiS” (third row), a
naive ConsiStory implementation, shows impaired identity and motion artifacts. “ConsiS +Uncond” (fourth row) adds feature injection
to unconditional denoising, resolving motion artifacts but reducing motion magnitude and compromising identity. “Q ConsiS” (fifth row)
couples each frame with a single frame in an anchor video, allowing some natural motion, although partially synchronized, with improved
identity. Our method achieves the best balance of motion quality and identity.

Adapting ConsiStory for Video Generation. Next, we demonstrate the challenges of adapting the image-based Con-564
siStory algorithm [26] to video generation. Fig. B.3 (3rd row “ConsiS”) shows a naive implementation of ConsiStory with565
subject-driven extended attention coupled across all frames in each video shot, using subject mask dropout and omitting566
feature injections to the unconditioned diffusion pass. At each step, it also employs queries influenced by the consistency-567
preserving mechanism of previous steps, rather than queries from an independent vanilla denoising process. This results in568
impaired identity consistency, strong motion artifacts, and unnatural motion flow of different body parts for both the rab-569
bit and monster examples. Adding feature injection to the unconditional feature denoising (4th row “ConsiS +Uncond”)570
resolves motion artifacts but largely reduces motion magnitude (e.g. body postures are mostly frozen), and compromises571
identity. Next, coupling each frame in a shot with a single frame in an anchor video and avoiding SDSA dropout (5th row “Q572
ConsiS”) allows for subtle natural motion, although it remains partially synchronized. It also improves identity preservation573
to some degree. Unlike ConsiStory, SDSA dropout in videos hurts identity without significantly improving motion. Finally,574
our method (1st row - “Ours”) employs a novel Q intervention mechanism. It achieves richer motion with better identity and575
adherence to the original motion of the vanilla model.576
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B.8. Quantitative evaluation 577

We conducted a quantitative analysis using automated metrics and a user study, based on a benchmark dataset that we created 578
to assess set-consistency in video generation. 579

Benchmark Dataset: We constructed a benchmark dataset of 30 video sets, each containing 5 video-shots with shared 580
subjects but varying prompts. See further details in Appendix B.12. 581

Evaluation Protocol: To avoid overfitting, we conducted all development and parameter tuning on a separate collection of 582
16 distinct subject-prompt sets. The test set was used exclusively for final evaluations, without any component development 583
or hyperparameter tuning. 584

Evaluation Metrics: Our evaluation approach builds on previous work in image consistency and personalization [9, 585
24, 26], focusing on multi-shot set-consistency and motion dynamics. For set-consistency, we measure average pairwise 586
DINO feature similarity [4, 12] across all frames in a set, excluding pairs within the same video shot. We isolate the subject 587
by masking out the background [8] before extracting each frame’s features, using ClipSEG [18] with a dynamic threshold 588
determined by “Otsu’s method” [20]. For motion dynamics, we evaluate all 150 generated videos using VBench’s ”Dynamic 589
Degree” metric [12], which classifies the significance of video motion by measuring RAFT-based optical flow intensity. We 590
focused on motion dynamics over text prompt alignment due to two challenges: actions are often visible even in videos with 591
minimal motion, making it difficult for temporal CLIP-like models [29] to distinguish between our method and baselines; 592
also, sharing seeds across baselines lead to similar visual structures, with main differences in motion quality. We include 593
text-similarity metrics in Table B.1 (Appendix), measuring temporal CLIP similarity between each video shot and its prompt. 594

Results: Fig. B.4 show our approach enhances multi-shot set consistency, while sacrificing motion magnitude compared 595
to vanilla VideoCrafter2. Tokenflow-Encoder baseline shows consistency improvement and slight motion decrease. ConsiS- 596
Im2Vid baseline’s performance aligns with qualitative analysis, showing low motion scores. A comparison of all baselines, 597
including VSTAR and Turbo-V2, is presented in Table B.1 (Appendix). VSTAR struggles with prompt control (19.8 vs 598
27.7 for ours), while achieving the highest consistency and motion dynamics. When combined with Turbo-V2, our method 599
improves multi-shot consistency while maintaining high motion quality: The dynamic degree improves threefold, from 20 to 600
62, while keeping the same level of text alignment. 601
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Dynamic Degree
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M
ul

ti-
Sh

ot
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on
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te
nc

y Ours
Tokenflow
ConsiS Im2Vid
VideoCrafter2 Figure B.4. Quantitative Evaluation of Set Consis-

tency and Motion Dynamics: Our approach achieves
highest set consistency score while maintaining com-
petitive motion dynamics. Error bars indicate standard
error of the mean.

