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Abstract

Training models that perform well under distribution shifts is a central challenge
in machine learning. In this paper, we introduce a modeling framework where, in
addition to training data, we have partial structural knowledge of the shifted test
distribution. We employ the principle of minimum discriminating information to
embed the available prior knowledge, and use distributionally robust optimization
to account for uncertainty due to the limited samples. By leveraging large deviation
results, we obtain explicit generalization bounds with respect to the unknown
shifted distribution. Lastly, we demonstrate the versatility of our framework by
demonstrating it on two rather distinct applications: (1) training classifiers on sys-
tematically biased data and (2) off-policy evaluation in Markov Decision Processes.

1 Introduction

Developing machine learning-based systems for real world applications is challenging, particularly
because the conditions under which the system was trained are rarely the same as when using the
system. Unfortunately, a standard assumption in most machine learning methods is that test and
training distribution are the same [78, 59, 12]. This assumption, however, rarely holds in practice,
and the performance of many models suffers in light of this issue, often called dataset shift [52] or
equivalently distribution shift. Consider building a model for diagnosing a specific heart disease,
and suppose that most participants of the study are middle to high-aged men. Further suppose
these participants have a higher risk for the specific disease, and as such do not reflect the general
population with respect to age and gender. Consequently, the training data suffers from the so-called
sample selection bias inducing a covariate shift [62, 52]. Many other reasons lead to distribution
shifts, such as non-stationary environments [67], imbalanced data [52], domain shifts [3], label shifts
[83] or observed contextual information [8, 9]. A specific type of distribution shift takes center stage
in off-policy evaluation (OPE) problems. Here, one is concerned with the task of estimating the
resulting cost of an evaluation policy for a sequential decision making problem based on historical
data obtained from a different policy known as behavioral policy [73]. This problem is of critical
importance in various applications of reinforcement learning—particularly, when it is impossible or
unethical to evaluate the resulting cost of an evaluation policy by running it on the underlying system.
Solving a learning problem facing an arbitrary and unknown distribution shift based on training
data in general is hopeless. Oftentimes, fortunately, partial knowledge about the distribution shift
is available. In the medical example above, we might have prior information how the demographic
attributes in our sample differ from the general population. Given a training distribution and partial
knowledge about the shifted test distribution, one might ask what is the “most natural" distribution
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shift mapping the training distribution into a test distribution consistent with the available structural
information. Here, we address this question, interpreting “most natural" as maximizing the underlying
Shannon entropy. This concept has attracted significant interest in the past in its general form, called
principle of minimum discriminating information dating back to Kullback [37], which can be seen
as a generalization of Jaynes’ maximum entropy principle [31]. While these principles are widely
used in tasks ranging from economics [27] to systems biology [63] and regularized Markov decision
processes [48, 25, 2], they have not been investigated to model general distribution shifts as we
consider in this paper.
Irrespective of the underlying distribution shift, the training distribution of any learning problem is
rarely known, and one typically just has access to finitely many training samples. It is well-known
that models can display a poor out-of-sample performance if training data is sparse. These overfitting
effects are commonly avoided via regularization [12]. A regularization technique that has become
popular in machine learning during the last decade and provably avoids overfitting is distributionally
robust optimization (DRO) [36].

Contributions. We highlight the following main contributions of this paper:

• We introduce a new modelling framework for distribution shifts via the principle of minimum
discriminating information, which encodes prior structural information on the resulting test
distribution.
• Using our framework and the available training samples, we provide generalization bounds via a

DRO program and prove that the introduced DRO model is optimal in a precise statistical sense.
• We show that the optimization problems characterizing the distribution shift and the DRO program

can be efficiently solved by exploiting convex duality and recent accelerated first order methods.
• We demonstrate the versatility of the proposed Minimum Discriminating based DRO (MDI-DRO)

method on two distinct problem classes: Training classifiers on systematically biased data and the
OPE for Markov decision processes. In both problems MDI-DRO outperforms existing approaches.

2 Related work

For supervised learning problems, there is a rich literature in the context of covariate shift adap-
tation [62, 68]. A common approach is to address this distribution shift via importance sampling,
more precisely by weighting the training loss with the ratio of the test and training densities and
then minimize the so-called importance weighted risk (IWERM), see [62, 82, 68, 69]. While this
importance weighted empirical risk is an unbiased estimator of the test risk, the method has two
major limitations: It tends to produce an estimator with high variance, making the resulting test
risk large. Further, the ratio of the training and test densities must be estimated which in general is
difficult as the test distribution is unknown. There are modifications of IWERM reducing the resulting
variance [15, 13, 65], for example by exponentially flattening the importance ratios [62]. For the
estimation of the importance weights several methods have been presented, see for example [81].
These methods, however crucially rely on having data from both training and test distribution. Liu and
Ziebart [40] and Chen et al. [14] propose a minimax approach for regression problems under covariate
shift. Similar to our approach taken in this paper, they consider a DRO framework, which however,
optimizes over so-called moment-based ambiguity sets. Distribution shifts play a key role in causal
inference. In particular, the connection between causal predictors and distributional robustness under
shifts arising from interventions has been widely studied [58, 42, 56, 66]. Oftentimes, a causal graph
is used to represent knowledge about the underlying distribution shift induced by an intervention
[49, 50]. Distribution shifts have been addressed in a variety of different settings [35], we refer the
reader to the comprehensive textbook [52] and references therein.
There is a vast literature on OPE methods which we will not attempt to summarize. In a nutshell,
OPE methods can be grouped into three classes: a first class of approaches that aims to fit a model
from the available data and uses this model then to estimate the performance of the given evaluation
policy [41, 1, 38]. A second class of methods are based on invoking the idea of importance sampling
to model the underlying distribution shift from behavioral to evaluation policy [51, 29, 74]. The third,
more recent, class of methods combines the first two classes [24, 32, 76, 33].
Key reasons for the popularity of DRO in machine learning are the ability of DRO models to regular-
ize learning problems [36, 60, 61] and the fact that the underlying optimization problems can often
be exactly reformulated as finite convex programs solvable in polynomial time [4, 10]. Such refor-
mulations hold for a variety of ambiguity sets such as: regions defined by moments [20, 26, 80, 11],
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φ-divergences [5, 44, 39], Wasserstein ambiguity sets [43, 36], or maximum mean discrepancy ambi-
guity sets [64, 34]. DRO naturally seems a convenient tool when analyzing “small" distribution shifts
as it seeks models that perform well “sufficiently close" to the training sample. However, modelling a
general distribution shift via DRO seems difficult, and recent interest has focused on special cases
such as adversarial example shifts [23] or label shifts [83]. To the best of our knowledge, the idea of
combining DRO with the principle of minimum discriminating information is new.

3 Problem statement and motivating examples

We study learning problems of the form

min
θ∈Θ

R(θ,P?), (1)

where R(θ,P?) = EP? [L(θ, ξ)] denotes the risk of an uncertain real-valued loss function L(θ, ξ)
that depends on a parameter θ ∈ Θ ⊂ Rn to be estimated as well as a random vector ξ ∈ Ξ ⊂ Rm
governed by the probability distribution P?. In order to avoid technicalities, we assume from now on
that Θ and Ξ are compact and L is continuous. In statistical learning, it is usually assumed that P?
is unknown but that we have access to independent samples from P?. This paper departs from this
standard scenario by assuming that there is a distribution shift. We first state our formal assumption
about the shift and provide concrete examples below. Specifically, we assume to have access to
samples from a distribution P 6= P? and that P? is only known to belong to the distribution family

Π = {Q ∈ P(Ξ) : EQ [ψ(ξ)] ∈ E} (2)

encoded by a measurable feature map ψ : Ξ→ Rd and a compact convex set E ⊂ Rd. In view of the
principle of minimum discriminating information, we identify P? with the I-projection of P onto Π.
Definition 3.1 (Information projection). The I-projection of P ∈ P(Ξ) onto Π is defined as

Pf = f(P) = arg min
Q∈Π

D(Q‖P), (3)

where D(Q‖P) denotes the relative entropy of Q with respect to P.

