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Abstract
Understanding the remarkable efficacy of Adam when training transformer-based language models
has become a central research topic within the optimization community. To gain deeper insights,
several simplifications of Adam have been proposed, such as the signed gradient and signed momen-
tum methods. In this work, we conduct an extensive empirical study — training over 1,300 language
models across different data configurations and scales — comparing Adam to several known sim-
plified variants. We find that signed momentum methods are faster than SGD, but consistently
underperform relative to Adam, even after careful tuning of momentum, clipping setting and learning
rates. However, our analysis reveals a compelling option that preserves near-optimal performance
while allowing for new insightful reformulations: constraining the Adam momentum parameters
to be equal, β1 = β2. Beyond robustness, this choice affords new theoretical insights, highlights
the “secret sauce” on top of signed momentum, and grants a precise statistical interpretation: we
show that Adam in this setting implements a natural online algorithm for estimating the mean and
variance of gradients—one that arises from a mean-field Gaussian variational inference perspective.

1. Introduction
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Figure 1: Pretraining on SlimPajama with
Chinchilla-optimal [12] scaling. Both momen-
tum and learning rates for Signum are exten-
sively tuned (§B). While Signum closes 96%
of the perplexity gap between Adam and SGD
with momentum (Table 1), still results in a 25%
slowdown : Adam achieves the same perfor-
mance with 3/4 of the budget.

Despite a decade of research into efficient and per-
formant adaptive optimizers for deep learning, the de
facto choice for large-scale training today remains
Adam [14], especially for training language mod-
els (LMs) [11, 19]. At the root of this choice is the
peculiar geometry of optimization landscapes induced
by the transformer architecture [24, 49], as well as the
noisy/unbalanced nature of tokenized text data [17, 46].
In recent years, the surge of extremely large-scale
and expensive-to-pretrain language models has further
pushed the community to better understand Adam’s
performance and to propose faster, efficient, and robust
alternatives. Towards achieving this goal, contempo-
rary studies [2, 16] have brought up a close similarity
between the performance of Adam and SignSGD [3]
with momentum. While such results are extremely valu-
able to forward our understanding, they are not precise
enough : already at a scale of 160M parameters we
found that extensive tuning of SignSGD with momentum (a.k.a. Signum), while closing 96% of
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the perplexity gap between SGD and Adam, results in a 25% effective slowdown (Figure 1). The
discussion above and the results in Figure 1 inspires us to further dissect – once again [1] – the
mechanisms of Adam compared to those of simpler methods in language modeling.

All premilinaries on optimizers and related works can be found in §A.

Adam Signum RMSprop SGD+Cclip SignSGD SGD+Gclip SGD

Val ppl. 21.86± 0.21 23.23± 0.16 27.04± 0.34 33.40± 0.39 36.78± 0.57 37.76± 0.61 53.62± 5.14

Table 1: (Signum closes 96% of the perplexity gap between Adam and SGD) Accuracy comparison
of well-established optimization algorithms known to interpolate between SGD and Adam on language
modeling (160M parameters, 3.2B SlimPajama tokens, sequence length of 2048, batch size of 256 – Chinchilla
optimal). Results report mean and 2-sigma confidence of validation perplexity (100M held-out tokens) over
3 network initialization seeds. Weight decay is always decoupled [21] and set to 0.1 [4, 19] except for SGD
where we further tune (§C). RMSprop does not use momentum, and Gclip is global norm clipping to 1 (before
applying momentum), Cclip is coordinate-wise clipping (after applying momentum). Other hyperparameters,
for all other methods, are carefully tuned, see e.g. Figure 2 and §B.
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Figure 2: Training a total of 265 language models with 160M parameters with 3.2B SlimPajama-627B tokens,
sequence length of 2048, batch size of 256. Shown is the final test perplexity on 100M held-out tokens. Some
underperforming runs are not shown to keep focus on the most interesting range. For a careful description of
our tuning grid, see §B. Takeaway 1: Validation perplexity of highly tuned (65 hyperparameter configurations)
Signum with weight decay 0.1 – top row – is around 23.23 (see Table 1 for multiple seeds at optimal tuning).
We ablate on the momentum parameter, learning rate, and presence of global clipping before averaging. The
best performance of Signum is reported as a green horizontal line on the second row (200 Adam runs, with
weight decay of 0.1). Most Adam runs perform better than optimally tuned Signum. Takeaway 2: For each
β1, the optimal corresponding β2 (after learning rate tuning) is similar. The higher β1, the higher β2 for
optimal performance (optimal βs are correlated).
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Figure 3: The final validation performance (100M held-out tokens) for 44 trained LMs with 420M parameters
trained on 8.2 B SlimPajama tokens (Chinchilla-optimal). Equal betas yields near-optimal performance. We
use gradient clipping and a batch size of 512 (scaled by 2 compared to Figure 2, as suggested by Zhang et al.
[45]). Sequence length is 2048, weight decay is 0.1.