These quantitative results offer insights into trade-offs between our approach and baselines, but cannot fully capture user- 602
perceived quality or alignment of generated motions with text prompts. Therefore, we conducted a comprehensive user 603
preference study using two and three-alternative forced-choice format, focusing on two key aspects: set-consistency and 604
text-motion alignment. For set-consistency, users selected the better set from two sets of 5 videos each depicting the subject. 605
For text-motion alignment, users chose the video best matching the action described in the prompt from a pair of videos. To 606
distinguish between degraded motions and those largely unchanged, users could also indicate if motion quality was equivalent 607
in both videos. We used the same test benchmark as the automated metric study, collecting 5 repetitions per question for 608
set-consistency and 3 repetitions for text-motion alignment, totaling 1800 responses. 609

The user-study results in Fig. B.5, reveal that Video Storyboarding outperforms the baselines in set consistency. For motion 610
quality, 55% of users rated the generated motions as similar or superior to those of the vanilla model. The ConsiS-Img2Vid 611
baseline’s motion quality was consistent with our earlier findings, showing lower motion quality. However, it achieved the 612
highest set consistency among the baselines, winning in 34% of the generated sets compared to our approach. 613
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Figure B.5. User Study: (left) We measure user preferences for set consistency and (right) how well the generated motion matches the text
prompt . Our approach achieves the superior set consistency score while maintaining competitive text-motion alignment. Notably, 55% of
our generated motions were judged to be of similar or better quality compared to the vanilla model. Error bars are S.E.M.

B.9. Additional Results614

Fig. B.6 illustrates the adaptability of our method when applied to the state-of-the-art T2V-Turbo-V2 model [14]. The615
results show enhanced motion quality while maintaining subject consistency, demonstrating that our approach can effectively616
improve even the most recent video generation models.617

Fig. B.7, provides additional qualitative comparisions to Fig. B.2, and also includes qualitative comparison with VSTAR618
baseline [15].619

In Table B.1 we present a comprehensive quantitative comparison across different models using three key metrics. Our620
method, when combined with both VideoCrafter2 and Turbo-V2, shows improved Multi-Shot Consistency scores (68.8 and621
67.3 respectively) compared to their baseline versions (63.2 and 63.3), while maintaining comparable Text Similarity and622
Dynamic Degree measurements. This indicates that our approach successfully enhances subject consistency without sig-623
nificantly compromising other important aspects of video generation. In the reported metrics, we also include a “Subject-624
Consistency” metric, introduced by VBench [12]. This metric measures the similarity between frames within the same video625
shot using DINO (see Table 1 in the Appendix).626

Figure B.6. T2V-Turbo-V2: Video Storyboarding can be applied to T2V-Turbo-V2 [14], a recent state-of-the-art video model, that exhibits
significantly better motion.

MULTI-SHOT
CONSISTENCY

TEXT
SIMILARITY

DYNAMIC
DEGREE

SUBJECT
CONSISTENCY

CONSIS IM2VID 63.7 ± 1.4 27.3 ± 0.5 3.3 ± 1.5 99.1 ± 0.1
VSTAR 83.9 ± 1.6 19.8 ± 0.4 90.7 ± 2.4 92.6 ± 0.3
TOKENFLOW 65.3 ± 1.5 27.9 ± 0.4 26.0 ± 3.6 97.7 ± 0.2
VIDEOCRAFTER2 63.2 ± 1.7 28.7 ± 0.4 29.3 ± 3.7 97.3 ± 0.2
OURS + VIDEOCRAFTER2 68.8 ± 1.8 27.7 ± 0.4 20.0 ± 3.3 97.7 ± 0.2

