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Figure A.1. Qualitative Comparisons, Motion Transfer.

A.1. Motion Transfer Implementation Details

We record and inject only the Q features from the conditional forward pass.

When recording Q features, we use the same noise seed across different noise levels. During generation, however, we start
from a random initialization.

In VideoCrafter2, to ensure consistency with the video model’s latent space, we follow [19]: we add minor noise to the
source video latent (two steps) and then denoise it back to a clean latent before extracting Q features.

For quantitative results, we used Q injection ending at ¢ = 600. For qualitative results with VideoCrafter2, we selected
videos with Q injection ending between ¢ = 800 and ¢ = 600: closer to ¢ = 800 for camera motion, and closer to ¢ = 600
for non-rigid movement.

A.1.1. DiT-Based Models

For both WAN and LTX-Video, we used a 50-step flow-matching denoising scheduler as described by Esser et al. [7]. This
schedule shifts the timestep allocation so that more steps are concentrated in the high-noise region. Specifically, we used
the FlowMatchEulerDiscreteScheduler from huggingface, with their default ;x = 3.065 hyperparam.

Similar to VideoCrafter2, to transfer the full magnitude of motion we had to inject Q features for a substantial amount of
steps. For WAN, we injected Q features for 58% or 60% of the denoising schedule; for LTX-Video, we used 40%.

In WAN, we inject Q features only in layers 20-30. In all other models, Q injection is applied to all layers.

Current motion transfer benchmarks consist of short 16- or 24-frame videos, which is significantly shorter than the standard
length of WAN 2.1 videos (81 frames). Therefore, for motion transfer in WAN, we repeat each frame twice and pad the
last frame one additional time, therefore mapping 16 — 33 and 24 — 49. Accordingly, we double the frame rate of the
generated videos to keep the duration the same as in the source video.

For LTX-Video only, we found that injecting Q features between different initial noise seeds preserved the findings about
identity leakage but introduced visual artifacts. To mitigate this, we used identical seeds for different prompts and matched
the global statistical moments of the Value features, improving compatibility with the injected Query features.

A.2. Background: Self-Attention in T2V models

Our method manipulates the activations of the spatial self-attention in T2V diffusion models. We start by outlining its
mechanism and introducing key notations.
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Figure A.2. Identity Leakage and Motion Transfer with Other Text-to-Video Models.

Source Target

Figure A.3. Limitations. The source subject shape may affects the target object.

Recent T2V diffusion models are based on a latent video diffusion model (LVDM) architecture where a U-Net denoiser
is trained to estimate the noise in the noisy latent codes input. The denoising U-Net is a 3D U-Net architecture consisting
of a stack spatio-temporal blocks comprised of convolutional layers, spatial transformers (ST), and temporal transformers
(TT). The ST operate independently on each video frame, without awareness of the temporal structure, while the TT operate
independently on each temporal patch, without awareness of the spatial structure. In this work, we focus on manipulating the
self-attention mechanism of the spatial transformer layers.
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Figure B.1. Video Storyboarding Architecture: Our consistent denoising process has two phases: Q Preservation and Q Flow. We first
generate and cache video shots using “vanilla” VideoCrafter2. In Q Preservation (I" — tp,es), we use Vanilla Q Injection to maintain
motion structure by replacing our Q values with vanilla ones. In Q Flow (¢pres — to), we use a flow map from vanilla key frames to guide
Q feature injection. This phase maintains character identity by allowing the use of Q features from our consistent denoising process, while
the flow map ensures that these identity-preserving features are applied in a way that’s consistent with the original motion. Throughout,
we employ two complementary techniques: framewise subject-driven self-attention for visual coherence, and refinement feature injection
(Section B.4) to reinforce character consistency across diverse prompts.

