
A Analysis of models

In this section, we perform additional diagnostics that give us confidence that our models are not
doing any form of gradient obfuscation or masking [3, 53].

AUTOATTACK and robustness against black-box attacks. First, we report in Table 4 the robust
accuracy obtained by our strongest models against a diverse set of attacks. These attacks are run as a
cascade using the AUTOATTACK library available at https://github.com/fra31/auto-attack.
The cascade is composed as follows:

• AUTOPGD-CE, an untargeted attack using PGD with an adaptive step on the cross-entropy loss
[10],

• AUTOPGD-T, a targeted attack using PGD with an adaptive step on the difference of logits ratio
[10],

• FAB-T, a targeted attack which minimizes the norm of adversarial perturbations [9],
• SQUARE, a query-efficient black-box attack [1].

First, we observe that our combination of attacks, denoted AA+MT matches the final robust accuracy
measured by AUTOATTACK. Second, we also notice that the black-box attack (i.e., SQUARE) does
not find any additional adversarial examples. Overall, these results indicate that our empirical
measurement of robustness is meaningful and that our models do not obfuscate gradients.

MODEL NORM RADIUS AUTOPGD-CE + AUTOPGD-T + FAB-T + SQUARE CLEAN AA+MT

WRN-28-10 (CutMix)
`∞ ε = 8/255

61.01% 57.61% 57.61% 57.61% 86.22% 57.50%
WRN-70-16 (CutMix) 62.65% 60.07% 60.07% 60.07% 87.25% 60.07%
WRN-70-16 [20] 59.39% 57.21% 57.20% 57.20% 85.29% 57.14%

Table 4: Clean (without adversarial attacks) accuracy and robust accuracy (against the different
stages of AUTOATTACK) on CIFAR-10 obtained by different models with our method. We compare
them with the results of [20] for a WRN-70-16 in the case without additional data. Refer to https:
//github.com/fra31/auto-attack for more details.
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Figure 9: Robust test accuracy measured by running AUTOPGD-CE with (a) different radii ε∞ and
(b) different number of steps K. The model is a WRN-70-16 network trained with CutMix against
ε∞ = 8/255, which obtains 60.07% robust accuracy against AA+MT at ε∞ = 8/255.

Further analysis of gradient obfuscation. In this paragraph, we consider a WRN-70-16 trained
with CutMix against ε∞ = 8/255, which obtains 60.07% robust accuracy against AA+MT at
ε∞ = 8/255.

In Figure 9(a), we run AUTOPGD-CE with 100 steps and 1 restart and we vary the perturbation
radius ε∞ between zero and 64/255. As expected, the robust accuracy gradually drops as the radius
increases indicating that PGD-based attacks can find adversarial examples and are not hindered by
gradient obfuscation.
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In Figure 9(b), we run AUTOPGD-CE with ε∞ = 8/255 and 1 restart and vary the number of steps
K between five and 1000. We observe that the measured robust accuracy converges after 50 steps.
This is further indication that attacks converge in 100 steps.

Loss landscapes. Finally, we analyze the adversarial loss landscapes of the model considered in
the previous paragraph. To generate a loss landscape, we vary the network input along the linear
space defined by the worse perturbation found by PGD40 (u direction) and a random Rademacher
direction (v direction). The u and v axes represent the magnitude of the perturbation added in each of
these directions respectively and the z axis is the adversarial margin loss [6]: zy −maxi 6=y zi (i.e., a
misclassification occurs when this value falls below zero).

Figure 10 shows the loss landscapes around the first 2 images of the CIFAR-10 test set. All landscapes
are smooth and do not exhibit patterns of gradient obfuscation. Overall, it is difficult to interpret
these figures further, but they do complement the numerical analyses done so far.
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Figure 10: Loss landscapes around the first two images from the CIFAR-10 test set for the WRN-70-16
network trained with CutMix. This model obtains 60.07% robust accuracy. It is generated by varying
the input to the model, starting from the original input image toward either the worst attack found
using PGD40 (u direction) or a random Rademacher direction (v direction). The loss used for these
plots is the margin loss zy −maxi 6=y zi (i.e., a misclassification occurs when this value falls below
zero). The diamond-shape represents the projected `∞ ball of size ε = 8/255 around the nominal
image.