TURBO-V2 63.3 ± 1.7 28.6 ± 0.4 63.3 ± 3.9 96.2 ± 0.2
OURS + TURBO-V2 67.3 ± 2.1 27.4 ± 0.4 62.0 ± 4.0 96.8 ± 0.2

Table B.1. Quantitative Evaluation Metrics. Comparison of different models across three metrics: Multi-Shot Consistency, Text Simi-
larity, and Dynamic Degree. Values are reported as mean ± standard error of the mean (S.E.M).
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Figure B.7. Additional Qualitative Comparisons , including VSTAR: Our method generates consistent subjects while preserving diverse
and natural motions across scenarios.
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B.10. Framewise Subject-Driven Self-Attention - Implementation Details627

This section provides a detailed explanation of our proposed Framewise-SDSA mechanism.628

Improved Subject Localization. In video generation, subject localization becomes particularly challenging during early629
denoising steps, where the noise is most prominent. aggregation method proposed in ConsiStory (Sec. B.2) proved insufficient630
in this context, particularly during the earliest denoising steps, leading to unreliable masks both in terms of accuracy and false631
positive localization.632

To address this, we propose using the estimated clean image x̂0 for subject localization instead of relying on internal633
network activations. At each denoising step t, we estimate x̂0 from the noisy latent x using: x̂0 =

(
x−

√
1− αt · et

)
/
√
αt,634

where et is the estimated noise, and αt is the schedule parameter [25]. We then apply a zero-shot segmentation approach [18]635
to localize the subject in the estimated image, followed by Otsu’s method [20] to dynamically threshold the mask. This636
approach produces reliable subject masks from the earliest denoising steps and throughout the generation process.637

Maintaining Motion Fluidity. Our experiments revealed that a direct application of SDSA – attending to all frames across638
all videos simultaneously – can lead to visual artifacts and frozen motion. We discovered that limiting attention to a single639
corresponding frame in other shots is most effective, as attending to two or more frames negatively impacts motion fluidity640
and introduces visual artifacts. Specifically, we propose a framewise attention scheme. Instead of attending to all frames641
across all video shots, frames with matching temporal indices across shots attend only to each other. This prevents visual642
artifacts and frozen motion, which occur when attending to multiple frames simultaneously and strikes a balance between643
subject consistency and natural motion.644

Formal Definition of Framewise-SDSA. Let Kif , Qif , Vif ,Mif be the keys, queries, values and subject-mask for frame645
f in video shot i. The framewise extended self-attention A+

if is defined by:646

K+
f = [K1,f ⊕K2,f ⊕ · · · ⊕KN,f ]647

648
V +
f = [V1,f ⊕ V2,f ⊕ · · · ⊕ VN.f ]649

650
M+

i,f = [M1,f ⊕ · · · ⊕Mi−1,f ⊕ 1⊕Mi+1,f · · · ⊕MN,f ]651
652

A+
i,f = softmax

(
QiK

+
f /

√
dk + logM+

i,f

)
653
654

hi,f = A+
i,f · V +

f (1)655

where ⊕ indicates matrix concatenation. We use standard attention masking, which null-out softmax’s logits by assigning656
their scores to −∞ according to the mask. Note that in this step, the Query tokens remain unaltered, and that the concatenated657
mask M+

i,f is set to be an array of 1’s for patch indices that belong to the ith image itself.658

B.11. Flow-based Q components injection - Formal Definition659

Let qfxy ∈ RF represent a Q feature from an originally generated video at location (x, y) in frame f . We denote by fA and660
fB the indices of the two nearest keyframes, where fA ≤ f ≤ fB . The locations of the most similar Q features in frames fA661
and fB , denoted by (xA, yA) and (xB , yB) respectively, are defined as:662