B. Consistent Video Generation - Supplementary Detalis

B.1. Notations

Our method manipulates spatial self-attention activations in T2V diffusion models. We denote by {Q, K, V, O} the respective
Query, Key, Value and Output features of a single self-attention layer (see Appendix A.2 for background). In our method,
these features interact across frames, enabling cross-frame attention and consistency. We denote by @, the () features of
a layer during a “vanilla”, non-consistent, forward pass in a pretrained network, ). the query features from our subject-
consistent model, and Q) ¢ as the flow-based query features. For brevity, we omitted the frame index ¢

B.2. ConsiStory details

ConsiStory [26] operates in three steps. (1) Subject-Driven localization with extended Self-Attention (SDSA) — localizes
the subject across a set of noisy generated images by aggregating cross-attention maps across layers and timesteps. To
ensure subject consistency, SDSA enables each image to attend to patches of the main subject present in other image frames.
This is done by extending the self-attention mechanism, allowing it to share K, V features of the subject between multiple
images. Unfortunately, SDSA alone diminishes layout diversity in the generated images. Therefore, (2) Layout Diversity
— reinforces diversity through two techniques: First, it incorporates Q features from a vanilla, non-consistent sampling step.
Second, it applies an inference-time dropout to the shared K, V features. Finally, (3) Refinement Injection — improves
consistency in finer details by injecting the O features between corresponding subject patches.
The pipeline is illustrated in Fig. B.1.

B.3. Framewise Subject-Driven Self-Attention

Our first step builds on the Subject-Driven Self-Attention (SDSA) mechanism [26] to incorporate subject features across
multiple video shots by extending the self-attention mechanism. We identified two critical challenges when adapting SDSA
to video generation: (1) reliably localizing the subject during video denoising, and (2) ensuring motion fluidity is not com-
promised.

For subject localization, we propose using the estimated clean image 2 for mask generation instead of relying on internal
network activations, ensuring reliable masks even in early denoising steps. For motion fluidity, we introduce a framewise
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attention scheme, where frames with matching temporal indices across shots selectively attend each other. This prevents
artifacts and frozen motion.

We term this component Framewise-SDSA. Further technical details, including the mask estimation process and the formal
definition of Framewise-SDSA, are provided in Appendix B.10..

When generating multiple video shots with consistent subjects, we face a fundamental trade-off between subject consis-
tency and motion quality. Our experiments show that while Framewise-SDSA improves subject consistency, it often results
in side-effects, leading to excessive synchronization of motion layout across video shots and introduces motion artifacts
(Fig. 6(4th row)). These artifacts arise from the model’s attempt to simultaneously satisfy both the text prompt and the
undesired synchronization across shots.

Prior work in ConsiStory (Sec. B.2) demonstrated success in maintaining layout diversity for image generation through
SDSA dropout and query injection. However, our experiments show that directly extending this approach to video generation
produces poor results, with significant visual artifacts and compromised consistency between shots (Fig. B.3). This likely
occurs because (1) Consistory’s query injection is applied for shorter periods compared to the amount required in video
models, and (2) since ConsiStory’s vanilla-network queries are derived from latents that are influenced by consistency-
preserving mechanisms in earlier steps, rather than following an independent denoising trajectory.

Our analysis (Fig. 6) reveals that query features encode both motion patterns and subject identity. Injecting only vanilla
query features ((Q),) preserves dynamic motion but results in inconsistent subjects across shots (row 3). Conversely, using
only consistency-aware query features ().) ensures subject consistency but produces rigid, unnatural, and synchronized
movements (row 4). This observation motivates our two-phase approach that leverages both feature types.

Phase 1: Motion Structure Establishment. In early denoising steps (t € [T, %), we focus on establishing a robust
initial motion structure using a process we call Q Preservation. During this phase, we directly inject vanilla query features
(Q,) from pre-generated video shots. This allows us to retain the motion patterns present in the vanilla videos. Without this
initial phase, later denoising steps may deviate from the original motion patterns, leading to degraded motion quality.

Phase 2: Flow-based Consistency Integration. As denoising progresses (beyond ?p.), subject consistency becomes
increasingly important. To address this, we introduce Q Flow, a technique inspired by TokenFlow [10], where flow-based
query features () f) are injected to incorporate subject-consistent information while preserving the original motion. Similar
to [10], in this phase, we derive a flow map from vanilla-generated keyframes (Q,), which provides the motion structure.
We then blend subject-consistent query features (().) from nearby frames, as dictated by the flow. This blending process
produces @) ¢, that adhere to the original motion patterns while maintaining subject consistency across frames.

