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1 EXPRESSION ANIMATION RESULTS

We show results of animating facial expressions with our method using AUs and expressions
parameters extracted from videos from the MUG Aifanti et al. (2010) dataset. Videos titled
{ID}_{EXPR}.avi contains the video of subject with ID ID animated in the input view with
expression EXPR. In the first row, the first column is the input image, the second is the output
rendering with facial details, the third is the output rendering without facial details, the fourth is the
shaded geometry with details and the fifth is the shaded geometry without details. In the second row,
a subset of hallucinated details, both on the detailed shaded geometry and the rendering, are marked
with green rectangles and zoomed-in. Beside the zoomed-in details are plotted the zoom-ins of the
same regions of the face without the details (marked with red rectangles) of both the non-detailed
shading and the non-detailed rendering.
The animated mesh with the hallucinated details is smoothed via Savitsky-Golay smoothing applied
to the vertices. As can be seen in the videos, the appearance of the details (both on the geometry
and the final render) is consistent with the target expression and its intensity. The details are most
prominent at the peak of the expression and disappear when the expression activation is minimal.

2 DETAILS HALLUCINATION TRAINING LOSSES

In this section we give a full exposition of the losses used to train the details hallucination network. A
plausible detail map, D̃(Iy), that’s consistent with the given target expression y is hallucinated as
follows:

D̃(Iy) = DetH (D(Ix),x,y,Age(Ix),FaceID(Ix)) , (1)
where x is the input AU, Age(Ix) are features extracted from an age prediction network and
FaceID(Ix) is the facial embedding of Ix extracted using Schroff et al. (2015).
Expression Adversarial Loss. In order to ensure the hallucinated facial geometric details, D̃(Iy),
are consistent with the target expression y, as encoded by AUs, we use an expression discriminator
DExp. Given D(Ix) of some image Ix manifesting expression x, DExp, outputs the following

DExp(D(Ix)) = {r, x̂} , (2)
where r is a realism score and x̂ is the predicted AU. For brevity, we will use DExp(D(Ix)) and
DExp(D) interchangeably. We use the Non-Saturating adversarial loss Goodfellow et al. (2014) along
with the R1 gradient penalty Mescheder et al. (2018) to train DExp. We use a UNet based discriminator
Schonfeld et al. (2020) in order to discriminate on pixel level. In addition, DExp is trained to minimize
the error of the predicted AU

LDExp
AU = ED∼PD

[
||[DAU

Exp(D) 9 x||22
]
, (3)
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where DAU
Exp is the AU output head of DExp. The Details Hallucination Network, DetH , in addition to

be trained to minimize adversarial loss, is also trained to minimize the expression loss:

LDetH
AU = E

Ix,{y}
||DAU

Exp(DetH (·)) 9 y||22 (4)

where DetH (·) is to be read as in Eq. (1) and y is the target AU.
Cycle Consistency Loss. In order to ensure the input detail map is changed as little as possible, we
enforce a cycle consistency loss on DetH , as follows:

D̃(Ix) = DetH (D̃(Iy),y,x,Age(Ix),FaceID(Ix))

LDetH
Cyc = LapLoss

(
D̃(Ix),D(Ix)

) (5)

where LapLoss is the Laplacian Loss Ling & Okada (2006); Bojanowski et al. (2018).
Regression Loss. In order to speed up training, we use a small amount of video data from MUG
Aifanti et al. (2010) and ADFES Van Der Schalk et al. (2011) to directly regress the details map
estimated by FDS Chen et al. (2019) as

D̃(Iky) = DetH (D(Imx ),x,y,Age(Imx ),FaceID(Imx ))

LDetH
Regress = LapLoss

(
D̃(Iky),D(Iky)

) (6)

where, D(Iky) and D(Imx ) are the detail map of k-th frame Iky and m-th frame Imx respectively.
Training solely on video data is not possible due to the significant bias the dataset has towards
younger subjects.
Superresolution Losses. The detail maps generated by FDS Chen et al. (2019) are of resolution
4096× 4096 and thus cannot be used directly for training due to GPU-memory constraints. To get
around this, we train DetH on detail maps downsampled to 256× 256. Simultaneously, we finetune
a superresolution network, RCAN Zhang et al. (2018), to super-resolve downsampled 256 × 256
patches of D(Ix) by a factor of 4

LRCAN
SR = L1

(
RCAN

(
D(Ix)P256

)
,D(Ix)P1024

)
, (7)

where D(Ix)P1024 is a randomly sampled patch of resolution 1024 × 1024 from the full-resolution
detail map D(Ix) and D(Ix)P256 is its downsampled version. During inference, we use RCAN twice
on the hallucinated detail map D̃(Iy) to upsample it to 4096× 4096:

D̃(Iy)HR = RCAN
(

RCAN
(
D̃(Iy)

))
. (8)

In the interest of brevity, we will use D̃(Iy) in lieu of D̃(Iy)HR in the remainder of this text.