One can show that the I-projection exists whenever Π is closed with respect to the topology induced
by the total variation distance [17, Theorem 2.1]. As E is closed, this is the case whenever ψ is
bounded. Note that f(P) = P if P ∈ Π. In the remainder, we assume that P 6∈ Π and that P is only
indirectly observable through independent training samples ξ̂1, . . . , ξ̂N drawn from P.
Example 3.2 (Logistic regression). Assume that ξ = (x, y), where x ∈ Rm−1 is a feature vector of
patient data (e.g., a patient’s age, sex, chest pain type, blood pressure, etc.), and y ∈ {−1, 1} a label
indicating the occurrence of a heart disease. Logistic regression models the conditional distribution
of y given x by a logistic function Prob(y|x) = [1 + exp(−y · θ>x)]−1 parametrized by θ ∈ Rm−1.
The maximum likelihood estimator for θ is found by minimizing the empirical average of the logistic
loss function L(θ, ξ) = log(1 + exp(−y · θ>x)) on the training samples. If the samples pertain
to a patient cohort, where elderly males are overrepresented with respect to the general population,
then they are drawn from a training distribution P that differs from the test distribution P?. Even
if sampling from P? is impossible, we may know that the expected age of a random individual in
the population falls between 40 and 45 years. This information can be modeled as EP? [ψ(ξ)] ∈ E,
where E = [`, u], ` = 40, u = 45 and ψ(ξ) projects ξ to its ‘age’-component. Other available
prior information can be encoded similarly. Inspired by the principle of minimum discriminating
information, we then minimize the expected log-loss under the I-projection Pf of the data-generating
distribution P onto the set Π defined in (2).
Example 3.3 (Production planning). Assume that θ ∈ R and ξ ∈ R denote the production quantity
and the demand of a perishable good, respectively, and that the loss function L(θ, ξ) represents the
sum of the production cost and a penalty for unsatisfied demand. To find the optimal production
quantity, one could minimize the average loss in view of training samples drawn from the historical
demand distribution P. However, a disruptive event such as the beginning of a recession might signal
that demand will decline by at least η%. The future demand distribution P? thus differs from P and
belongs to a set Π of the form (2) defined through ψ(ξ) = ξ and E = [0, (1− η)µ], where µ denotes
the historical average demand. By the principle of minimum discriminating information it then makes
again sense to minimize the expected loss under the I-projection Pf of P onto Π.
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Loosely speaking, the principle of minimum discriminating information identifies the I-projection Pf
of P as the least prejudiced and thus most natural model for P? in view of the information that P? ∈ Π.
The principle of minimum discriminating information is formally justified by the conditional limit
theorem [18], which we paraphrase below using our notation.
Proposition 3.4 (Conditional limit theorem). If the interior of the compact convex set E overlaps
with the support of the pushforward measure P ◦ ψ−1, the I-projection Pf = f(P) exists and the
moment-generating function EPf [etL(θ,ξ)] is finite for all t in a neighborhood of 0, then we have

lim
N→∞

EPN [L(θ, ξ1)| 1
N

∑N
i=1 ψ(ξi) ∈ E] = EPf [L(θ, ξ)] ∀θ ∈ Θ.

In the context of Examples 3.2 and 3.3, the conditional limit theorem provides an intuitive justification
for modeling distribution shifts via I-projections. More generally, the following proposition suggests
that any distribution shift can be explained as an I-projection onto a suitably chosen set Π.
Proposition 3.5 (Every distribution is an I-projection). If P,Q ∈ P(Ξ) are such that Q is absolutely
continuous with respect to P and if Π is a set of the form (2) defined through ψ(ξ) = log dQ

dP (ξ) and
E = {D(Q‖P)}, then Q = f(P).

The modelling of arbitrary distribution shifts via the I-projection according to Proposition 3.5 has an
interesting application in the off-policy evaluation problem for Markov decision processes (MDPs).
Example 3.6 (Off-policy evaluation). Consider an MDP (S,A, Q, c, s0) with finite state and action
spaces S andA, respectively, transition kernel Q : S ×A → R, cost-per-stage function c : S ×A →
R and initial state s0. A stationary Markov policy π is a stochastic kernel that maps states to
probability distributions over A. We use π(a|s) to denote the probability of selecting action a in
state s under policy π. The long-run average cost generated by π can be expressed as

Vπ = limT→∞
1
T

∑T−1
t=0 Eπs0 [c(st, at)].

Each policy induces an occupation measure µπ on S×A defined through the state-action frequencies

µπ(x, a) = limT→∞
1
T

∑T−1
t=0 Pπs0 [(st, at) = (s, a)] ∀s ∈ S, a ∈ A,

see [28, Chapter 6]. One can additionally show that µπ belongs to the polytope

M =
{
µ ∈ ∆S×A :

∑
a′∈A µ(s′, a′)−

∑
s∈S

∑
a∈AQ(s′|s, a)µ(s, a) = 0 ∀s′ ∈ S

}
,

where ∆S×A represents the simplex of all probability mass functions over S ×A. Conversely, each
occupation measure µ ∈M induces a policy πµ defined through πµ(a|s) = µ(s, a)/

∑
a′∈A µ(s, a′)

for all s ∈ S and a ∈ A. Assuming that all parameters of the MDP except for the cost c are
known, the off-policy evaluation problem asks for an estimate of the long-run average cost Vπe of
an evaluation policy πe based on a trajectory of states, actions and costs generated by a behavioral
policy πb. This task can be interpreted as a degenerate learning problem without a parameter θ to
optimize if we define ξ = c(s, a) and set L(θ, ξ) = ξ. Here, a distribution shift emerges because we
must evaluate the expectation of ξ under Q = µe ◦ c−1 given training samples from P = µb ◦ c−1,
where µb and µe represent the occupation measures corresponding to πb and πe, respectively. Note
that P and Q are unknown because c is unknown. Moreover, as the policy πe generates different state-
action trajectories than πb, the costs generated under πe cannot be inferred from the costs generated
under πb even though πb and πe are known. Note also that Q coincides with the I-projection Pf of P
onto the set Π defined in Proposition 3.5. The corresponding feature map ψ as well as the set E can
be computed without knowledge of c provided that c is invertible. Indeed, in this case we have

ψ(ξi) = log dµe◦c−1

dµb◦c−1 (ξi) = log µe(si,ai)
µb(si,ai)

and E =
{
D(µe ◦ c−1‖µb ◦ c−1)

}
for any si ∈ S , ai ∈ A and ξi = c(si, ai). Note that as S and A are finite, c is generically invertible,
that is, c can always be rendered invertible by an arbitrarily small perturbation. In summary, we may
conclude that the off-policy evaluation problem reduces to an instance of (1).

Given N training samples ξ̂1, . . . , ξ̂N , we henceforth use P̂N = 1
N

∑N
i=1 δξ̂i and P̂fN to denote

the empirical distribution on and its I-projection onto Π, respectively. As the true data-generating
distribution P and its I-projection Pf are unknown, it makes sense to replace them by their empirical
counterparts. However, the resulting empirical risk minimization problem is susceptible to overfitting
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if the number of training samples is small relative to the feature dimension. In order to combat
overfitting, we propose to solve the DRO problem

J?N = min
θ∈Θ

R?(θ, P̂fN ), (4)

which minimizes the worst-case risk over all distributions close to P̂fN . Here, R? is defined through

R?(θ,P′) = supQ∈Π {R(θ,Q) : D(P′‖Q) ≤ r} (5)

and thus evaluates the worst-case risk of a given parameter θ ∈ Θ in view of all distributions Q
that have a relative entropy distance of at most r from a given nominal distribution P′ ∈ Π. In the
remainder we use J?N and θ?N to denote the minimum and a minimizer of problem (4), respectively.

Main results. The main theoretical results of this paper can be summarized as follows.
(i) Out-of-sample guarantee. We show that the optimal value of the DRO problem (4) provides an

upper confidence bound on the risk of its optimal solution θ?N . Specifically, we prove that

PN
(
R(θ?N ,Pf ) > J?N

)
≤ e−rN+o(N), (6)

where Pf = f(P) is the I-projection of P. If Ξ is finite, then (6) can be strengthened to a finite
sample bound that holds for every N if the right hand side is replaced with e−rN (N + 1)|Ξ|.

(ii) Statistical efficiency. In a sense to be made precise below, the DRO problem (4) provides the
least conservative approximation for (1) whose solution satisfies the out-of-sample guarantee (6).

(iii) Computational tractability. We prove that the I-projection P̂fN can be computed via a regularized
fast gradient method whenever one can efficiently project onto E. Given P̂fN , we then show
that θ?N can be found by solving a tractable convex program whenever Θ is a convex and conic
representable set, while L(θ, ξ) is a convex and conic representable function of θ for any fixed ξ.