By following this approach, we maintain the natural flow of motion established in Phase 1 and progressively integrate
subject-consistent features without sacrificing motion quality. The formal definition of our flow-based query injection process
is provided in Appendix B.11.

B.4. Refinement Feature Injection for Enhanced Consistency

Despite improved motion preservation and subject consistency, fine details in subject appearance can still vary across frames.
We address this by adapting the refinement feature injection technique.

However, naively applying refinement feature injection solely to the conditional denoising step, as in ConsiStory, intro-
duces unnatural motion artifacts. This is likely due to the conditional step uses a correspondence map to inject features from
different frames, while the unconditional step does not, resulting in inconsistent feature injection. To mitigate this, we extend
refinement feature injection to the unconditional denoising step, using the same DIFT correspondence map. We also utilize
the entire frame set of each anchor video for refinement injection. This synchronized approach improves overall consistency
and reduces motion artifacts. For qualitative results, see Fig. B.3.

B.5. Consistent Video Generation - Comparisons to Baselines

We compare Video Storyboarding with strong baselines, starting with a qualitative comparison that shows improved subject-
consistency and better motion-alignment. We then conduct an ablation study to examine how self-attention query (Q) tokens
affect motion and identity, highlighting the contributions of the components in our method. Finally, quantitative evaluation
follows, including a large-scale user study, which demonstrates that users typically favor our results.

B.6. Evaluation baselines

We compare our method to several baselines: (1) VideoCrafter2: A baseline “vanilla” text-to-video model, without adap-
tations. VideoCrafter2 is a public SoTA video model [12]. (2) Tokenflow-Encoder: A combination of TokenFlow [10]
with IP-Adapter, a Personalization-Based Encoder [31]. We personalize TokenFlow by conditioning the IP-Adapter on the
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Figure B.2. Qualitative Comparisons. The first frame of each video shot is displayed along with a spatiotemporal y—t slice to visualize
motion. Ours (top row) shows improved character consistency across shots while maintaining natural motion. VideoCrafter2 (row 2) is
the vanilla model, showing diverse motion but inconsistent characters. Tokenflow-Encoder (row 3) preserves original motion but struggles
with character consistency and introduces coloring artifacts. ConsiS Im2Vid (bottom row) fails to maintain consistency and exhibits limited
motion adherence to prompts. See more examples in Fig. B.7.

first frame of one video generated by the vanilla model. For IP-Adapter we use a high-scale hyper-parameter to push the 528
model toward stronger consistency. (3) ConsiS Im2Vid: A combination of SoTA image-consistency approach [26], witha 529
subsequent Image-to-Video variant of VideoCrafter. First, we generate a set of consistent reference images. Then, we use 530
them as inputs to an Image-to-Video model. We chose VideoCrafter, as it is a public image-to-video model that has an overall 531
quality equivalent to that of the text-to-video VideoCrafter2 model according to the VBench benchmark [12]. (4) VSTAR: 532
A method for generating a long video with dynamic evolution [15]. We directly provide the multiple prompts and sample 16 533
frames per prompt, then splitting the result into individual shots. (5) Turbo-V2: A recent state-of-the-art text-to-video model 534
[14] that we use to demonstrate our method’s adaptability to other architectures. 535

B.7. Qualitative Results 536

To visually assess both multi-shot consistency and motion quality in videos, we present two elements per video shot: the 537
initial frame for comparing consistency between shots, and a spatiotemporal slice of the space-time volume, termed y—t 538
slice” [6], to visualize motion quality. The selected column for the y—t slice is marked by a yellow line. Typically, we choose 539
the column with the maximum variance in the vanilla-generated video shot. Occasionally, we manually select the y—t column 540
to highlight specific motion characteristics. For ConsiS Im2Vid, the max-variance column is chosen independently, as it does 541
not directly correspond to the vanilla model. 542

In Fig. B.2 and Fig. B.7, we showcase qualitative comparisons between our approach, the vanilla model, and the baselines. 543
Our method demonstrates the ability to alter subject identities consistently across shots, while guiding them towards a unified 544
appearance. This consistency is evident when comparing image frames from different shots. Additionally, an examination of 545
the y—t motion slices reveals that our approach successfully adheres to the motion guided by the vanilla model. 546

