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1 Appendix
In Appendices 1.1 and 1.2 we discuss algorithmic details and implementation/hyperparameter details
respectively for LS3 and all comparisons. We then provide full details regarding each of the experi-
mental domains and how data is collected in these domains in Appendix 1.3. In Appendix 1.4, we
present an additional experiment studying the task success rate of LS3 and comparisons evolves as
training progresses. Finally, in Appendix 1.5 we perform sensitivity experiments and ablations.

1.1 Algorithm Details

In this section, we provide implementation details and additional background information for LS3

and comparison algorithms.

1.1.1 Latent Space Safe Sets (LS3)

We now discuss additional details for each of the components of LS3, including network architectures,
training data, and loss functions.

Variational Autoencoders: We scale all image inputs to a size of (64, 64, 3) before feeding them
to the β-VAE, which uses a convolutional neural network for fenc and a transpose convolutional
neural network for fdec. We use the encoder and decoder from Hafner et al. [1], but modify the second
convolutional layer in the encoder to have a stride of 3 rather than 2. As is standard for β-VAEs, we
train with a mean-squared error loss combined with a KL-divergence loss. For a particular observation
st ∈ S the loss is

J(θ) = ‖fdec(zt)− st‖22 + βDKL (fenc(zt|st)||N (0, 1)) (1)

where zt ∼ fenc(zt|st) is modeled using the reparameterization trick.

Probabilistic Dynamics: As in Chua et al. [2] we train a probabilistic ensemble of neural networks
to learn dynamics. Each network has two hidden layers with 128 hidden units. We train these
networks with a maximum log-likelihood objective, so for two particular latent states zt, zt+1 ∈ Z
and the corresponding action at ∈ A the loss is as follows for dynamics model fdyn,θ with parameter
θ:

J(θ) = − log fdyn,θ(zt+1|zt, at) (2)

When using fdyn for planning, we use the TS-1 method from Chua et al. [2].

Value Functions: As discussed in Section ??, we train an ensemble of recursively defined value
functions to predict long term reward. We represent these functions using fully connected neural
networks with 3 hidden layers with 256 hidden units. Similarly to [3], we use separate training
objectives during offline and online training. During offline training, we train the function to predict
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actual discounted cost-to-go on all trajectories in D. Hence, for a latent vector zt, the loss during
offline training is given as follows where V has parameter θ:

J(θ) =

(
V πθ (zt)−

T−t∑
i=1

γirt+i

)2

(3)

In online training we also store target network V π
′

and calculate a temporal difference (TD-1) error,

J(θ) =
(
V πθ (zt)− (rt + γV π

′

θ′ (zt+1))
)2

(4)

where θ′ are the parameters of a lagged target network and π′ is the policy at the timestep at which θ′
was set. We update the target network every 100 updates. In each of these equations, γ is a discount
factor (we use γ = 0.99). Because all episodes end by hitting a time horizon, we found it was
beneficial to remove the mask multiplier usually used with TD-1 error losses.

For all simulated experiments we update value functions using only data collected by the suboptimal
demonstrator or collected online, ignoring offline data collected with random interactions or offline
demonstrations of constraint violating behavior.

Constraint and Goal Estimators: We represent constraint indicator fC : Z → {0, 1}with a neural
network with 3 hidden layers and 256 hidden units for each layer with a binary cross entropy loss with
transitions from Dconstraint for unsafe examples and the constraint satisfying states in D \ Dconstraint as
safe examples. Similarly, we represent the goal estimator fG : Z → {0, 1} with a neural network
with 3 hidden layers and 256 hidden units. This estimator is also trained with a binary cross entropy
loss with positive examples from Dsuccess and negative examples sampled from all datasets. For
the constraint estimator and goal indicator, training data is sampled uniformly from a replay buffer
containing Dsuccess, Drand and Dconstraint.

Safe Set: The safe set classifier fS(·) is represented with neural network with 3 hidden layers and
256 hidden units. We train the safe set classifier to predict

fS(st) = max(1Sj (st), γSfS(st+1)) (5)

using a binary cross entropy loss, where 1Sj (st) is an indicator function indicating whether st is part
of a successful trajectory. Training data is sampled uniformly from a replay buffer containing all of
D. Similar to deep value function learning literature [4, 5, 3], the safe set is trained to solve the above
equation by fixed point iteration: the safe set is used to construct its own targets, which are then used
to update the safe set before using the updated safe set to construct new targets.