4 Statistical guarantees

Throughout this section, we equip P(Ξ) with the topology of weak convergence. As L(θ, ξ) is
continuous on Θ×Ξ and Ξ is compact, this implies that the risk R(θ,Q) is continuous on Θ×P(Ξ).
The DRO problem (4) is constructed from the I-projection of the empirical distribution, which, in
turn, is constructed from the given training samples. Thus, θ?N constitutes a data-driven decision.
Other data-driven decisions can be obtained by solving surrogate optimization problems of the form

ĴN = min
θ∈Θ

R̂(θ, P̂fN ), (7)

where R̂ : Θ×Π→ R is a continuous function that uses the empirical I-projection P̂fN to predict the
true risk R(θ,Pf ) of θ under the true I-projection Pf . From now on we thus refer to R̂ as a predictor,
and we use ĴN and θ̂N to denote the minimum and a minimizer of problem (7), respectively. We call
a predictor R̂ admissible if ĴN provides an upper confidence bound on the risk of θ̂N in the sense that

lim sup
N→∞

1

N
logPN

(
R(θ̂N ,Pf ) > ĴN

)
≤ −r ∀P ∈ P(Ξ) (8)

for some prescribed r > 0. The inequality (8) requires the true risk of the minimizer θ̂N to exceed
the optimal value ĴN of the surrogate optimization problem (7) with a probability that decays
exponentially at rate r as the number N of training samples tends to infinity. The following theorem
asserts that the DRO predictor R? defined in (5), which evaluates the worst-case risk of any given θ
across a relative entropy ball of radius r, almost satisfies (8) and is thus essentially admissible.
Theorem 4.1 (Out-of-sample guarantee). If r > 0, 0 ∈ int(E) and for every z ∈ Rd there exists an
uncertainty realization ξ ∈ Ξ such that z>ψ(ξ) > 0, then the DRO predictor R? defined in (5) is
continuous on Θ×Π. In addition, R̂ = R?+ε is an admissible data-driven predictor for every ε > 0.

Theorem 4.1 implies that, for any fixed ε > 0, the DRO predictor R? provides an upper confidence
bound J?N + ε on the true risk R(θ?N ,Pf ) of the data-driven decision θ?N that becomes increasingly
reliable as N grows. Of course, the reliability of any upper confidence bound trivially improves if it
is increased. Finding some upper confidence bound is thus easy. The next theorem shows that the
DRO predictor actually provides the best possible (asymptotically smallest) upper confidence bound.
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Theorem 4.2 (Statistical efficiency). Assume that all conditions of Theorem 4.1 hold. If J?N and R?

are defined as in (4) and (5), while ĴN is defined as in (7) for any admissible data-driven predictor R̂,
then we have limN→∞ J?N ≤ limN→∞ ĴN P∞-almost surely irrespective of P ∈ P(Ξ).

One readily verifies that the limits in Theorem 4.2 exist. Indeed, if R̂ is an arbitrary data-driven
predictor, then the optimal value ĴN of the corresponding surrogate optimization problem converges
P-almost surely to minθ∈Θ R̂(θ,Pf ) as N tends infinity provided that the training samples are drawn
independently from P. This is a direct consequence of the following three observations. First, the
optimal value function minθ∈Θ R̂(θ,Pf ) is continuous in Pf ∈ Π thanks to Berge’s maximum
theorem [7, pp. 115–116], which applies because R̂ is continuous and Θ is compact. Second, the
I-projection Pf = f(P) is continuous in P ∈ P(Ξ) thanks to [70, Theorem 9.17], which applies
because the relative entropy is strictly convex in its first argument [21, Lemma 6.2.12]. Third, the
strong law of large numbers implies that the empirical distribution P̂N converges weakly to the
data-generating distribution P as the sample size N grows. Therefore, we have

lim
N→∞

ĴN = lim
N→∞

min
θ∈Θ

R̂
(
θ, f(P̂N )

)
= min

θ∈Θ
R̂
(
θ, f

(
lim
N→∞

P̂N
))

= min
θ∈Θ

R̂(θ,Pf ) P-a.s.

In summary, Theorems 4.1 and 4.2 assert that the DRO predictor R? is (essentially) admissible and
that it is the least conservative of all admissible data-driven predictors, respectively. Put differently, the
DRO predictor makes the most efficient use of the available data among all data-driven predictors that
offer the same out-of-sample guarantee (8). In the special case when Ξ is finite, the asymptotic out-
of-sample guarantee (8) can be strengthened to a finite sample guarantee that holds for every N ∈ N.
Corollary 4.3 (Finite sample guarantee). If R? is defined as in (5), then

1

N
logPN

(
R?(θ?N ,Pf ) > J?N

)
≤ log(N + 1)

N
|Ξ| − r ∀N ∈ N. (9)

We now temporarily use R?r to denote the DRO predictor defined in (5), which makes its dependence
on r explicit. Note that if r > 0 is kept constant, then R?r(θ, P̂

f
N ) is neither an unbiased nor a

consistent estimator for R(θ,Pf ). Consistency can be enforced, however, by shrinking r as N grows.
Theorem 4.4 (Asymptotic consistency). Let the assumptions of Proposition 3.4 hold and {rN}N∈N
be a sequence of non-negative reals with limN→∞ rN = 0. If the loss function L(θ, ξ) is Lipschitz
continuous in ξ with Lipschitz constant Λ > 0 uniformly across all θ ∈ Θ, then we have

lim
N→∞

R?rN (θ, P̂fN ) = R(θ,Pf ) P∞-a.s. ∀θ ∈ Θ, (10a)

lim
N→∞

min
θ∈Θ

R?rN (θ, P̂fN ) = min
θ∈Θ

R(θ,Pf ) P∞-a.s. (10b)

Remark 4.5 (Choice of radius). Theorem 4.2 shows that the ambiguity set used in our paper displays
a strong Pareto-optimality property, i.e., it leads to the least conservative predictor, uniformly across
all estimator realizations, for which the out-of-sample disappointment probability is guaranteed to
decay exponentially at rate r. Therefore, the radius r has a direct operational interpretation that
captures the risk tolerance of the decision maker—it is chosen subjectively. Since the statistical
guarantees of Theorem 4.1 are asymptotic, selecting the radius r when we only have access to finitely
many samples is challenging, and in practice r is usually selected via cross validation.

We now exemplify our DRO approach and its statistical guarantees in the context of the off-policy
evaluation problem introduced in Section 3.
Example 4.6 (Off-policy evaluation). Consider again the OPE problem introduced in Example 3.6.
We now aim to construct an estimator for the performance of the evaluation policy Vπe = Ef(P)[ξ]
based on the available behavioral policy and its empirical cost. As described in Example 3.6, we
choose Π such that µe ◦ c−1 = f(P), where P = µb ◦ c−1 ∈ P(Ξ). Given the behavioral data
(ŝi, âi) ∼ µb for i = 1, . . . N , we then construct the empirical distribution P̂N = 1

N

∑N
i=1 δc(ŝi,âi).

Our statistical results require the samples (ŝi, âi) to be i.i.d., which can be enforced approximately
by discarding a sufficient number of intermediate samples, for example. We emphasize, however,
that the proposed large deviation framework readily generalizes to situations in which there is a
single trajectory of correlated data [39, 72]. Details are omitted for brevity. The value function Vπe
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under the evaluation policy can now be approximated by J?N = R?(P̂fN ), where R? denotes the DRO
predictor (5). As Ξ is finite, Corollary 4.3 provides the generalization bound

PN (Vπe ≤ J?N ) ≥ 1− (N + 1)|S|+|A|e−rN ∀P ∈ P(Ξ), (11)

which holds for all N ∈ N.

5 Efficient computation

We now outline an efficient procedure to solve the DRO problem (4). This procedure consists of
two steps. First, we propose an algorithm to compute the I-projection P̂fN = f(P̂N ) of the empirical
distribution P̂N corresponding to the training samples ξ̂1, . . . , ξ̂N . Given P̂fN , we then show how to
compute the worst-case risk R?(θ, P̂fN ) and a corresponding optimizer θ?N over the search space Θ.

Computation of the I-projection. Computing the I-projection of the empirical distribution P̂N
is a non-trivial task because it requires solving the infinite-dimensional optimization problem (3).
Generally, one would expect that the difficulty of evaluating f(P̂N ) depends on the structure of
the set Π, which is encoded by ψ and E; see (2). Thanks to the discrete nature of the empirical
distribution P̂N , however, we can leverage recent advances in convex optimization together with an
algorithm proposed in [71] to show that f(P̂N ) can be evaluated efficiently for a large class of sets Π.