2. Findings

We present here our two main findings. For a description of our setup see §B.
Takeaway 1. From the results in Figure 2 and Table 1, we observe that optimal tuning of Signum

with weight decay substantially improves SGD performance [16, 51]. However, the majority of
Adam runs still achieve superior results, suggesting that a critical component remains—what one
might call the “secret sauce”—that continues to give Adam an edge over better-understood optimizers
in large-scale settings. This gap is not limited to this specific setup. In §C we discuss results on
another dataset (Fineweb), with disabled weight decay, and shorter sequence lengths. Further, we
ablate on other potential confounders (initialization, bias corrections, Adam ϵ value) in §C.5.

Takeaway 2 (a). In Figure 2, we clearly see that β1 = β2 yields near-optimal performance in
Adam, for the five β1 values we considered. In § C we show similar results at different batch sizes,
different sequence lengths, and with disabled weight decay on a different dataset. We also extend
this observation to 410M parameters models (Figure 3). This empirical finding serves as a basis for
our theory in §3.

Takeaway 2 (b). As a corollary to Takeaway 2, Figure 2 shows that the best performance is
not only achieved when β1 = β2, but also improves as the two values become closer. Among an
additional set of 500 runs on 160M-parameter models (§C.3), we observe a clear correlation: lower
loss is associated with smaller differences between β1 and β2. This suggests that gradient smoothing
(β1) and preconditioner smoothing (β2) should not be treated as independent operations—optimal
performance often arises when they act in concert.

Standard choice for betas. While in standard deep learning (also Pytorch default) β2 >
β1 (0.999, 0.9), in language modeling the choice β1 = 0.9, β2 = 0.95 is much more common. A
lower value for β2 was shown to help mitigate loss spikes [6, 9], and several recent studies have
started to adopt β1 = β2 = 0.95 as a default [30, 45, 51]. All our findings confirm this choice for
tuning (see e.g. Figure 2), of which we evaluate validity extensively for several values of β1.

Theoretical relations between betas. We note that a correlation between β parameters was also
noted in the theoretical setup of Zhang et al. [48], where it is shown that if β2 is large enough and
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β1 <
√
β2, Adam converges to the neighborhood of critical points. Further, Xie and Li [41] showed

that weight decay in AdamW leads to convergence to a constrained minimizer only if β2 > β1.

3. New Viewpoints of Adam

We now show that restricting to the case β1 = β2 = β yields a useful interpretation of the Adam.
Since the Adam update is coordinate-wise, it suffices to analyze a single scalar gradient gk ∈ R.
Moreover, ablations (Table 2, Table 3) indicate that neither the ϵ-term nor the bias correction
significantly affect performance. Thus, for clarity, we set ϵ = 0 and study a simplified update:

dk =
EMAβ[gk]√
EMAβ[g2k]

. (1)

We next rewrite the update in a form that explicitly highlights the role of variance.

Let mk = EMAβ[gk]. Then the Adam update admits the equivalent representation (see §D):

dk =
mk√

m2
k + β EMAβ[(mk−1 − gk)2]

. (2)

This shows that the denominator depends on the exponential moving average of the squared
deviation between the momentum mk−1 and the incoming gradient gk, with an interesting multiplier
β. As we demonstrate in the next section, this quantity is an online estimator of the gradient variance.

Comparison with Balles and Hennig [2018]. Setting β1 = β2, a choice that was not common1

at the time of Balles and Hennig [1] allows for precise calculations and claims around variance
estimation. In particular, the quantity EMAβ2 [g

2
k]− EMAβ1 [gk]

2 allows for a precise variance inter-
pretation only for the case β1 = β2: we prove in §D.2 that for any a, b, γ ∈ R and τ ∈ (0, 1), the
representation dk = mk√

m2
k+γ EMAτ [(amk−1−bgk)2]

holds for Adam if and only if β1 = β2.

3.1. Adam Estimates Mean and Variance using Variational Inference

We show that Adam admits a natural interpretation as online variational inference, in which

mk := EMAβ[gk] and σk := β EMAβ[(mk−1 − gk)
2]

correspond to online estimates of the mean and variance of the stochastic gradients. We reintroduce
Adam through this lens. Suppose we are given a sequence of stochastic gradients {g1, . . . , gk}, where
each gk is sampled from an unknown Gaussian distribution whose mean and variance may vary with
k. Rather than taking steps directly along these noisy gradients, we aim to estimate their mean and
variance online and use these estimates to define a more informed search direction.

