
Robustifying Point Cloud Networks by Refocusing

Supplementary Material

6. Filtering in feature space
The algorithm outlined in the main paper involves a dual
forward pass. The first pass is necessary for querying the
importance score, while the second pass is utilized to pre-
dict the point cloud filtered based on the previously calcu-
lated importance score. Employing filtering in Euclidean
space serves as a safeguard against the propagation of out-
liers from the primal space to the feature space. An alterna-
tive approach we propose is to perform filtering directly in
the feature space instead of the input space. This alternative
method requires only a single forward pass of the base net-
work, incurring no additional latency. This approach can be
likened to a dropout layer that emphasizes the filtration of
dominant feature elements instead of random ones. While
feature space filtering yields lower robustness compared to
filtering in the primal space, as outliers in the Euclidean
space can still contaminate features, it does provide a no-
table boost in robustness, compared to the vanilla base net-
work. Thus, if speed is essential, one can consider also this
approach in point cloud classification networks. To illus-
trate this improvement, we integrated feature filtering into
the DGCNN and RPC models and evaluated their perfor-
mance on the ModelNet-C dataset. The results, as presented
in Tab. 4, highlight the significant enhancement in robust-
ness achieved through the implementation of our proposed
layer. This improvement is demonstrated in comparison to
the vanilla version of the network, with no associated la-
tency cost.

7. Benchmarks
ModelNet40. Synthetic dataset, constitutes a widely em-
ployed collection of CAD meshes spanning 40 distinct
classes, encompassing objects such as monitors, beds and
persons. These meshes have undergone uniform sampling
procedures, resulting in the formation of 3D point clouds,
each comprising 1024 points. The dataset encompasses a
total of 12,311 samples, partitioned into 9,843 samples des-
ignated for training and 2,468 samples allocated for testing
purposes.
ModelNet-C. Ren et al., introduced a corrupted point cloud
benchmark denoted as ModelNet-C, based on ModelNet40,
to facilitate the OOD robustness. ModelNet-C encompasses
a spectrum of seven distinct corruption types, namely jit-
ter, scale, rotation, add-global, add-local, drop-global, and
drop-local, each exhibiting five levels of difficulty. To
quantitatively gauge robustness, introduced a comprehen-
sive metric termed mean Corruption Error (mCE), a rela-
tive robustness measure with DGCNN algorithm serving as

a pivot network (and thus by definition mCE value of 1).
Given the error-based nature of this metric, a lower mCE
score is indicative of superior performance.
ScanObjectNN. Contains 2902 point clouds spanning 15
distinct categories, constituting a more intricate collection
that arises from real-world scans featuring background ele-
ments and instances of occlusion. There exist classes which
overlapp with ModelNet40 classes e.g. chairs, desks and
sofas.

8. Implementation details
The procedure of the training phase is provided in Alg. 2.

Algorithm 2 Refocusing (Training)

Require: DataSet, Influence
for X, label ∈ DataSet do

Xf = model(X)

ÎF (X) = Influence(X)

ΣN
i=1(Influence(Xi))

Hn = NormalizedEntropy(ÎF)
K = rand(256, 1024)
Xsampled = SelectLowest(X, ÎF ,K)
P = model(Xsampled)
L = CrossEntropyLoss(P, label)
L.backward()

end for
paramsRefocusing ← BestModelParams

8.1. Adversarial defense

Defense parameters. Following the Shape-Invariant
method, SRS was applied with 30% of filtered points, as
well as with 50%, while SOR was applied with 2 KNN and
σ = 1.1. Regarding LPF-Defense, we utilized lmax =
16, and in line with the ablation study conducted in LPF-
Defense paper, we executed it with σ = 20. The paper rec-
ommends training the network on the clean dataset and em-
ploying these parameters during inference. Consequently,
for each network, training was performed with these param-
eters and testing was conducted using the same parameters.
The training process was over 300 epochs, employing the
ADAM optimizer with a learning rate of 5−3, momentum
of 0.9, and weight decay of 1−4.
Attack setting. To underscore our defense capabilities, and
recognizing that the Shape-Invariant attack leverages a sen-
sitivity map characterized by transferability across diverse
networks, we decided to examine the most challenging sce-
nario. This entails investigating the situation where the