The Tokenflow-Encoder baseline preserves the original motion from vanilla models while primarily affecting the color 547
palette and color style of objects and scenes in videos. However, its impact on the identity of the subject is less pronounced 548
than our approach. Additionally, the combination with a high-scaled IP-Adapter often degrades video quality, causing blur- 549

ring and color artifacts. See the bird example in Fig. B.2 (3rd row) and the boy in Fig. B.7 (3rd row). 550
The ConsiS Im2Vid baseline maintains consistency in its reference images. However, the subsequent image-to-video 551
model introduces certain limitations. It lacks awareness of the consistency requirement and the capability to maintain it, 552

causing the subject identity to vary between video shots. Although consistency is maintained within each shot, overall 553
consistency with the reference image is compromised, as seen in the bird example in Figure 1 (4th row). Additionally, the 554
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image-to-video model fails to account for the action specified in the text prompt. This results in either minimal motion or
movement that does not align with the prompt, as the model relies solely on the conditioning image and cannot effectively
utilize the textual information. See the limited motion in the y—t slices in Fig. B.2 (4th row) and the corresponding videos in
the supplemental material.

VSTAR (Fig. B.7, Appendix) produces large motion dynamics, but struggles with prompt control, often resulting in entire
videos misaligning with text descriptions. As it maintains consistency through continuous video generation, it better suits
scene transitions than independent shots.

When applied to Turbo-V2 (Fig. B.6), our method enables subject consistency while leveraging Turbo-V2’s enhanced
motion capabilities.

surfing train  bouncing trampoline riding bike bicyc. limbs caught use a treadmill

Ours

Video-
Crafter2

ConsiS

+Uncond

Q ConsiS ConsiS

Camcorder, patchwork stuffed rabbit toy 2D cartoon animation, lovable monster

Figure B.3. Ablation Study on ConsiStory Components for Video Generation. “Ours” (top row) demonstrates improved motion
richness and identity preservation. VideoCrafter2 (second row) shows diverse motion but inconsistent characters. “ConsiS” (third row), a
naive ConsiStory implementation, shows impaired identity and motion artifacts. “ConsiS +Uncond” (fourth row) adds feature injection
to unconditional denoising, resolving motion artifacts but reducing motion magnitude and compromising identity. “Q ConsiS” (fifth row)
couples each frame with a single frame in an anchor video, allowing some natural motion, although partially synchronized, with improved
identity. Our method achieves the best balance of motion quality and identity.

Adapting ConsiStory for Video Generation. Next, we demonstrate the challenges of adapting the image-based Con-
siStory algorithm [26] to video generation. Fig. B.3 (3rd row “ConsiS”) shows a naive implementation of ConsiStory with
subject-driven extended attention coupled across all frames in each video shot, using subject mask dropout and omitting
feature injections to the unconditioned diffusion pass. At each step, it also employs queries influenced by the consistency-
preserving mechanism of previous steps, rather than queries from an independent vanilla denoising process. This results in
impaired identity consistency, strong motion artifacts, and unnatural motion flow of different body parts for both the rab-
bit and monster examples. Adding feature injection to the unconditional feature denoising (4th row “ConsiS +Uncond”)
resolves motion artifacts but largely reduces motion magnitude (e.g. body postures are mostly frozen), and compromises
identity. Next, coupling each frame in a shot with a single frame in an anchor video and avoiding SDSA dropout (5th row “Q
ConsiS”) allows for subtle natural motion, although it remains partially synchronized. It also improves identity preservation
to some degree. Unlike ConsiStory, SDSA dropout in videos hurts identity without significantly improving motion. Finally,
our method (Ist row - “Ours”) employs a novel Q intervention mechanism. It achieves richer motion with better identity and
adherence to the original motion of the vanilla model.
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B.8. Quantitative evaluation

We conducted a quantitative analysis using automated metrics and a user study, based on a benchmark dataset that we created
to assess set-consistency in video generation.

Benchmark Dataset: We constructed a benchmark dataset of 30 video sets, each containing 5 video-shots with shared
subjects but varying prompts. See further details in Appendix B.12.

Evaluation Protocol: To avoid overfitting, we conducted all development and parameter tuning on a separate collection of
16 distinct subject-prompt sets. The test set was used exclusively for final evaluations, without any component development
or hyperparameter tuning.