B Analysis of augmentations

In this section, we give the implementation details of the augmentations used in the paper and we
complete our study with two additional augmentations: AutoAugment [12] and RandAugment [13].
Finally, we perform an ablation study analyzing the robust performance of each of the individual
augmentations which compose RandAugment and we propose a curated version of RandAugment
based on this ablation study.

Implementation details of the augmentations used in the paper. For Pad & Crop, we first pad
the image by 4 pixels on each side and then take a random 32× 32 crop. For MixUp [62], we sample
the image mixing weight with a beta distribution Beta(α, α) with α = 0.2 in our default case. For
Cutout [15], we use a square window of size 16 whose center is uniformly sampled within the image
bounds (but the window can overflow from the image). The square window is filled with the mean
pixel values of the dataset. For CutMix [58], we use a square window whose length is randomly
sampled such that the patch area ratio follows a beta distribution Beta(α, β) with parameters α = 1
and β = 1 and whose center is uniformly sampled within the image bounds (but the window can
overflow from the image). For RICAP [50], the size of the four patches is determined by the image
center point whose coordinates are sampled with a beta distribution Beta(α, β) with parameters
α = 0.3 and β = 0.3.
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AUGMENTATIONS M=3 M=5

AutoContrast -0.20% 0.20%
Equalize 0.78% 0.59%
Invert -6.84% -5.18%
Rotate 0.20% -0.39%
Posterize -0.59% -4.20%
Solarize -2.15% 0.49%
Color 0.39% 0.68%
Contrast 1.17% 0.20%
Brightness 0.98% 0.59%
Sharpness -0.39% 0.10%
ShearX 0.00% -0.68%
ShearY -0.59% -0.10%
TranslateX 0.78% -0.39%
TranslateY 0.10% 0.00%
SolarizeAdd 0.00% -0.20%

Table 5: Delta in robust accuracy on the validation split of CIFAR-10 for each augmentation compared
to the median robust accuracy over all the tested augmentations. The median robust accuracies are
53.61% and 53.81% for M = 3 and M = 5, respectively. We highlight in bold the results where the
robust accuracy is significantly lower than the median robust accuracy.

Regarding how data augmentation should be inserted in the adversarial training pipeline, there are two
possible designs: applying the augmentation before or after the adversarial attack. Experimentally,
we did find that applying the augmentation prior to running the attack was significantly better. Indeed,
applying the augmentation after the attack significantly reduces the strength of the attack, since
composition technique will destroy adversarial perturbations.

Regarding the training loss, we adapt the TRADES objective to the data augmentation setting
leading us to minimize the following loss: lce(f(x

′; θ),y′) + βDKL(f(x
′ + δ′; θ), f(x′; θ)) where

δ′ = argmaxδ∈SDKL(f(x
′ + δ; θ),y′) with x′ and y′ the result of various data augmentations. This

formulation is inspired from Gowal et al. [20] where they explored various schemes for the inner
optimization (see TRADES-XENT in [20]).

Additional augmentations: AutoAugment and RandAugment. AutoAugment [12] learns aug-
mentation policies from data by using a RNN controller and a Proximal Policy Optimization algorithm.
The learned policies available online have been tuned to optimize the natural accuracy and might not
suit the adversarial setting. We evaluate in the adversarial setting these nominally trained policies by
training a WRN-28-10 on CIFAR-10. By combining Pad & Crop and AutoAugment, our model with
WA reaches 55.68% robust accuracy (and 86.51% clean accuracy). Hence, the robust performance of
AutoAugment is similar to the one of MixUp (i.e. 55.62% robust accuracy) and it is performing much
worse than CutMix which gets 57.50% robust accuracy.