Model Approach OA% mCE #Forward Pass
DGCNN Vanilla 92.6 1.000 1

Refocusing feature space.(Ours) 92.7 0.818 1
Refocusing Euclidean space.(Ours) 91.6 0.688 2

RPC Vanilla 93.0 0.863 1
Refocusing feature space(Ours) 92.0 0.797 1

Refocusing Euclidean space (Ours) 91.6 0.728 2

Table 4. Filtering in feature space vs. Euclidean space using Refocusing Employing Refocusing for filtering in the feature space, as
opposed to the primary Euclidean space, enhances robustness compared to the standard network, all without incurring any latency costs.

Model Corruption Severity-0 (%) Severity-1 (%) Severity-2 (%) Severity-3 (%) Severity-4 (%)
DGCNN [44] Scale 89.9 90.1 88.9 89.5 89.3

Jitter 91.3 89.9 88.4 84.5 79.5
Rotate 91.0 88.8 82.7 70.8 56.1

Dropout Global 91.0 91.2 90.7 89.1 83.3
Dropout Local 90.3 88.1 83.6 79.1 68.6

Add Global 91.7 91.6 91.4 89.3 86.5
Add Local 88.6 85.2 82.4 80.5 77.7

GDANet [52] Scale 90.6 89.8 90.3 89.9 89.4
Jitter 91.1 89.3 87.1 82.2 73.9

Rotate 91.0 88.3 79.4 68.4 54.2
Dropout Global 91.0 90.5 90.4 88.1 81.5
Dropout Local 90.9 87.3 83.3 77.8 66.2

Add Global 91.6 91.4 91.3 90.4 89.1
Add Local 88.3 85.1 79.9 76.9 74.7

RPC [35] Scale 90.4 90.1 90.5 89.8 89.4
Jitter 90.7 87.6 83.7 76.8 64.9

Rotate 91.5 86.8 77.7 64.1 51.4
Dropout Global 91.8 92.0 91.5 91.1 89.3
Dropout Local 91.4 89.4 87.4 81.2 71.5

Add Global 88.6 87.3 86.3 84.6 84.0
Add Local 88.4 84.6 81.6 78.5 76.3

Table 5. Comprehensive Performance Table on ModelNet-C by Corruption Severity. The best performance for each corruption at
a given severity level is marked in bold. RPC excels in drop corruptions, while DGCNN performs best in add corruptions. Note that
GDANet’s performance is almost unaffected by the severity of global additions, similar to RPC’s performance in global dropping.

surrogate model, responsible for generating the sensitivity
map, aligns with the victim model. DGCNN serves as both
the surrogate model and the victim. Similarly, PointNet ful-
fills dual roles as the surrogate and victim, as does GDANet.

8.2. Robust classification

In the unaugmented setting, we initially apply conventional
augmentation methodologies to adhere to the OOD princi-
ple. In contrast, for the augmented iteration using WolfMix,
the augmentation process is first applied to the sample, fol-
lowed by our importance-based subsampling technique. To
mitigate the effects of randomness, a predetermined seed
is utilized. All models undergo training for 300 epochs in

the unaugmented scenario and 500 epochs in the augmented
case, utilizing a learning rate of 5e-4. A cosine annealing
scheduler is employed to drive the learning rate to converge
to zero. A batch size of 64 is adopted. In the unaugmented
version, the augmentation protocol outlined by DGCNN is
followed, encompassing two steps: 1) stochastic anisotropic
scaling spanning the range of [2/3, 3/2]; and 2) random
translation within the interval of [-0.2, +0.2]. The imple-
mentation makes use of the PyTorch library. The primary
training objective involves minimizing the Cross-Entropy
loss. During training, we computed the importance score
and cropped the sample to a random size within the range
of [256, 1024] contains points with the lowest importance.