3 RENDERING NETWORK TRAINING LOSSES

We now give a full exposition of the training losses used to train the rendering network R (·). The
detailed face geometry is rendered as follows:

Ĩy = R
(
T (Ix), D̃(Iy),αs, α̂e,y, c, l, γγγ

)
, (9)

where T (Ix) is the texture map extracted using FDS Chen et al. (2019), α̂e are the target expression
parameters, αs are the shape parameters, y is the target AU, c are the desired camera parameters, γγγ is
the albedo PCA-space parameters of BFM Gerig et al. (2018), and l are the lighting parameters. The
rendering network is trained with the following losses:
Photometric Loss. The Photometric Loss ensures the rendered images are realistic by re-rendering
a given image Ix, producing Îx and comparing it to the ground truth. More specifically, given the
texture map T (Ix), detailed geometry GD = {D(Ix),αs,αe} and action unit x, Ix is re-rendered
using R as follows

Îx = R (T (Ix), GD,x, c, l, γγγ) (10)
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where c and l are the camera and lighting parameters of Ix. The re-rendered image Îx is then
compared to Ix

LPhoto = MSE(Îx, Ix) + L1(Îx, Ix)

+ LapLoss(Îx, Ix) + PerceptualLoss(Îx, Ix)
(11)

where LapLoss is the Laplacian Loss Ling & Okada (2006); Bojanowski et al. (2018) and
PerceptualLoss is the perceptual loss Johnson et al. (2016). In order to ensure the low-res rendering
captures the image textures that are invariant to facial details as much as possible, the photometric
loss is also applied to the low-res output of gθ i.e ˆILRy

LLR
Photo = MSE(ÎLRx , Ix) + L1(ÎLRx , Ix)

+ LapLoss(ÎLRx , Ix) + PerceptualLoss(ÎLRx , Ix)
(12)

Augmented Wrinkle Loss (AugW). In order to enforce the rendering of geometric details onto
the rendered image we add ‘fake’ wrinkles to an image Ix and force R to generate the same.
Given the the detailed geometry of Ix, GD = {D(Ix),αs,αe}, a geometry with ‘fake’ details
G∗D = {D(I∗z),αs,αe} using the geometric details from some random image I∗z and the lighting l of
Ix, the ‘fake’ wrinkles are added as follows:

Shading(Ix) = LSph(GD, l);Shading
∗(Ix) = LSph(G

∗
D, l)

I∗
x
= Shading∗(Ix)×

(
Ix

Shading(Ix)

)
(13)

where LSph is the spherical harmonic lighting function and l are the coefficients of the first 9 spherical
harmonics. The artificially wrinkled image I∗

x
is now re-rendered using R

Î∗x = R (T (Ix), G∗D,x, c, l)
LAugW = LapLoss(Î∗x, I

∗
x
) .

(14)

where, LapLoss is the Laplacian Loss Ling & Okada (2006). In order to faithfully reconstruct I∗
x

, R
is forced to rely on the detailed geometry G∗D, since the input texture map T (Ix), and consequently
the neural texture map, contain no information about the ‘fake’ wrinkles.
Detailed Shading Loss (DSL). In addition to the Augmented Wrinkle Loss, we also try to predict
the shading of the detailed facial geometry from the output rendering Îx

ˆShading(Îx) = fθ(Îx)

LDSL = LapLoss( ˆShading(Îx),Shading
∗(Ix)) ,

(15)

where fθ is a small convolutional network (CNN) with only two layers and the shading
Shading∗(Ix) is calculated as in Eq. (13). We calculate this loss only over the skin region.
Since, fθ is a small CNN with limited representational capacity, the details must be quite visible
on the rendered image Îx in order for them to be picked up by fθ to generate an accurate shading

ˆShading(Îx).
Expression Adversarial Loss. In order to ensure that the rendered output conforms to the target ex-
pression we use an expression adversarial loss. Given a rendered image, Îx = R (T (Ix), GD,x, c, l),
manifesting the expression encoded by AU x an expression discriminator, DRGB

Exp , outputs

DRGB
Exp (Îx) = {r, x̂} , (16)

where r is a realism score and x̂ is the predicted AU. We use the Non-Saturating adversarial loss
Goodfellow et al. (2014) along with the R1 gradient penalty Mescheder et al. (2018) to train DExp. In
addition, DRGB

Exp is trained to minimize the predicted AU error

LDRGB
Exp

AU = EIx∼PI

[
||[DRGB,AU

Exp (Ix) 9 x||22
]
, (17)

where DRGB,AU
Exp is the AU output head of DRGB

Exp . The Rendering Network, R , in addition to be trained
to minimize adversarial loss, is also trained to minimize the AU loss

LR
AU = EIx ||D

RGB,AU
Exp (R (·)) 9 y||22 , (18)

where R (·) is to be read as in Eq. (9).
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