(xA, yA) = argmax
x0,y0

Scos(qfxy, qfAx0y0
) (2)663

664
(xB , yB) = argmax

x0,y0

Scos(qfxy, qfBx0y0
) (3)665

where Scos(a, b) represents the cosine similarity between a and b.666
We then modify the generated Q feature, denoted by q̂fxy , as follows:667

q̂fxy = wq̂fAxAyA
+ (1− w)q̂fBxByB

(4)668

where w = sigmoid
(

fB−f
fB−fA

)
. This ensures that q̂ maintains the feature flow of the originally generated video, without669

injecting the actual features from it.670

16



ICCV
#*****

ICCV
#*****

ICCV 2025 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

B.12. Benchmark Dataset Construction: 671

We created a benchmark dataset comprising 30 video sets, each containing 5 video-shots depicting a shared subject under 672
different prompts. The evaluation prompts were crafted using the Claude Sonnet 3.5 AI-Agent, following this protocol: each 673
prompt consisted of three parts: (1) a subject description, e.g., “A girl” (2) a setting description, e.g., “paddling out on 674
her surfboard”, and (3) a style descriptor encompassing both image and motion styles, e.g., “Anime cartoon animation” or 675
“Shaky camcoder footage”. We instructed the AI-agent to choose actions that are visually striking and could be captured in 676
a split second. Within each set, prompts shared the same subject and style but varied in settings. To ensure a challenging and 677
representative test set, we selected a subset of 5 prompts per subject, prioritizing those that produced videos with significant 678
motion and subject variability when processed by the vanilla model. Importantly, to ensure fairness, this selection process 679
relied solely on the vanilla model’s generations. 680

B.13. Q dropout 681

When Q injection is too strong, it can compromise identity preservation. To address this, we introduce Q dropout, which 682
reduces the strength of Q injection. Unlike SDSA dropout, which hurts identity when trying to improve the image structure, 683
Q dropout sacrifices some visual structural (motion) to enhance identity preservation. This Identity-Motion Trade-off is 684
illustrated in Fig. B.8, where increasing Q dropout improves identity consistency but reduces motion richness. 685

Figure B.8. Q dropout: Q injection may hurt identity. Q dropout may trade-off identity for motion. At 0% the unicorn gallops at both
directions. At 40%, only to the right.

B.14. Implementation Details 686

Anchor Videos: Similar to ConsiStory, we utilize two anchor videos that share all features between themselves. Other videos 687
in the batch only observe features derived from these anchors. 688

Scalable Video Batch Processing with Sub-batch Attention: To fit large batches of video generation within available 689
GPU memory, we process the self and cross-attention computations in smaller sub-batches. This approach uses an internal 690
loop, and subsequently concatenates results into a single tensor. The operation remains transparent to the network, enabling 691
the generation of larger batches of video shots. 692

Reproducible denoising. Our pipeline involves three denoising iterations: caching vanilla queries, applying Q injection 693
and Framewise SDSA, and adding refinement feature injection. To ensure consistency across these stages, we maintain 694
identical random generators for both initial noisy latents and the denoising process. This approach guarantees that each part 695
builds upon the previous one, preserving the reliability of our reproducible denoising pipeline. 696

Temporal Parameters: For Q preservation, we set tpres to 750. Framewise-SDSA is applied for t ∈ [550, 950]. Our 697
refinement feature injection step is employed during t ∈ [590, 950]. 698

Feature Injection: We apply our refinement feature injection step to the 32× 20 self-attention layers. Other layers either 699
produced visual artifacts or did not significantly affect identity. 700

Denoising Process: Videos were sampled the default VideoCrafter2 configuration, using 50 DDPM steps with a guidance 701
scale of 12. 702
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T2V-Turbo-V2: For T2V-Turbo-V2 we adapt our Framewise-SDSA by allowing each frame to attend to both its tempo-703
rally matching frames across shots and the middle frame of each shot. Other hyper-parameters were kept the same.704

B.15. User Study Protocol705

The following screenshots illustrate the experimental framework used in our user study:706

Figure B.9. One trial of the visual consistency user study.

Figure B.10. Examples provided in the user study for visual set consistency.
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Figure B.11. One trial of the text-motion alignment user study.

Figure B.12. Examples provided in the user study for text-motion alignment.
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