Cross Entropy Method: We use the cross entropy method to solve the optimization problem in
equation ??. We build on the implementation of the cross entropy method provided in [6], which
works by sampling ncandidate action sequences from a diagonal Gaussian distribution, simulating each
one nparticle times over the learned dynamics, and refitting the parameters of the Gaussian on the nelite
trajectories with the highest score under equation ?? where constraints are implemented by assigning
large negative rewards to trajectories which violate either the safe set constraint or user-specified
constraints. This process is repeated for ncem iters to iteratively refine the set of sampled trajectories
to optimize equation ??. To improve the optimizer’s efficiency on tasks where subsequent actions
are often correlated, we sample a proportion (1− prandom) of the optimizer’s candidates at the first
iteration from the distribution it learned when planning the last action. To avoid local minima, we
sample a proportion prandom uniformly from the action space. See Chua et al. [2] for more details on
the cross entropy method as applied to planning over neural network dynamics models.

As mentioned in Section ??, we set δS for the safe set classifier fS adaptively by checking whether
there exists at least one plan which satisfies the safe set constraint at each CEM iteration. If no such
plan exists, we multiply δS by 0.8 and re-initialize the optimizer at the first CEM iteration with the
new value of δS. We initialize δS = 0.8.

1.1.2 Soft Actor-Critic from Demonstrations (SACfD)

We utilize the implementation of the Soft Actor Critic algorithm from [7] and initialize the actor
and critic from demonstrations but keep all other hyperparameters the same as the default in the
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Table 1: Hyperparameters for LS3

Parameter Navigation Reacher Sequential Pushing Cable Routing
δS 0.8 0.5 0.8 0.8
δC 0.2 0.2 0.2 0.2
β 1× 10−6 1× 10−6 1× 10−6 1× 10−6

H 5 3 3 5
nparticle 20 20 20 20
ncandidate 1000 1000 1000 2000
nelite 100 100 100 200

ncem iters 5 5 5 5
d 32 32 32 32

prandom 1.0 1.0 1.0 0.3
Frame Stacking No Yes No No

Batch Size 256 256 256 256
γ 0.99 0.99 0.99 0.99
γS 0.3 0.3 0.9 0.9

provided implementation. We create a new dataset Ddemos ( D using only data from the suboptimal
demonstrator, and use the data from Ddemos to behavior clone the actor and initialize the critic using
offline bellman backups. We use the same mean-squared loss function for behavior cloning as for the
behavior clone policy, but only train the mean of the SAC policy. Precisely, we use the following
loss for some policy π with parameter θ: L(θ,Ddemos) =

∑
τi∈Ddemos

∑T
t=1 ||µθ(sit) − ait||2 where

sit and ait are the state and action at timestep t of trajectory τi and π(·|st) ∼ N (µθ(st), σφ(st)).
We also experimented with training the SAC critic on all data provided to LS3 in D but found that
this hurt performance. We use the architecture from [7] and update neural network weights using
an Adam optimizer with a learning rate of 3× 10−4. The only hyperparameter for SACfD that we
tuned across environments was the reward penalty λ which was imposed upon constraint violations.
For all simulation experiments, we evaluated λ ∈ {−1,−3,−5,−10,−20} and report the highest
performing value. Accordingly, we use λ = −3 for all experiments except the reacher task, for which
we used λ = −1. We observed that higher values of λ resulted in worse task performance without
significant increase in constraint satisfaction. We hypothesize that since the agent is frozen in the
environment upon constraint violations, the resulting loss of rewards from this is sufficient to enable
SACfD to avoid constraint violations.

1.1.3 Soft Actor-Critic from Demonstrations with Learned Recovery Zones (SACfD+RRL)

We build on the implementation of the Recovery RL algorithm [8] provided in [9]. We train the
safety critic on all offline data from D. Recovery RL uses SACfD as its task policy optimization
algorithm, and introduces two new hyperparameters: (γrisk, εrisk). For each of the simulation
environments, we evaluated SACfD+RRL across 3-4 (γrisk, εrisk) settings and reported results
from the highest performing run. Accordingly, for the navigation environment, we use: (γrisk =
0.95, εrisk = 0.8). For the reacher environment, we use (γrisk = 0.55, εrisk = 0.7), and we use
(γrisk = 0.75, εrisk = 0.7) for the sequential pushing environment. For the cable routing environment,
we use (γrisk = 0.55, εrisk = 0.7).