Evaluation Metrics: Our evaluation approach builds on previous work in image consistency and personalization [9,
24, 26], focusing on multi-shot set-consistency and motion dynamics. For set-consistency, we measure average pairwise
DINO feature similarity [4, 12] across all frames in a set, excluding pairs within the same video shot. We isolate the subject
by masking out the background [8] before extracting each frame’s features, using ClipSEG [18] with a dynamic threshold
determined by “Otsu’s method” [20]. For motion dynamics, we evaluate all 150 generated videos using VBench’s "Dynamic
Degree” metric [12], which classifies the significance of video motion by measuring RAFT-based optical flow intensity. We
focused on motion dynamics over text prompt alignment due to two challenges: actions are often visible even in videos with
minimal motion, making it difficult for temporal CLIP-like models [29] to distinguish between our method and baselines;
also, sharing seeds across baselines lead to similar visual structures, with main differences in motion quality. We include
text-similarity metrics in Table B.1 (Appendix), measuring temporal CLIP similarity between each video shot and its prompt.

Results: Fig. B.4 show our approach enhances multi-shot set consistency, while sacrificing motion magnitude compared
to vanilla VideoCrafter2. Tokenflow-Encoder baseline shows consistency improvement and slight motion decrease. ConsiS-
Im2Vid baseline’s performance aligns with qualitative analysis, showing low motion scores. A comparison of all baselines,
including VSTAR and Turbo-V2, is presented in Table B.1 (Appendix). VSTAR struggles with prompt control (19.8 vs
27.7 for ours), while achieving the highest consistency and motion dynamics. When combined with Turbo-V2, our method
improves multi-shot consistency while maintaining high motion quality: The dynamic degree improves threefold, from 20 to
62, while keeping the same level of text alignment.

5, B Ours

c @ Tokenflow

% 0.71 X ConsiS Im2vid - Lo . .
5 VideoCrafter2 igure B.4. Quantitative Evaluation of Set Cohnsm-
g tency and Motion Dynamics: Our approach achieves
o | highest set consistency score while maintaining com-
° 0.651 '%' petitive motion dynamics. Error bars indicate standard
ﬁ error of the mean.

é

S . . .

= 0.1 0.2 0.3

Dynamic Degree

These quantitative results offer insights into trade-offs between our approach and baselines, but cannot fully capture user-
perceived quality or alignment of generated motions with text prompts. Therefore, we conducted a comprehensive user
preference study using two and three-alternative forced-choice format, focusing on two key aspects: set-consistency and
text-motion alignment. For set-consistency, users selected the better set from two sets of 5 videos each depicting the subject.
For text-motion alignment, users chose the video best matching the action described in the prompt from a pair of videos. To
distinguish between degraded motions and those largely unchanged, users could also indicate if motion quality was equivalent
in both videos. We used the same test benchmark as the automated metric study, collecting 5 repetitions per question for
set-consistency and 3 repetitions for text-motion alignment, totaling 1800 responses.

The user-study results in Fig. B.5, reveal that Video Storyboarding outperforms the baselines in set consistency. For motion
quality, 55% of users rated the generated motions as similar or superior to those of the vanilla model. The ConsiS-Img2Vid
baseline’s motion quality was consistent with our earlier findings, showing lower motion quality. However, it achieved the
highest set consistency among the baselines, winning in 34% of the generated sets compared to our approach.
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Figure B.5. User Study: (left) We measure user preferences for set consistency and (right) how well the generated motion matches the text
prompt . Our approach achieves the superior set consistency score while maintaining competitive text-motion alignment. Notably, 55% of
our generated motions were judged to be of similar or better quality compared to the vanilla model. Error bars are S.E.M.

B.9. Additional Results

Fig. B.6 illustrates the adaptability of our method when applied to the state-of-the-art T2V-Turbo-V2 model [14]. The
results show enhanced motion quality while maintaining subject consistency, demonstrating that our approach can effectively
improve even the most recent video generation models.

Fig. B.7, provides additional qualitative comparisions to Fig. B.2, and also includes qualitative comparison with VSTAR
baseline [15].