𝑷
𝒓𝒆

𝒄𝒊
𝒔𝒊
𝒐
𝒏

Ours

SOR

𝑷
𝒓𝒆

𝒄𝒊
𝒔𝒊
𝒐
𝒏

𝑹𝒆𝒄𝒂𝒍𝒍

𝑹𝒆𝒄𝒂𝒍𝒍

FilteredCorrupted

Figure 8. Outlier removal on add-local. Refocusing outperforms SOR investigated on a grid of standard deviations. Zoom-in on SOR
with corresponding recall. Our approach achieves superior results on each sample, precise removal is exemplified by the cup shapes.

This prepares the model to accommodate a wide range of
sample sizes during inference, where we crop the sample to
an unknown size based on the adaptive threshold. Due to
variations in the number of points in each cloud, inference
is performed using a batch size of 1, a common practice in
real-world applications. Timing estimates are obtained by
averaging the time taken for 100 iterations of batches with
a size of 1.

The combination of our sampling approach with EPiC is
achieved by applying our sub-sampling technique once for
each sample, resulting in a fixed size of 600 points. The pre-
diction is then duplicated four times and concatenated with
other sub-samples. This duplication is carried out to ensure
an equal impact for each of the sampling schemes. Conse-
quently, the ensemble created using our sampling approach
comprises 16 members.

8.3. Full results

We present comprehensive and detailed results encompass-
ing both the adversarial attack experiment (refer to Tab. 6)
and the robust classification analysis (refer to Tab. 7). Ad-
versarial attack experiment. The comprehensive table in-
cludes three additional distance measures between adver-
sarial and benign shapes: Chamfer, Hausdorff, and MSE
distances. Robust classification. The detailed table con-
tains additional results for mCE under each specified cor-
ruption. Notably, certain defenses display a correlation with
specific corruptions across various networks. For instance,
Drop-Local is most effectively mitigated by EPiC, while
scale is best addressed by PointGuard. However, when con-
sidering the mCE metric, which aggregates the overall ro-
bustness scores across all corruptions, EPiC & Refocusing
(our method combined with EPiC) consistently achieve the
highest scores among the networks examined. Moreover,
we elaborate on the accuracy performance of each network

across all five degrees of severity. For a detailed explana-
tion of how the corruptions were constructed, please refer
to the ModelNet-C paper [35]. The results are summarized
in Tab. 5.

9. Discussion and future directions
Outliers removal. In outlier detection and removal, two
main categories of methods are prevalent. Learnable meth-
ods, which require clean and corrupted pairs as ground
truth, thus unsuitable for the OOD regime, which is our
primary focus. Classical methods are a valid choice, with
statistical outlier removal (SOR) being a common exam-
ple. We note that SOR requires prior knowledge on the out-
lier characteristics. Moreover, its performance deteriorates
for subtle, smooth corruptions, found in real-world scenar-
ios. For outliers removal task we propose to use a another
variant of influence, defined as: IF (i) =

∑G
k=1 |XG(i, k)|.

And average as adaptive threshold as follows: SX := {Xi :

IF (i) ≤ ΣN
i=1(IF (i))

N }. A preliminary evaluation of our ap-
proach appears promising. We attempt to detect Add-local
corruption of ModelNet-C. For SOR, we experiment with
various σ values, calculating mean recall and precision for
each. We focus on the settings that yield the same recall
as our method and present recall-precision values per sam-
ple (See Fig. 8). Our findings conclusively demonstrate the
superior performance of our approach in effective outlier
detection.
Statistical acquisition analysis. One can analyze certain
statistical aspects of different acquisition scenarios. For in-
stance, acquisition of objects containing background and
ones which do not. Samples with background exhibit rel-
atively higher focus, as the background may contain promi-
nent features that divert the network’s attention. See Fig. 9
for analysis of the real-world ScanObjectNN dataset.