In the following we let η = (η1, η2) be a smoothing parameter with η1, η2 > 0, and we let Lη > 0 be
a learning rate that may depend on η. In addition, we denote by z ∈ Rd the vector of dual variables
of the constraint EQ[ψ(ξ)] ∈ E in problem (3), and we define Gη : Rd → Rd with

Gη(z) = −πE(η−1
1 z)− η2z +

∑N
i=1 ψ(ξ̂i) exp(−

∑d
j=1 zj ψj(ξ̂i))∑N

i=1 exp(−
∑d
j=1 zj ψj(ξ̂i))

(12)

as a smoothed gradient of the dual objective, where πE denotes the projection operator onto E
defined through πE (z) = arg minx∈E ‖x − z‖22. The corresponding smoothed dual of the I-
projection problem (3) can then be solved with the fast gradient method described in Algorithm 1.
The complexity of evaluating Gη , and thus the per-iteration complexity of Algorithm 1, is determined
by the projection operator onto E. For simple sets (e.g., 2-norm balls or hybercubes) the solution is
available in closed form, and for many other sets (e.g., simplices or 1-norm balls) it can be computed
cheaply, see [53, Section 5.4] for a comprehensive survey.

Algorithm 1: Fast gradient method for smooth & strongly convex optimization [47]

Choose w0 = z0 ∈ Rd and η ∈ R2
++

For k ∈ N Step 1: Set zk+1 = wk + 1
Lη
Gη(wk)

Step 2: Compute wk+1 = zk+1 +

√
Lη−

√
η2√

Lη+
√
η2

(zk+1 − zk)

Any output zk of Algorithm 1 after k iterations can be used to construct a candidate solution

Q̂k =

∑N
j=1 exp(−

∑d
i=1(zk)iψi (ξ̂j))δξ̂j∑N

j=1 exp(−
∑d
i=1(zk)i ψi(ξ̂j))

(13)

for problem (3) that approximates the I-projection P̂fN . The convergence guarantees for Algorithm 1
and, in particular, the approximation quality of (13) with respect to P̂fN detailed in Theorem 5.2 below
require that problem (3) admits a Slater point P◦ in the sense of the following assumption.

Assumption 5.1 (Slater point). Problem (3) admits a Slater point P◦ ∈ Π that satisfies

δ = miny 6∈E ‖EP◦ [ψ(ξ)]− y‖2 > 0.

7



Finding a Slater point P◦ may be difficult in general. However, P◦ can be constructed systematically
if ψ is a polynomial [71, Remark 8], for example. Given P◦ and a tolerance ε > 0, we then define

C = D(P◦‖P̂N ), D = 1
2 maxy∈E ‖y‖2, η1 = ε

4D , η2 = εδ2

2C2 ,

α = maxξ∈Ξ ‖ψ(ξ)‖∞, Lη = 1/η1 + η2 + (maxξ∈Ξ ‖ψ(ξ)‖∞)2,

M1(ε) = 2

(√
8DC2

ε2δ2 + 2α2C2

εδ2 + 1

)
log
(

10(ε+2C)
ε

)
, (14)

M2(ε) = 2

(√
8DC2

ε2δ2 + 2α2C2

εδ2 + 1

)
log

(
C

εδ(2−
√

3)

√
4
(
4D
ε + α2 + εδ2

2C2

)(
C + ε

2

))
.

Theorem 5.2 (Almost linear convergence rate). If Assumption 5.1 holds and ε > 0, then the candidate
solution (13) obtained after k = dmax{M1(ε),M2(ε)}e iterations of Algorithm 1 satisfies

Optimality: |D(Q̂k‖P̂N )− D(P̂fN‖P̂N )| ≤ 2(1 + 2
√

3)ε, (15a)

Feasibility: d
(
EQ̂k [ψ(ξ)], E

)
≤ 2εδ

C , (15b)

where we use the definitions (14), and the function d(·, E) denotes the Euclidean distance to the
set E defined through d(x,E) = miny∈E ‖x− y‖2.

Theorem 5.2 implies that Algorithm 1 needs at most O( 1
ε log 1

ε ) iterations to find an O(ε)-suboptimal
and O(ε)-feasible solution for the I-projection problem (3). These results are derived via convex
programming and duality by using the double smoothing techniques introduced in [22] and [71].

Computation of the DRO predictor. Equipped with Algorithm 1 to efficiently approximate P̂fN
via Q̂k, the DRO predictor R?(θ, P̂fN ) defined in (4) can be approximated by R?(θ, Q̂k) because the
function R? is continuous. We now show that the worst-case risk evaluation problem (5) admits a
dual representation, which generalizes [77, Proposition 5].
Proposition 5.3 (Dual representation of R?). If r > 0, then the DRO predictor R? satisfies

R?(θ,P′) =

{
inf

α∈R,z∈Rd
α+ σE(z)− e−r exp

(
EP′ [log(α− L(θ, ξ) + z>ψ(ξ))]

)
s.t. α ≥ maxξ∈Ξ L(θ, ξ)− z>ψ(ξ)

(16)

for ever θ ∈ Θ and P′ ∈ Π, where σE(z) = maxx∈E x
>z denotes the support function of E.

Proposition 5.3 implies that if L(θ, ξ) is convex in θ for every ξ, then the DRO predictor (5) coincides
with the optimal value of a finite-dimensional convex program. Note that the objective function
of (16) can be evaluated cheaply whenever the support function of E is easy to compute and P′ has
finite support (e.g., if P′ is set to an output Q̂k of Algorithm 1). In addition, the robust constraint
in (16) can be expressed in terms of explicit convex constraints if L, Ξ and ψ satisfy certain regularity
conditions. A trivial condition is that Ξ is finite. More general conditions are described in [6].

6 Experimental results

We now assess the empirical performance of the MDI-DRO method in our two running examples.1

Synthetic dataset — covariate shift adaptation. The first two experiments revolve around the
logistic regression problem with a distribution shift described in Example 3.2. Specifically, we
consider a synthetic dataset where the test data is affected by a covariate shift, which constitutes a
special case of a distribution shift. Detailed information about the data generation process is provided
in Appendix 7.4. Our numerical experiments reveal that the proposed MDI-DRO method significantly
outperforms the naive ERM method in the sense that its out-of-sample risk has both a lower mean as
well as a lower variance; see Figures 1a and 1b. We also compare MDI-DRO against the IWERM
method, which accounts for the distribution shift by assigning importance weights p?(·)/p(·) to the
training samples, where p?(·) and p(·) denote the densities of the test distribution P? and training
distribution P, respectively. These importance weights are assumed to be known in IWERM. In

1All simulations were implemented in MATLAB and run on a 4GHz CPU with 16Gb RAM. The Matlab
code for reproducing the plots is available from https://github.com/tobsutter/PMDI_DRO.
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contrast, MDI-DRO does not require any knowledge of the test distribution other than its membership
in Π. Nevertheless, MDI-DRO displays a similar out-of-sample performance as IWERM even though
it has less information about P?, and it achieves a lower variance than IWERM; see Figures 1c-1d.
Figure 1e shows how the reliability of the upper confidence bound J?N and the out-of-sample risk
R(θ?N ,P?) change with the regularization parameter r. Additional results are reported in Figure 4 in
the appendix. These results confirm that small regularization parameters r lead to small out-of-sample
risk and that increasing r improves the reliability of the upper confidence bound J?N .

102 103
0.2

0.4

0.6

0.8

N

R
(θ
? N
,P
?
)

r = 10−2
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MDI-DRO Naive ERM IWERM [69] minθ∈ΘR(θ,P?)

Figure 1: Results for a synthetic dataset with m = 6. Shaded areas and lines represent ranges and
mean values across 1000 independent experiments, respectively.

Real data — classification under sample bias. The second experiment addresses the heart disease
classification task of Example 3.2 based on a real dataset2 consisting of N? i.i.d. samples from an
unknown test distribution P?. To assess the effects of a distribution shift, we construct a biased
training dataset {(x̂1, ŷ1), . . . , (x̂N , ŷN )}, N < N?, in which male patients older than 60 years are
substantially over-represented. Specifically, the N training samples are drawn randomly from the set
of the 20% oldest male patients. Thus, the training data follows a distribution P 6= P?. Even though
the test distribution P? is unknown, we assume to know the empirical mean m = 1

N?