1.1.4 Advantage Weighted Actor-Critic (AWAC)

To provide a comparison to state of the art offline reinforcement learning algorithms, we evaluate
AWAC [10] on the experimental domains in this work. We use the implementation of AWAC
from [11]. For all simulation experiments, we evaluated λ ∈ {−1,−3,−5,−10,−20} and report
the highest performing value. Accordingly, we use λ = −1 for all experiments. We used the default
settings from [11] for all other hyperparameters.

1.2 LS3 Implementation Details

In Table 1, we present the hyperparameters used to train and run LS3. We present details for the
constraint thresholds δC and δS. We also present the planning horizon H and VAE KL regularization
weight β. We present the number of particles sampled over the probabilistic latent dynamics
model for a fixed action sequence nparticles, which is used to provide an estimated probability of
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constraint satisfaction and expected rewards. For the cross entropy method, we sample ncandidate
action sequences at each iteration, take the best nelite action sequences and then refit the sampling
distribution. This process iterates ncem iters times. We also report the latent space dimension d,
whether frame stacking is used as input, training batch size, and discount factor γ. Finally, we present
values of the safe set bellman coefficient γS. For all domains, we scale RGB observations to a size of
(64, 64, 3). For all modules we use the Adam optimizer with a learning rate of 1× 10−4, except for
dynamics which use a learning rate of 1× 10−3.

1.3 Experimental Domain Details

1.3.1 Navigation

The visual navigation domain has 2-D single integrator dynamics with additive Gaussian noise sam-
pled fromN (0, σ2I2) where σ = 0.125. The start position is (30, 75) and goal set is B2((150, 75), 3),
where B2(c, r) is a Euclidean ball centered at c with radius r. The demonstrations are created by
guiding the agent north for 20 timesteps, east for 40 timesteps, and directly towards the goal until the
episode terminates. This tuned controller ensures that demonstrations avoid the obstacle and also
reach the goal set, but they are very suboptimal. To collect demonstrations of constraint violating be-
havior, we randomly sample starting points throughout the environment, move in a random direction
for 15 time steps, and then move directly towards the obstacle. We do not collect additional data for
Drand in this environment. We collect 50 demonstrations of successful behaviors and 50 trajectories
containing constraint violating behaviors.

1.3.2 Reacher

The reacher domain is built on the reacher domain provided in the DeepMind Control Suite from [12].
The robot is represented with a planar 2-link arm and the agent supplies torques to each of the 2 joints.
Because velocity is not observable from a single frame, algorithms are provided with several stacked
frames as input. The start position of the end-effector is fixed and the objective is to navigate the end
effector to a fixed goal set on the top left of the workspace without allowing the end effector to enter
a large red stay-out zone. To collect data from Dconstraint we randomly sample starting states in the
environment, and then use a PID controller to move towards the constraint. To sample random data
that will require the agent to model velocity for accurate prediction, we start trajectories at random
places in the environment, and then sample each action from a normal distribution centered around
the previous action, at+1 ∼ N (at, σ

2I) for σ2 = 0.2. We collect 50 demonstrations of successful
behavior, 50 trajectories containing constraint violations and 100 short (length 20) trajectories or
random data.

1.3.3 Sequential Pushing

This sequential pushing environment is implemented in MuJoCo [13], and the robot can specify a
desired planar displacement a = (∆x,∆y) for the end effector position. The goal is to push all 3
blocks backwards by at least some displacement on the table, but constraints are violated if blocks
are pushed backwards off of the table. For the sequential pushing environment, demonstrations are
created by guiding the end effector to the center of each block and then moving the end effector in
a straight line at a low velocity until the block is in the goal set. This same process is repeated for
each of the 3 blocks. Data of constraint violations and random transitions for Dconstraint and Drand are
collected by randomly switching between a policy that moves towards the blocks and a policy that
randomly samples from the action space. We collect 500 demonstrations of successful behavior and
300 trajectories of random and/or constraint violating behavior.