RandAugment [13], based on AutoAugment, has similar performance in the standard training setting
but it has a much smaller search space as it requires only two search sweeps: one over the length of
the transformations sequence N and a second over the global transformation magnitude M . This
allows to quickly adapt RandAugment to the adversarial setting compared to AutoAugment and its
computationally expensive search algorithm. We based our implementation of RandAugment on
the version found in the timm library [55] as in the original code of RandAugment a small global
magnitude M can produce high magnitude transformations for some augmentations like Posterize.
After running a sweep over N = {1, 2, 3} and M = {1, 3, 5, 7} when training adversarially a
WRN-28-10 on CIFAR-10, the best model using RandAugment with WA reaches 55.46% robust
accuracy against AA+MT (and 86.65% clean accuracy), which a robust performance similar to the
one obtained with AutoAugment.

Finally, we noted in the main paper that, in the context of adversarial training, some augmentation
techniques can perform worse than others such as MixUp which leads to underfitting. So, we should
study separately how each of the RandAugment individual transformations performs for adversarial
robustness. For each studied augmentation, we proceed as follows: (1) restrict the pool of available
operations to the studied augmentation, (2) run RandAugment with N = 1 and M = {3, 5} to train a
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WRN-28-10 on CIFAR-10. To compare the augmentations against each other, we evaluate the trained
models on the validation split, and report in Table 5 the delta in robust accuracy compared to the
median robust accuracy over all the tested transformations. We note that some augmentations, namely
Invert, Posterize and Solarize, significantly hurt robustness compared to the other augmentations.
Hence, we run a curated version of RandAugment without these operations. After running a sweep
over N = {1, 2, 3} and M = {1, 3, 5, 7} when training adversarially a WRN-28-10 on CIFAR-10,
the best model using this curated RandAugment with WA reaches 56.51% robust accuracy against
AA+MT (and 86.30% clean accuracy). Hence, the curated version of RandAugment leads to an
improvement of +1.05% in robust accuracy compared to the non-curated version but is still worse than
CutMix. Nevertheless, RandAugment is complementary to spatial composition techniques such as
CutMix. So, when combining the curated RandAugment with CutMix and re-running the same search
sweeps, the best model with WA reaches 58.09% robust accuracy against AA+MT, an improvement
of +0.59% over CutMix alone with WA.

C Additional data setting

For completeness, we also evaluate our models in the setting that considers additional external
data extracted from 80M-TI [7]. In this setting (with 500K added images), we observe in Table 6
that CutMix performs worse than the baseline when the model is small (i.e., WRN-28-10). This is
expected as the external data should generally be more useful than the augmented data and the model
capacity is too low to take advantage of all this additional data. However, CutMix is beneficial in the
setting with external data when the model is large (i.e., WRN-70-16). It improves upon the current
state-of-the-art set by Gowal et al. [20] by +0.68% (in the `∞ setting) and +1.19% (in the `2 setting)
in robust accuracy, thus leading to a new state-of-the-art robust accuracy of respectively 66.56% and
82.23% when using external data.

SETUP `∞ `2
CLEAN ROBUST CLEAN ROBUST

WRN-28-10

Gowal et al. [20] (trained by us) 89.42% 63.05% 94.01% 80.08%
Ours (CutMix) 89.90% 62.06% 94.96% 80.96%

WRN-70-16

Gowal et al. [20] (trained by us) 90.51% 65.88% 94.19% 81.04%
Ours (CutMix) 92.23% 66.56% 95.74% 82.23%

Table 6: Clean (without adversarial attacks) accuracy and robust accuracy (against AA+MT) on
CIFAR-10 as we both test against ε∞ = 8/255 and ε2 = 128/255 in the setting with added images
from 80M-TI.

D Societal impact

Improving robustness can have a negative impact for various reasons: (1) one can create stronger
adversarial images by maximizing the error of the improved model as done in the image synthesis
paper by Santurkar et al. [46], (2) the increased influence of the training points on the model when
using adversarial training can reduce the sensitivity of the model and lead to larger biases [63], (3)
Song et al. [47] show that improved robustness increases the success of privacy attacks and that robust
models are more sensitive to membership inference attacks.
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