In Table B.1 we present a comprehensive quantitative comparison across different models using three key metrics. Our
method, when combined with both VideoCrafter2 and Turbo-V2, shows improved Multi-Shot Consistency scores (68.8 and
67.3 respectively) compared to their baseline versions (63.2 and 63.3), while maintaining comparable Text Similarity and
Dynamic Degree measurements. This indicates that our approach successfully enhances subject consistency without sig-
nificantly compromising other important aspects of video generation. In the reported metrics, we also include a “Subject-
Consistency” metric, introduced by VBench [12]. This metric measures the similarity between frames within the same video
shot using DINO (see Table 1 in the Appendix).

80's Sesame Street scene, a Muppet Camcorder, patchwork stuffed rabbit toy

magic, pull scarves skate, wobblin surfing train

do aerobics - bouncing trampoline

riding bike
¥ f RY.

Ours

Figure B.6. T2V-Turbo-V2: Video Storyboarding can be applied to T2V-Turbo-V2 [14], a recent state-of-the-art video model, that exhibits
significantly better motion.

MULTI-SHOT TEXT DyYNAMIC SUBJECT

CONSISTENCY  SIMILARITY DEGREE CONSISTENCY
CoNsIS IM2VID 63.7+ 1.4 27.34+0.5 33+1.5 99.1 £ 0.1
VSTAR 83.9+£1.6 19.84+0.4 90.7+24 92.6 0.3
TOKENFLOW 65.3+1.5 279+0.4 26.0x£3.6 97.74+0.2
VIDEOCRAFTER?2 63.2+1.7 28.7+0.4 29.3+3.7 97.34+0.2
OURS + VIDEOCRAFTER?2 68.8 +1.8 27.74+0.4 20.0+3.3 97.7+0.2
TURBO-V2 63.3+1.7 28.6+0.4 63.3+3.9 96.2 + 0.2
OURS + TURBO-V2 67.3£2.1 27.4+£04 62.0+4.0 96.8 £ 0.2

Table B.1. Quantitative Evaluation Metrics. Comparison of different models across three metrics: Multi-Shot Consistency, Text Simi-
larity, and Dynamic Degree. Values are reported as mean + standard error of the mean (S.E.M).
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Figure B.7. Additional Qualitative Comparisons , including VSTAR: Our method generates consistent subjects while preserving diverse
and natural motions across scenarios.

15

ICCV
#*****



ICCV
gprwenn

627
628

629
630
631
632
633
634
635
636
637

638
639
640
641
642
643
644

645
646

647

648
649
650
651
652

653

654
655

656
657
658

659

660
661
662

663

664
665

666
667

668

669
670

ICCV 2025 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

B.10. Framewise Subject-Driven Self-Attention - Implementation Details

This section provides a detailed explanation of our proposed Framewise-SDSA mechanism.

Improved Subject Localization. In video generation, subject localization becomes particularly challenging during early
denoising steps, where the noise is most prominent. aggregation method proposed in ConsiStory (Sec. B.2) proved insufficient
in this context, particularly during the earliest denoising steps, leading to unreliable masks both in terms of accuracy and false
positive localization.

To address this, we propose using the estimated clean image Zy for subject localization instead of relying on internal
network activations. At each denoising step ¢, we estimate o from the noisy latent x using: £y = (a: —V1—ay- et) [/,
where e; is the estimated noise, and o is the schedule parameter [25]. We then apply a zero-shot segmentation approach [ 18]
to localize the subject in the estimated image, followed by Otsu’s method [20] to dynamically threshold the mask. This
approach produces reliable subject masks from the earliest denoising steps and throughout the generation process.

Maintaining Motion Fluidity. Our experiments revealed that a direct application of SDSA — attending to all frames across
all videos simultaneously — can lead to visual artifacts and frozen motion. We discovered that limiting attention to a single
corresponding frame in other shots is most effective, as attending to two or more frames negatively impacts motion fluidity
and introduces visual artifacts. Specifically, we propose a framewise attention scheme. Instead of attending to all frames
across all video shots, frames with matching temporal indices across shots attend only to each other. This prevents visual
artifacts and frozen motion, which occur when attending to multiple frames simultaneously and strikes a balance between
subject consistency and natural motion.