∑N?

i=1(x̂i, ŷi)
of the entire dataset to within an absolute error ∆m > 0. The test distribution thus belongs to the
set Π defined in (2) with E = [m−∆m1,m+ ∆m1] and with ψ(x, y) = (x, y). We compare the
proposed MDI-DRO method for classification against the naive ERM method that ignores the sample
bias. In addition, we use a logistic regression model trained on the entire dataset as an (unachievable)
ideal benchmark. Figure 2a shows the out-of-sample cost, Figure 2b the upper confidence bound J?N
and Figure 2c the misclassification rates of the different methods as the radius r of the ambiguity set
is swept. Perhaps surprisingly, for some values of r the classification performance of MDI-DRO is
comparable to that of the logistic regression method trained on the entire dataset.

10−5 10−3 10−1 101
0

2

4

6
·10−2

r

(a) Out-of-sample cost R(θ?N ,Q)

10−5 10−3 10−1 101
0

0.5

1

r

(b) Upper confidence bound J?
N

10−5 10−3 10−1 101
0.2

0.3

0.4

0.5

r

(c) Misclassification rate

MDI-DRO Full information logistic regression Naive logistic regression

Figure 2: Heart disease classification example with m = 6, N = 20, N? = 303 and ∆m = 10−3.

OPE for MDPs — inventory control. We now consider the OPE problem of Examples 3.6 and 4.6.
A popular estimator for the cost Vπe of the evaluation policy is the inverse propensity score (IPS) [57]

Ĵ IPS
N = 1

N

∑N
i=1 c(ŝi, âi)

µe(ŝi,âi)
µb(ŝi,âi)

.

Hoeffding’s inequality then gives rise to the simple concentration bound

PN
(
Vπe ≤ Ĵ IPS

N + ε
)
≥ 1− e

−2Nε2

b2 ∀ε > 0, ∀N ∈ N, (17)

2https://www.kaggle.com/ronitf/heart-disease-uci
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where b = maxs∈S,a∈A c(s, a)µe(s, a)/µb(s, a). As b is typically a large constant, the finite sample
bound (11) for J?N is often more informative than (17). In addition, the variance of Ĵ IPS

N grows
exponentially with the sample size N [15, 13, 65]. As a simple remedy, one can cap the importance
weights beyond some threshold β > 0 and construct the modified IPS estimator as

Ĵ
IPSβ
N = 1

N

∑N
i=1 c(ŝi, âi) min

{
β, µe(ŝi,âi)

µb(ŝi,âi)

}
.

Decreasing β reduces the variance of Ĵ IPSβ
N but increases its bias. An alternative estimator for Vπe is

the doubly robust (DR) estimator ĴDR
N , which uses a control variate to reduce the variance of the IPS

estimator. The DR estimator was first developed for contextual bandits [24] and then generalized to
MDPs [32, 75]. We evaluate the performance of the proposed MDI-DRO estimator on a classical
inventory control problem. A detailed problem description is relegated to Appendix 7.4. We sample
both the evaluation policy πe and the behavioral policy πb from the uniform distribution on the
space of stationary policies. The decision maker then has access to the evaluation policy πe and to a
sequence of i.i.d. state action pairs {ŝi, âi}Ni=1 sampled from µb as well as the observed empirical
costs {ĉi}Ni=1, where ĉi = c(ŝi, âi). Figure 3 compares the proposed MDI-DRO estimator against
the original and modified IPS estimators, the DR estimator and the ground truth expected cost of the
evaluation policy. Figures 3a and 3b show that for small radii r, the MDI-DRO estimator outperforms
the IPS estimators both in terms of accuracy and precision. Figure 3c displays the disappointment
probabilities PN (Vπe > ĴN ) analyzed in Theorem 4.1, where ĴN denotes any of the tested estimators.

Acknowledgments. We thank Mengmeng Li for helpful discussions. This research was sup-
ported by the Swiss National Science Foundation under the NCCR Automation, grant agreement
51NF40_180545.
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Figure 3: Shaded areas and lines represent 90% confidence intervals and mean values across 1000
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7 Appendix

The appendix details all proofs and provides some auxiliary results grouped by section.

7.1 Proofs of Section 3

Proof of Proposition 3.4. Denote by PNξ1|Π the probability distribution of ξ1 with respect to PN

conditional on the event P̂N ∈ Π. By [18, Theorem 4], we then have

lim
N→∞

D(PNξ1|Π‖P
f ) = 0,

i.e., the conditional distribution PNξ1|Π converges in information to Pf . As the moment-generating
function EPf [etL(θ,ξ)] is finite for all t in a neighborhood of 0, [17, Lemma 3.1] ensures that

lim
N→∞

EPN [L(θ, ξ1)|P̂N ∈ Π] = lim
N→∞

EPN
ξ1|Π

[L(θ, ξ1)] = EP? [L(θ, ξ1)].

Thus, the claim follows.

Proof of Proposition 3.5. Proposition 3.5 can be seen as a generalization of [16, Exercise 12.6]. To
simplify notation, we define α = D(Q‖P). Then, we have

min
Q̄∈Π

D(Q̄‖P) = min
Q̄∈P(Ξ)

sup
λ∈R

D(Q̄‖P)− λ
(∫

Ξ

log

(
dQ
dP

)
dQ̄− α

)
(18a)

= max
λ∈R

min
Q̄∈P(Ξ)

D(Q̄‖P)− λ
∫

Ξ

log

(
dQ
dP

)
dQ̄ + λα (18b)

= max
λ∈R
− log

∫
Ξ

(
dQ
dP

)λ
dP + λα = α, (18c)

where (18a) holds by the definition of the set Π, and (18b) follows from Sion’s minimax theorem. The
latter applies because the relative entropy D(Q̄‖P) is convex in Q̄ and the distribution family P(Ξ)
is convex and weakly compact thanks to the compactness of Ξ. Finally, (18c) holds because of [71,
Lemma 2], which implies that the inner minimization problem in (18b) is uniquely solved by the
probability distribution Q̄?λ ∈ P(Ξ) defined through

Q̄?λ(B) =

∫
B
eλ log( dQ

dP )dP∫
Ξ
eλ log( dQ

dP )dP
=

∫
B

(
dQ
dP
)λ

dP∫
Ξ

(
dQ
dP
)λ

dP
∀B ∈ B(Ξ).

By inspecting the first-order optimality condition of the convex maximization problem in (18c)
and remembering that α = D(Q‖P), one can then show that (18c) is solved by λ? = 1. The
Nash equilibrium of the zero-sum game in (18b) is therefore given by λ? and its unique best
response Q̄?λ? = Q, and the solution f(P) of the I-projection problem in (18a) coincides with Q.

7.2 Proofs of Section 4

Proof of Theorem 4.1. The continuity of R? on Θ×Π is established in Corollary 7.1 below.

In order to prove that the DRO predictor R? is also admissible, we first prove that the following
inequality holds for any fixed θ ∈ Θ and P ∈ P(Ξ).

lim sup
N→∞

1

N
logPN

(
R(θ,Pf ) > R?(θ, P̂fN )

)
≤ −r (19)

For the sake of concise notation, we then define the disappointment set

D(θ,P) = {P′ ∈ P(Ξ) : R(θ, f(P)) > R?(θ, f(P′))}

containing all realizations P′ of the empirical distribution P̂N , for which the true risk R(θ, f(P))
under the I-projection of the unknown true distribution exceeds the risk R?(θ, f(P′)) predicted by the
distributionally robust predictor under the I-projection of the empirical distribution. Hence, D̄(θ,P)
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contains all realizations of P̂N under which the distributionally robust predictor is too optimistic and
thus leads to disappointment. Similarly, we define the weak disappointment set

D̄(θ,P) = {P′ ∈ P(Ξ) : R(θ, f(P)) ≥ R?(θ, f(P′))} ,
which simply replaces the strict inequality in the definiton of D̄(θ,P) with a weak inequality. Recall
now that R? is continuous. In addition, note that f is continuous thanks to [70, Theorem 9.17], which
follows from the strict convexity of the relative entropy in its first argument [21, Lemma 6.2.12].
Therefore the set D̄(θ,P) is closed, and clD(θ,P) ⊂ D̄(θ,P). The left hand side of (19) thus satisfies

lim sup
N→∞

1

N
logPN

(
R(θ, f(P)) > R?(θ, f(P̂N ))

)
= lim sup

N→∞

1

N
logPN

(
P̂N ∈ D(θ,P)

)
≤ − inf

P′∈clD(θ,P)
D(P′‖P)

≤ − inf
P′∈D̄(θ,P)

D(P′‖P)

≤ −r,

where the first inequality follows from Sanov’s Theorem, which asserts that P̂N satisfies a large
deviation principle with the relative entropy as the rate function [21, Theorem 6.2.10]. The second
inquality exploits the inclusion clD(θ,P) ⊂ D̄(θ,P), and the last inequality holds because

P′ ∈ D̄(θ,P) =⇒ D(f(P′)‖f(P)) ≥ r =⇒ D(P′‖P) ≥ r,
where the first implication has been established in te proof of [77, Theorem 10], and the second
implication follows from the data-processing inequality [19, Lemma 3.11]. This proves (19).