Surrogate Defense ASR(%) A.Q(times) C.D(10−4) H.D(10−2) MSE
DGCNN – 99.3 106.7 3.18 4.54 1.22

SOR 75.6 795.6 2.59 3.48 1.65
SRS (50%) 78.4 566.3 1.21 3.59 0.69
SRS (30%) 68.6 790.3 1.64 4.11 0.85

LPF-Defense 47.8 1148.0 1.84 4.09 0.93
Refocusing (Ours) - Fixed (600) 43.5 1265.0 2.30 4.16 1.11

Refocusing (Ours) - Adaptive 37.5 1376.1 2.28 4.06 1.17
PointNet - 99.8 18.9 2.09 4.46 0.80

SOR 78.4 592.9 9.26 4.33 2.74
SRS (50%) 94.0 190.9 1.67 4.42 0.71
SRS (30%) 97.6 93.5 1.76 4.43 0.72

LPF-Defense 98.2 123.1 5.36 4.56 1.41
Refocusing (Ours) - Fixed (600) 74.1 693.6 11.33 4.70 2.66

Refocusing (Ours) - Adaptive 72.0 730.4 11.13 4.68 2.72
GDANet - 99.4 95.6 4.16 4.67 1.27

SOR 69.9 913.2 3.67 3.98 1.78
SRS (50%) 78.1 595.4 1.70 4.16 0.78
SRS (30%) 72.4 714.0 2.19 4.42 0.92

LPF-Defense 52.6 1071.48 2.18 4.26 0.94
Refocusing (Ours) - Fixed (600) 32.9 1447.3 2.18 4.32 1.03

Refocusing (Ours) - Adaptive 34.6 1425.5 2.13 4.21 1.03

Table 6. Comprehensive table of adversarial defenses against Shape-Invariant attack on ModelNet40. Incorporating our approach
with a fixed threshold (600 points). Our adaptive approach outperforms the fixed threshold in two out of the three evaluated networks.

Model Approach OA% mCE Scale Jitter Drop-
Global

Drop-
Local

Add-
Global

Add-
Local

Ro-
tate

DGCNN

Vanilla 92.6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
EPiC 93.0 0.669 1.000 0.680 0.331 0.498 0.349 0.807 1.019

PointGuard 83.8 1.165 0.743 0.809 0.840 0.812 0.838 0.785 0.584
Refocusing 91.6 0.688 0.896 0.868 0.891 0.820 0.902 0.829 0.779

EPiC & Refocusing 93.4 0.557 0.957 0.494 0.335 0.522 0.258 0.382 0.949

RPC

Vanilla 93.0 0.863 0.840 0.892 0.492 0.797 0.929 1.011 1.079
EPiC 93.6 0.750 0.915 1.057 0.323 0.440 0.281 0.902 1.330

PointGuard 86.9 1.051 0.773 0.817 0.868 0.843 0.867 0.804 0.590
Refocusing 91.6 0.728 0.901 0.808 0.912 0.842 0.862 0.819 0.744

EPiC & Refocusing 93.2 0.616 0.957 0.690 0.319 0.464 0.258 0.444 1.177

GDANet

Vanilla 93.4 0.892 0.830 0.839 0.794 0.894 0.871 1.036 0.981
EPiC 93.6 0.704 0.936 0.864 0.315 0.478 0.295 0.862 1.177

PointGuard 84.8 1.132 0.755 0.804 0.847 0.819 0.846 0.787 0.589
Refocusing 91.4 0.718 0.900 0.848 0.884 0.812 0.908 0.810 0.763

EPiC & Refocusing 93.4 0.587 0.926 0.617 0.323 0.512 0.258 0.393 1.079

Table 7. Comprehensive comparison table for augmented free ModelNet-C.

With Background

No Background

𝑭𝒐𝒄𝒖𝒔

Figure 9. Focus histogram on ScanObjectNN. Samples contains background yield higher focus than those without background.

	. Filtering in feature space
	. Benchmarks
	. Implementation details
	. Adversarial defense
	. Robust classification
	. Full results

	. Discussion and future directions