Formal Definition of Framewise-SDSA. Let K¢, Q;y, Vis, M;s be the keys, queries, values and subject-mask for frame
f in video shot i. The framewise extended self-attention Ajf is defined by:

Kf=[Kij®Ky;®---®Kny

Vf+ = [V17f€BV27f@"‘EBVN_f]
My =M@ ®Mi1y &1 Mij15-- & My,

Afy = sofimax (QiK T /\/dy +og M)
hig = A -Vy .

where @ indicates matrix concatenation. We use standard attention masking, which null-out softmax’s logits by assigning
their scores to —oo according to the mask. Note that in this step, the Query tokens remain unaltered, and that the concatenated
mask M;“f is set to be an array of 1’s for patch indices that belong to the i*" image itself.

B.11. Flow-based Q components injection - Formal Definition

Let ¢f.y € RY represent a Q feature from an originally generated video at location (z,) in frame f. We denote by f4 and
fp the indices of the two nearest keyframes, where f4 < f < fp. The locations of the most similar Q features in frames f4
and fp, denoted by (x4,y4) and (x5, yp) respectively, are defined as:

(anyA) = argmax Scos(way7Qan:0y0> (2)
Z0,Y0

(xBayB) = argmax Scos(way7QfBa:0yg> 3)
Zo,Y0

where S.s(a, b) represents the cosine similarity between a and b.
We then modify the generated Q feature, denoted by Gy, as follows:

(jfﬂfy = w(ijxAyA + (1 - w)quxByB 4)

where w = sigmoid ( f’; B__ffA ) This ensures that ¢ maintains the feature flow of the originally generated video, without

injecting the actual features from it.
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B.12. Benchmark Dataset Construction:

We created a benchmark dataset comprising 30 video sets, each containing 5 video-shots depicting a shared subject under
different prompts. The evaluation prompts were crafted using the Claude Sonnet 3.5 Al-Agent, following this protocol: each
prompt consisted of three parts: (1) a subject description, e.g., “A girl” (2) a setting description, e.g., “paddling out on
her surfboard”, and (3) a style descriptor encompassing both image and motion styles, e.g., “Anime cartoon animation” or
“Shaky camcoder footage”. We instructed the Al-agent to choose actions that are visually striking and could be captured in
a split second. Within each set, prompts shared the same subject and style but varied in settings. To ensure a challenging and
representative test set, we selected a subset of 5 prompts per subject, prioritizing those that produced videos with significant
motion and subject variability when processed by the vanilla model. Importantly, to ensure fairness, this selection process
relied solely on the vanilla model’s generations.

B.13. Q dropout

When Q injection is too strong, it can compromise identity preservation. To address this, we introduce Q dropout, which
reduces the strength of Q injection. Unlike SDSA dropout, which hurts identity when trying to improve the image structure,
Q dropout sacrifices some visual structural (motion) to enhance identity preservation. This Identity-Motion Trade-off is
illustrated in Fig. B.8, where increasing Q dropout improves identity consistency but reduces motion richness.

racing, forest

galloping, rainbow

40% Q drop 0% Q drop

Figure B.8. Q dropout: Q injection may hurt identity. Q dropout may trade-off identity for motion. At 0% the unicorn gallops at both
directions. At 40%, only to the right.

B.14. Implementation Details

Anchor Videos: Similar to ConsiStory, we utilize two anchor videos that share all features between themselves. Other videos
in the batch only observe features derived from these anchors.

Scalable Video Batch Processing with Sub-batch Attention: To fit large batches of video generation within available
GPU memory, we process the self and cross-attention computations in smaller sub-batches. This approach uses an internal
loop, and subsequently concatenates results into a single tensor. The operation remains transparent to the network, enabling
the generation of larger batches of video shots.

Reproducible denoising. Our pipeline involves three denoising iterations: caching vanilla queries, applying Q injection
and Framewise SDSA, and adding refinement feature injection. To ensure consistency across these stages, we maintain
identical random generators for both initial noisy latents and the denoising process. This approach guarantees that each part
builds upon the previous one, preserving the reliability of our reproducible denoising pipeline.

Temporal Parameters: For Q preservation, we set t,,.s to 750. Framewise-SDSA is applied for ¢ € [550,950]. Our
refinement feature injection step is employed during ¢ € [590, 950].