In the last step of the proof, we fix an arbitrary ε > 0 and show that

lim sup
N→∞

1

N
logP

(
R(θ?N ,Pf ) > R?(θ?N , P̂

f
N ) + ε

)
≤ −r

for any P ∈ P(Ξ), where θ?N is defined as usual as a minimizer of (4). The proof of this generalized
statement widely parallels that of [77, Theorem 11] and exploits the data processing inequality in a
similar manner as in the proof of (19). Details are omitted for brevity.

Proof of Theorem 4.2. The proof is inspired by [77, Theorems 7 & 11]. We first show that any
continuous admissible data-driven predictor R̂ satisfies the inequality

lim
N→∞

R?(θ, f(P̂N )) ≤ lim
N→∞

R̂(θ, f(P̂N )) P∞-a.s. (20)

for all θ ∈ Θ and P ∈ P(Ξ). As the empirical distribution P̂N converges weakly to P and as R?, R̂
and f represent continuous mappings, the inequality (20) is equivalent to

R?(θ, f(P)) ≤ R̂(θ, f(P))

for all θ ∈ Θ and P ∈ P(Ξ). Suppose now for the sake of contradiction there exists a continuous
admissible predictor R̂, a parameter θ0 ∈ Θ and an asymptotic estimator realization P′0 ∈ P(Ξ) with

R̂(θ0, f(P′0)) < R?(θ0, f(P′0)).

In fact, as R̂, R? and f are continuous functions, this strict inequality holds on a neighborhood
of P′0. Next, define ε = R?(θ0, f(P′0))− R̂(θ0, f(P′0)) > 0 and denote by P̄ ∈ Π an optimizer of the
worst-case risk evaluation problem (5) for P′ = f(P′0), which satisfies R?(θ0, f(P′0)) = R(θ0, P̄)
and D(f(P′0)‖P̄) ≤ r. By using a continuity argument as in the proof of [77, Theorem 10] and by
exploiting the convexity of Π, one can then show that there exists a model P0 ∈ Π with

R(θ0, P̄) < R(θ,P0) + ε and D(f(P′0)‖P0) = r0 < r. (21)

All of this implies that

R̂(θ0, f(P′0)) = R?(θ0, f(P′0))− ε = R(θ0, P̄)− ε < R(θ0,P0) = R(θ0, f(P0)), (22)

where the three equalities follow from the definition of ε, the construction of P̄ and the observation
that f reduces to the identity mapping when restricted to Π. The inequality holds due to the first
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relation in (21). In analogy to the proof of Theorem 4.1, we now introduce the disappointment set for
the data-driven predictor R̂ under the data-generating distribution P0, that is,

D(θ0,P0) =
{
P′ ∈ P(Ξ) : R(θ0, f(P0)) > R̂(θ0, f(P′))

}
.

The relation (22) readily implies that P′0 ∈ D(θ0,P0). As the I-projection is idempotent (that is,
f ◦ f = f ), one can further verify that f(P′0) ∈ D(θ0,P0). Denoting the empirical distribution of N
training samples drawn independently from P0 by P̂0,N , we thus find

lim inf
N→∞

1

N
logPN0

(
R(θ0, f(P0)) > R̂(θ0, f(P̂0,N ))

)
= lim inf

N→∞

1

N
logPN0

(
P̂0,N ∈ D(θ0,P0)

)
≥ − inf

P′∈intD(θ0,P0)
D(P′‖P0)

= − inf
P′∈D(θ0,P0)

D(P′‖P0)

≥ −D(f(P′0)‖P0)

= −r0 > −r,

where the first inequality follows from Sanov’s Theorem, which ensures that P̂N satisfies a large
deviation principle with the relative entropy as the rate function. The second equality holds be-
cause D(θ0,P′0) is open thanks to the continuity of R̂ and f , and the second inequality exploits our
earlier insight that f(P′0) ∈ D(θ0,P′0). The last inequality, finally, follows from the second relation
in (21). The above reasoning shows that R̂ fails to be admissible, and hence a data-driven predictor R̂
with the advertised properties cannot exist. Thus, R? indeed satisfies the efficiency property (20).

To show that limN→∞ J?N ≤ limN→∞ ĴN P∞-almost surely for all P ∈ P(Ξ), we use (20) and
adapt the proof of [77, Theorem 11] with obvious modifications. Details are omitted for brevity.

Proof of Corollary 4.3. Recalling that Sanov’s Theorem for finite state spaces offers finite sample
bounds [16, Theorem 11.4.1], the claim can be established by repeating the proof of Theorem 4.1.

Proof of Theorem 4.4. It suffices to prove (10b) because (10a) can be seen as a special case of (10b)
when Θ = {θ}. In the remainder we denote by dTV(P,Q) the total variation distance and by
dWp(P,Q) the p-th Wasserstein distance (p ∈ N) between two probability distributions P,Q ∈ P(Ξ).
To make its dependence on the radius r explicit, throughout this proof we temporarily use R?r
to denote the DRO predictor (5). As usual, we use θ?N ∈ Θ to denote a minimizer of the DRO
problem (4) with P′ = P̂fN . In addition, we use Q̂?N,θ ∈ Π to denote a maximizer of the worst-case
risk evaluation problem (5) with P′ = P̂fN . By definition, this maximizer must satisfy the relations

R?rN (θ, P̂fN ) = R(θ, Q̂?N,θ) and D(P̂fN‖Q̂
?
N,θ) 6 rN

for all θ ∈ Θ and N ∈ N. Pinsker’s inequality then implies that

sup
θ∈Θ

dTV
(
P̂fN , Q̂

?
N,θ

)
≤ sup
θ∈Θ

√
1

2
D(P̂fN‖Q̂?N,θ) ≤

√
rN
2
∀N ∈ N. (23)

Thus, we find

sup
θ∈Θ

{∣∣∣R?rN (θ, P̂fN )−R(θ,Pf )
∣∣∣}

= sup
θ∈Θ

{∣∣∣EQ̂?N,θ
[L(θ, ξ)]− EPf [L(θ, ξ)]

∣∣∣}
≤ sup
θ∈Θ

{∣∣∣EQ̂?N,θ
[L(θ, ξ)]− EP̂fN

[L(θ, ξ)]
∣∣∣+
∣∣∣EP̂fN

[L(θ, ξ)]− EPf [L(θ, ξ)]
∣∣∣}

≤ sup
θ∈Θ

{∣∣∣EQ̂?N,θ
[L(θ, ξ)]− EP̂fN

[L(θ, ξ)]
∣∣∣}+ sup

θ∈Θ

{∣∣∣EP̂fN
[L(θ, ξ)]− EPf [L(θ, ξ)]

∣∣∣}
≤ Λ sup

θ∈Θ
dW1

(
Q̂?N,θ, P̂

f
N

)
+ ΛdW1

(
P̂fN ,P

f
)

≤ ΛC sup
θ∈Θ

dTV
(
Q̂?N,θ, P̂

f
N

)
+ ΛdW2

(
P̂fN ,P

f
)
,
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where the first three inequalities follow from the triangle inequality, the subadditivity of the supre-
mum operator and the Kantorovich-Rubinstein theorem [79, Theorem 5.10], respectively. The last
inequality holds because Ξ is compact, which implies that the first Wasserstein distance can be
bounded above by the total variation distance scaled with a positive constant C [79, Theorem 6.15]
and because dW1

(·, ·) ≤ dW2
(·, ·) thanks to Jensen’s inequality. By (23), the first term in the above

expression decays deterministically to zero as N grows. The second term converges P∞-almost
surely to zero as N increases because the empirical distribution converges P∞-almost surely to the
data-generating distribution in the second Wasserstein distance [30]. In summary, we thus have

lim
N→∞

sup
θ∈Θ

∣∣∣R?rN (θ, P̂fN )−R(θ,Pf )
∣∣∣ = 0 P∞-a.s. (24)

Put differently, for P∞-almost every trajectory of training samples, the functionsR?rN (·, P̂fN ) converge
uniformly to R(·,Pf ). The claim then follows from [55, Proposition 7.15 and Theorem 7.31].