1.3.4 Physical Cable Routing

This task starts with the robot grasping one endpoint of the red cable, and it can make (∆x,∆y)
motions with its end effector. The goal is to guide the red cable to intersect with the green goal
set while avoiding the blue obstacle. The ground-truth goal and obstacle checks are performed
with color masking. LS3 and all baselines are provided with a segmentation mask of the cable as
input. The demonstrator generates trajectories Dsuccess by moving the end effector well over the
obstacle and to the right before executing a straight line trajectory to the goal set. This ensures
that it avoids the obstacle as there is significant margin to the obstacle, but the demonstrations may
not be optimal trajectories for the task. Random trajectories Drand are collected by following a
demonstrator trajectory for some random amount of time and then sampling from the action space
until the episode hits the time horizon. We collect 420 demonstrations of successful behavior and
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150 random trajectories. We use data augmentation to increase the size of the dataset used to train
fenc and fdec, taking the images in D and creating an expanded dataset by adding randomly sampled
affine translations and perspective shifts, until |DVAE| > 100000.

1.4 Additional Results

We additionally study how the task success rate of LS3 and comparisons evolves as training progresses
in Figure 1. Precisely, we checkpoint each policy after each training trajectory and evaluate it over 10
rollouts for each of the 10 random seeds (100 total trials per datapoint). We find that LS3 achieves
a much higher task success rate than comparisons early on in training, and maintains a higher task
success rate throughout the course of training on all simulation domains.

1.5 Sensitivity Experiments

Key hyperparameters in LS3 are the constraint threshold δC and safe set threshold δS, which control
whether the agent decides predicted states are constraint violating or in the safe set respectively. We
ablate these parameters for the Sequential Pushing environment in Figures 2 and 4. We find that
lower values of δC made the agent less likely to violate constraints as expected. Additionally, we find
that higher values of δS helped constrain exploration more effectively, but too high of a threshold led
to poor performance suffered as the agent exploited local maxima in the safe set estimation. Finally,
we ablate the planning horizon H for LS3 and find that when H is too high, Latent Space Safe Sets
(LS3) can explore too aggressively away from the safe set, leading to poor performance. When H
is lower, LS3 explores much more stably, but if it is too low (ie. H = 1), LS3 is eventually unable
to explore significantly new plans, while slightly increasing H (ie. H = 3) allows for continuous
improvement in performance.
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Figure 1: Task Success Rate: Learning curves showing mean and standard error of task success rate of
checkpointed policies over 10 random seeds (and 10 rollouts per seed). We see that LS3 has a much higher task
success rate than comparisons early on, and maintains a success rate at least as high as comparisons throughout
training in all environments.
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Figure 2: Hyperparameter Sweep for LS3 Constraint Threshold: Plots show mean and standard error over
10 random seeds for experiments with different settings of δC on the sequential pushing environment. As
expected, we see that without avoiding latent space obstacles (No Constraints) the agent violates constraints
more often, while lower thresholds (meaning the planning algorithm is more conservative) generally lead to
fewer violations.

5



0 100 200 300 400 500
# Training Trajectories

140

120

100

80

60

40

Re
wa

rd
Sequential Pushing Safe Set Threshold

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Task Success Rate

0.00

0.05

0.10

0.15

0.20

0.25

0.30
Constraint Violation Rate

Demonstrations = 1.0 = 0.8 = 0.5 = 0.2 No Safe Set

Figure 3: Hyperparameter Sweep for LS3 Safe Set Threshold: Plots show mean and standard error over 10
random seeds for experiments with different settings of δS on the sequential pushing environment. We see that
after offline training, the agent can successfully complete the task only when δS is high enough to sufficiently
guide exploration, and that runs with higher values of δS are more successful overall.
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Figure 4: Hyperparameter Sweep for LS3 Planning Horizon: Plots show mean and standard error over 10
random seeds for experiments with different settings of H on the sequential pushing environment. We see that
when the planning horizon is too high the agent cannot reliably complete the task due to modeling errors. When
the planning horizon is too low, it learns quickly but cannot significantly improve because it is constrained to the
safe set. We found H = 3 to balance this trade off best.
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