Feature Injection: We apply our refinement feature injection step to the 32 x 20 self-attention layers. Other layers either
produced visual artifacts or did not significantly affect identity.

Denoising Process: Videos were sampled the default VideoCrafter2 configuration, using 50 DDPM steps with a guidance
scale of 12.
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T2V-Turbo-V2: For T2V-Turbo-V2 we adapt our Framewise-SDSA by allowing each frame to attend to both its tempo-
rally matching frames across shots and the middle frame of each shot. Other hyper-parameters were kept the same.

B.15. User Study Protocol

The following screenshots illustrate the experimental framework used in our user study:
Task Example 1 Example 2

Select the group of videos that shows the same spider in all of them.
Concentrate on the spider's features and identity, ignoring the background, pose or motion.

Instructions

Read these instructions carefully

You are given two groups of videos, each showing a spider in different situations.

Choose the group where the spider maintains a consistent identity throughout all of its videos.

If some videos are inconsistent in both groups choose the group with greater overall consistency.

Do not judge based on the pose, background, or video quality. We want to assess the consistency of the spider's identity only. For example, choose a group
showing the same spider in various poses and backgrounds over a group showing a slightly different spider in the same pose and room.

Pay attention to the spider’s identity - things like eye color, texture, and facial features. Choose the group where these details are most consistent.
Pay close attention to subtle details that confirm it's the same spider in each video.

Do not judge based on video quality. Our goal is to assess the consistency of the spider's identity, not the quality of the videos.

Do not abuse the system, we take measures to spot that.

Make sure to always choose exactly one of the groups.

For guidance, please refer to the examples and their solutions provided at the top of this page.

Current subject is spider

O Bottom set better show the same subject across examples

Figure B.9. One trial of the visual consistency user study.

Task | Examplet Example 2 Task  Example 1 Example 2

In this example, we show that the choice need to be made according to subject identity, rather than consistent pose or environment. In this example, we show the you need to look at the fine details of each example in the set.

‘This set should be chosen because its the same doll les, despite the and

“This set should not be chosen because despite the similar material, the ol is diferent. ‘This set should be chosen, because it is the same turtle in most examples, as can be seen by the fine details of the head and shell.

Figure B.10. Examples provided in the user study for visual set consistency.
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Task Example 1 Example 2 Example 3

Choose the video that best matches the following text description.

Instructions

* Read these instructions carefully

* You will receive a textual description along with two videos. Your task is to determine in which video the motion of 6-year-old grandmother better
matches the action in the description.

* Do not judge based on video quality. Our goal is to assess which motion better follows the action in the text description.

* Prioritize motion that correspond to the text. Do not choose frozen videos that correspond to the action.

* If you think that the motion quality is equal in both videos, you can select this option.

* Do not abuse the system, we take measures to spot that.

* Make sure to always choose exactly one of the videos.

* For guidance, please refer to the example videos and their solutions provided at the top of this page.

Text Description: a whimsical blue-haired 6-year-old grandmother transforming origami animals into real
creatures, the camera circling as they come to life

video 1 video 2

QO Video 1 better reflects the textual description O Video 2 better reflects the textual description

O Motion quality is equivalent in both videos

Figure B.11. One trial of the text-motion alignment user study.

Task | Example1 Example2  Example3
Task  Example 1 Example2  Example3

Text Description: A dragon flying over a fantasy land.
Text Description: A unicorn galloping over a rainbow.

video 1 video 2

B el

video 1 video 2

‘This video should be chosen, since the dragon motion in ~ This video should not be chosen, since the dragon is
this video better reflect the described action. portrayed as flying, however the motion does not “This video shouid not be chosen, since the motionis  This video should be chosen, because the motion is
corresponds with the action. less rich richer, as the unicom is indeed galloping, although not
over the rainbow.

Task  Example 1 Example2  Example3

Text Description: An owl snowboarding.

video 1 video 2

19

“The motion is quality is equivalent in both videos. In this  The motion is quality is equivalent in both videos. In this
case it is best to select "Motion quality is equivalentin  case it is best to select "Motion quality is equivalent in
both videos" both videos"

Ficure B.12. Examples provided in the user study for text-motion alienment.