7.3 Proofs and auxiliary results for Section 5

Proof of Theorem 5.2. The key enabling mechanism to prove (15a) and (15b) is the so-called double
smoothing method for linearly constrained convex programs [22]. Our proof parallels that of [71,
Theorem 5] and is provided here to keep the paper self contained. Throughout the proof, we
denote byM(Ξ) the vector space of all finite signed Borel measures on Ξ, and we equipM(Ξ)
with the total variation norm ‖ · ‖TV. Choosing the total variation norm has the benefit that the
function g : P(Ξ) → R+ defined through g(Q) = D(Q‖P̂N ) is strongly convex with convexity
parameter 1. Indeed, Pinsker’s inequality implies that d(Q) ≥ 1

2‖Q− P̂N‖2TV for all Q ∈ P(Ξ). To
prove (15a) and (15b), we consider the primal and dual optimization problems

J?P = min
Q∈P(Ξ)

{
D(Q‖P̂N ) + sup

z∈Rd

{
EQ[ψ(ξ)]>z − σE(z)

}}
(25a)

J?D = sup
z∈Rd

{
− σE(z) + min

Q∈P(Ξ)

{
D(Q‖P̂N ) + EQ[ψ(ξ)]>z

}}
, (25b)

where σE : Rd → R defined through σE(z) = maxx∈E z
>x denotes the support function of E. As

the convex conjugate of the support function σE is the indicator function δE : Rd → [0,∞] defined
through δE(x) = 0 if x ∈ E and δE(x) = ∞ if x /∈ E, the optimal value of the maximization
problem over z in (25a) equals δE(EQ[ψ(ξ)]). Hence, the unique minimizer of (25a) coincides with
the I-projection of the empirical distribution onto the set Π. We also remark that σE is continuous
because E is non-empty and compact [54, Corollary 13.2.2]. Assumption 5.1 then ensures via [71,
Lemma 3] that there is no duality gap, i.e, J?P = J?D. Next, we introduce the shorthand

F (z) = −σE(z) + min
Q∈P(Ξ)

{
D(Q‖P̂N ) + EQ[ψ(ξ)]>z

}
for the dual objective function. While the primal problem (25a) is an infinite-dimensional optimization
problem, the dual problem (25b) can be solved via first-order methods provided that the gradient
of the dual objective function F can be evaluated at low cost. Unfortunately, this function fails to
be smooth. Consequently, an optimal first-order method would require O(1/ε2) iterations, where ε
denotes the desired additive accuracy [47, Section 3.2]. However, the computation can be accelerated
by smoothing the dual objective function as in [22, 46] and by exploiting structural properties. To
this end, we introduce a smoothed version Fη of the dual objective function defined through

Fη(z) = −max
x∈E

{
x>z − η1

2
‖x‖22

}
+ min

Q∈P(Ξ)

{
D(Q‖P̂N ) + EQ[ψ(ξ)]>z

}
− η2

2
‖z‖22 ,

where η = (η1, η2) ∈ R2
++ is a smoothing parameter. One readily verifies that x?z = πE(η−1

1 z)
solves the optimization problem in the first term. The optimization problem in the second term
minimizes the sum of a relative entropy function and a linear function. Therefore, it is reminiscent of
an entropy maximization problem, and one can show that it is solved by the Gibbs distribution

Q?z =

∑N
j=1 exp

(
−z>ψ (ξ̂j)

)
δξ̂j∑N

j=1 exp
(
−z> ψ(ξ̂j)

) ,
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see [71, Lemma 2]. By construction, the smoothed dual objective function Fη is η2-strongly concave
and differentiable. Its gradient can be expressed in terms of the parametric optimizers x?z and Q?z as

∇Fη(z) = −x?z + EQ?z [ψ(ξ)]− η2z = Gη(z),

where Gη is defined in (12); see also [46, Theorem 1]. In addition, as shown in [46, Theorem 1], the
gradient function Gη is Lipschitz continuous with a Lipschitz constant Lη that satisfies

Lη = 1/η1 + η2 +

(
sup

λ∈Rd,Q∈M(Ξ)

{
λ>EQ[ψ(ξ)] : ‖λ‖2 = 1, ‖Q‖TV = 1

})2

≤ 1/η1 + η2 +

(
sup

λ∈Rd,Q∈M(Ξ)

{‖λ‖2‖EQ[ψ(ξ)]‖2 : ‖λ‖2 = 1, ‖Q‖TV = 1}

)2

= 1/η1 + η2 + (max
ξ∈Ξ
‖ψ(ξ)‖∞)2 <∞.

Therefore, the smoothed dual optimization problem

sup
z∈Rd

Fη(z) (26)

has a smooth and strongly concave objective function, implying that it can be solved highly efficiently
via fast gradient methods. When solving (26) by Algorithm 1, we can use its outputs zk to construct
candidate solutions Q̂k for the primal (non-regularized) problem (25a) as described in (13). These
candidate solutions satisfy the optimality and feasibility guarantees (15a) and (15b), which can be
derived by using the techniques developed in [22]. A detailed derivation using our notation is also
provided in [71, Appendix A]. We highlight that (15a) and (15b) critically rely on Assumption 5.1,
which implies via [45, Lemma 1] that the norm of the unique maximizer of the regularized dual
problem (26) is bounded above by C/δ, where C and δ are defined as in (14).

Proof of Proposition 5.3. By the definition of the DRO predictor R? in (5), we have

R?(θ,P′) = sup
Q∈P(Ξ)

{EQ[L(θ, ξ)] : D(P′‖Q) ≤ r, EQ[ψ(ξ)] ∈ E}

= sup
Q∈P(Ξ)

{
EQ[L(θ, ξ)]− sup

z∈Rd
{z>EQ[ψ(ξ)]− σE(z)} : D(P′‖Q) ≤ r

}
= inf
z∈Rd

sup
Q∈P(Ξ)

{
EQ[L(θ, ξ)− z>ψ(ξ)] + σE(z) : D(P′‖Q) ≤ r

}
= inf
z∈Rd

{
inf
α∈R

α+ σE(z)− e−r exp
(
EP′ [log(α− L(θ, ξ) + z>ψ(ξ))]

)
s.t. α ≥ maxξ∈Ξ L(θ, ξ)− z>ψ(ξ)

where the second equality holds because the convex conjugate of the support function σE is the
indicator function δE : Rd → [0,∞] defined through δE(x) = 0 if x ∈ E and δE(x) =∞ if x /∈ E,
and the third equality follows from Sion’s minimax theorem, which applies because the relative
entropy D(P′‖Q) is convex in Q, while the distribution family P(Ξ) is convex and weakly compact.
Finally, the fourth equality follows from [77, Proposition 5], which applies because r > 0 and
because the modified loss function L(θ, ξ)− z>ψ(ξ) is continuous in ξ for any fixed θ and z. The
last expression is manifestly equivalent to (16), and thus the claim follows.

The following corollary of Proposition 5.3 establishes that the DRO predictor R? is continuous. This
result is relevant for Theorem 4.1.

Corollary 7.1 (Continuity of R?). If r > 0, 0 ∈ int(E) and for every z ∈ Rd there exists ξ ∈ Ξ
such that z>ψ(ξ) > 0, then the DRO predictor R? is continuous on Θ×Π.

Proof. Since r > 0, we may use Proposition 5.3 to express the DRO predictor as

R?(θ,P′) = inf
z∈Rd

ϕE(θ, z,P′) (27)
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for all θ ∈ Θ and P′ ∈ Π, where the parametric objective function ϕE is defined through

ϕE(θ, z,P′) = inf
α≥α(θ,z)

α+ σE(z)− e−r exp
(
EP′ [log(α− L(θ, ξ) + z>ψ(ξ))]

)
with α(θ, z) = maxξ∈Ξ L(θ, ξ)−z>ψ(ξ). Note that the support function σE is continuous becauseE
is compact. Applying [77, Proposition 6] to the modified loss function L(θ, ξ)− z>ψ(ξ) thus implies
that ϕE is continuous on Θ× Rd ×Π. To bound ϕE from below by a coercive function, we define

κ = min
‖z‖2=1

min
Q∈Π

σE(z)− e−rz>EQ[ψ(ξ)],

which is a finite constant. Indeed, σE is continuous because E is compact, and EP′ [ψ(ξ)] is weakly
continuous in P′ because ψ is a continuous and bounded function on the compact set Ξ. In addition,
the unit sphere in Rd is compact, and the set Π is weakly compact. Therefore, both minima in
the definition of κ are attained at some z? ∈ Rd with ‖z?‖2 = 1 and some Q? ∈ Π, respectively.
As 0 ∈ int(E) and z? 6= 0, we have σE(z?) > 0. In addition, as Q? ∈ Π, we have EQ? [ψ(ξ)] ∈ E,
which implies that (z?)>EQ? [ψ(ξ)] ≤ σE(z?). Again as r > 0, this reasoning ensures that

κ = σE(z?)− e−r(z?)>EQ? [ψ(ξ)] > 0.

Similarly, we introduce the finite constant

L = min
θ∈Θ

min
z∈Rd

min
ξ∈Ξ

(1− e−r)α(θ, z) + e−rL(θ, ξ).

To see that L is bounded below, note that the definition of α and the subadditivity of the minimum
operator lead to the estimate

L ≥ (1− e−r) min
θ∈Θ

min
ξ∈Ξ

L(θ, ξ) + (1− e−r) min
z∈Rd

max
ξ∈Ξ

(−z)>ψ(ξ) + e−r min
θ∈Θ

min
ξ∈Ξ

L(θ, ξ)

= min
θ∈Θ

min
ξ∈Ξ

L(θ, ξ) + (1− e−r) min
z∈Rd

max
ξ∈Ξ

(−z)>ψ(ξ).

The first term in the resulting lower bound is finite because L is continuous, while Θ and Ξ are com-
pact. The second term is also finite because the convex function maxξ∈Ξ (−z)>ψ(ξ) is continuous
in z thanks to the continuity of ψ and the compactness of Ξ. In addition, maxξ∈Ξ (−z)>ψ(ξ) is also
coercive in z because of the assumption that for every z ∈ Rd there exists ξ ∈ Ξ with z>ψ(ξ) > 0.

The above preparatory arguments imply that

ϕE(θ, z,P′) ≥ inf
α≥α(θ,z)

(1− e−r)α+ σE(z) + e−rEP′ [L(θ, ξ)]− e−rz>EP′ [ψ(ξ)]

= (1− e−r)α(θ, z) + e−rEP′ [L(θ, ξ)] +

(
σE

(
z

‖z‖2

)
− e−r

(
z

‖z‖2

)>
EP′ [ψ(ξ)]

)
‖z‖2

≥ L+ κ‖z‖2,
where the first inequality exploits Jensen’s inequality, the equality holds thanks to the positive
homogeneity of the support function σE and the trivial observation that e−r < 1, and the second
inequality follows from the definitions of L and κ and the assumption that P′ ∈ Π. We thus have

ϕE(θ, z,P′) ≥ L+ κ‖z‖2 ∀θ ∈ Θ, ∀z ∈ Rd, ∀P′ ∈ Π. (28a)

Next, define
L = max

θ∈Θ
max
ξ∈Ξ

L(θ, ξ),

and note that

inf
z∈Rd

ϕE(θ, z,P′) = R?(θ,P?) ≤ L ∀θ ∈ Θ, ∀P′ ∈ Π. (28b)

Taken together, the estimates (28a) and (28b) imply that

R?(θ,P′) = inf
z∈Rd

{
ϕE(θ, z,P′) : ‖z‖2 ≤

L− L
κ

}
,

which in turn implies via Berge’s maximum theorem [7, pp. 115–116] and the continuity of the
objective function ϕE on Θ×Rd×Π that the DRO predictor R? is indeed continuous on Θ×Π.

20



102 103
0.2

0.4

0.6

0.8

N

R
(θ
? N
,P
?
)

r = 10−2

(a) Out-of-sample risk

102 103
0.2

0.4

0.6

0.8

N

R
(θ
? N
,P
?
)

r = 10−3

(b) Out-of-sample risk

102 103
0.2

0.4

0.6

0.8

N

R
(θ
? N
,P
?
)

r = 10−4

(c) Out-of-sample risk

102 103
0.2

0.4

0.6

0.8

N

R
(θ
? N
,P
?
)

r = 10−2

(d) Out-of-sample risk

102 103
0.2

0.4

0.6

0.8

N

R
(θ
? N
,P
?
)

r = 10−3

(e) Out-of-sample risk

102 103
0.2

0.4

0.6

0.8

N

R
(θ
? N
,P
?
)

r = 10−4

(f) Out-of-sample risk

102 103

0.6

0.8

1

N

R
(β̂
N
,Q

)

r = 10−2

(g) Reliability

102 103

0.6

0.8

1

N

R
(β̂
N
,Q

)

r = 10−3

(h) Reliability

102 103

0.6

0.8

1

N

R
(β̂
N
,Q

)

r = 10−4

(i) Reliability

Figure 4: Additional results for the synthetic dataset with m = 6 (see also Figure 1). Shaded areas
and lines represent ranges and mean values across 1000 independent experiments, respectively.

7.4 Auxiliary results for Section 6

Classification under covariate shift. We construct a synthetic training data consisting of feature vec-
tors x̂i and corresponding labels ŷi. Under the training distribution P, the feature vectors are uniformly
distributed on [0, 1]m−1, where m ≥ 2, and the labels are set to ŷi = 1 if 1

m−1

∑m−1
j=1 (x̂i)j >

1
2

and ŷi = −1 otherwise. By construction, we thus have EP[(x, y)] = (0, 0). The test distribution P?
differs from P. Specifically the probability density function of the features under P? is set to

p?(x) = 2
m−1

∑m−1
j=1 xj ∀x ∈ [0, 1]m−1,

while the conditional distribution of the labels given the features is the same under P and P?. A
direct calculation then reveals that EP? [xj ] = m−2

2(m−1) + 2
3(m−1) = µ? > 0 for all j = 1, . . . ,m− 1.

Similarly, one can show that EQ[y] > 0. In the numerical experiments we assume that both P and P?
are unknown. However, we assume to have access to N i.i.d. samples from P, and we assume that P?
is known to satisfy EP? [ψ(ξ)] ∈ E, where ψ(x, y) = (x, y) and E = [(µ? − ε) · 1, (µ? − ε) · 1] for
some ε > 0 that is sufficiently small to ensure that 0 /∈ E. This implies that P /∈ Π.

Inventory control model. Consider an inventory that stores a homogeneous good, and let the state
variable si represent the stock level at the beginning of period i. The control action ai reflects the
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order quantity in period i, and we assume that any orders are delivered immediately at the beginning
of the respective periods. The disturbance ζi represents an uncertain demand revealed in period i.
We assume that the demands are i.i.d. across periods and follow a geometric distribution on N ∪ {0}
with success probability λ ∈ (0, 1). The inventory capacity is denoted by γ ∈ N, and any orders that
cannot be stored are lost. Similarly, we assume that any demand that cannot be satisfied is also lost.
The system equation describing the dynamics of the stock level is thus given by

si+1 = max{0,min{γ, si + ai} − ζi} ∀i = 0, 1, 2, . . . ,

see also [28]. Our aim is to estimate the long-run average cost generated by a prescribed ordering
policy, assuming that the (uncertain) cost incurred in period i ∈ N can be expressed as

r(si, ai, ζi) = pai + h(si + ai)− vmin{si + ai, ζi}.

The three terms in the above expression capture the order cost, the inventory holding cost and the
profit from sales, where p > 0 and h > 0 denote the costs for ordering or storing one unit of the
good, while v > 0 denotes the unit sales price. The expected per period cost thus amounts to

c(si, ai) = pai + h(si + ai)− v (1−λ)
λ

(
1− (1− λ)(ai+si)

)
.

The simulation results shown in Figure 3 are based on an instance of the inventory control model
with state space S = {1, 2, . . . , 5}, action space A = {1, 2, . . . , 4}, and parameters λ = 0.2, γ = 5,
p = 0.6, h = 0.3 and v = 1. The threshold for computing the modified IPS estimator is set to β = 4.
It is easy to verify that, under this model parameterization, the cost function c(si, ai) is invertible in
the sense that si and ai are uniquely determined by c(si, ai); see also Example 3.6.
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