At iteration k, let (mk, σ
2
k) denote our current estimates of the gradient mean and variance,

respectively. Upon receiving a new gradient sample gk+1 ∼ N (m,σ2) with unknown (m,σ2),
we wish to update our estimates to (mk+1, σ

2
k+1) so that it becomes more likely that gk+1 was

drawn from N (mk+1, σ
2
k+1). Since we also expect the underlying distribution to vary slowly over

time, we prefer that N (mk+1, σ
2
k+1) remain close to the previous estimate N (mk, σ

2
k). These two

1. Default parameters were β1 = 0.9, β2 = 0.999.
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goals—fitting the new observation and ensuring smooth updates—can be traded off via a regularized
maximum likelihood problem:

min
m,σ2≥0

− log p(gk+1 | m,σ2) + 1
λKL

(
N (mk, σ

2
k) ∥N (m,σ2)

)
, (3)

where p(gk+1 | m,σ2) is the Gaussian likelihood, λ ≥ 0 is a regularization parameter, and KL
denotes the Kullback–Leibler divergence:

− log p(gk+1 | m,σ2) =
1

2
log σ2 +

1

2σ2
(gk+1 −m)2, (4)

KL
(
N (mk, σ

2
k) ∥N (m,σ2)

)
=

1

2

[
σ2
k

σ2
+

(mk −m)2

σ2
− 1− log

(
σ2
k

σ2

)]
. (5)

The following result characterizes the solution of (3), showing that the moving averages used in
Adam correspond exactly to an instance of online variational inference (see Appendix for a proof):

Let β = 1
1+λ . Then the solution to the optimization problem (3) is given by

mk+1 = βmk + (1− β)gk+1 = EMAβ(gk+1), (6)

σ2
k+1 = βσ2

k + β(1− β)(mk − gk+1)
2 = β EMAβ

(
(mk − gk+1)

2
)
. (7)

As a consequence, the Adam update direction in (2) can be rewritten as

dk =
mk√

m2
k + βEMAβ((mk−1 − gk)2)

=
mk√

m2
k + σ2

k

=
sign(mk)√
1 + σ2

k/m
2
k

. (8)

This shows that Adam may be interpreted as an adaptive mollified variant of Signum, where the
mollification depends on the local noise-to-signal ratio. This mollified viewpoint aligns well with
one of the first papers on understanding Adam [1], as discussed in the last section.

Trust regions and norms. Using these insights, we can better formalize the noise-to-signal
interpretation of Adam [1]. Let the quantity mk/σk denote the signal-to-noise ratio (SNR). We show
that Adam can be viewed as a steepest descent method whose trust region is modulated by the SNR.

To build this connection, consider first the Signum update. It corresponds to the steepest
descent direction under an ℓ∞-norm constraint [1], solving −sign(mk) = argminθ∈R − mk ·
θ subject to |θ| ≤ 1. That is, Signum selects the direction most aligned with −mk within a unit
trust region. In contrast, Adam can be interpreted as a steepest descent method with a variable trust
region, defined by the (inverse) signal-to-noise ratio:

− sign(mk)√
1 + σ2

k/m
2
k

= argminθ∈R −mk · θ subject to |θ| ≤ 1√
1 + σ2

k/m
2
k

. (9)

The effective step size shrinks when the noise dominates the signal, and expands as uncertainty
decreases: Adam adapts its update magnitude according to a confidence-weighted trust region.

Further insights. To gain deeper insights, we present additional visualizations on the smoothing
action of Adam in §F. To conclude, we also reproduce most of our finding on the heterogeneous
quadratic example by [49], see §E. This example shows both a significant gap between Adam and
Signum and the importance of choosing adaptive mollifiers.
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Conclusion. We have presented an extensive numerical study of Adam, comparing it against several
proposed simplifications. Our main finding is that, on generative language modeling tasks, Adam
significantly outperforms these simplified variants. Notably, we observe that setting β1 = β2 is often
optimal. Based on this observation, we recommend Adam with β1 = β2 as a simplified model, and
we provide a new variational inference interpretation for this setting.

Acknowledgements. We thank Niccolo Ajroldi, Sam Liang, and Enea Monzio Compagnoni for
their comments. Antonio Orvieto acknowledges the financial support of the Hector Foundation.
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Appendix A. Preliminaries and Related Works

For a signal (sk)k∈N and β ∈ [0, 1), we define the β-normalized exponential moving average:

EMAβ[sk] = βEMAβ[sk−1] + (1− β)sk, EMAβ[s0] := s0 (or zero). (10)

The Adam optimizer [14] without bias correction 2 takes the following form:

wk+1 = wk − ηk

(√
EMAβ2 [g

2
k] + ϵ

)−1

EMAβ1 [gk] (Adam)

where all division and multiplications are element-wise, wk, gk ∈ Rd are model parameters and gra-
dients at iteration k, ηk is the scheduled learning rate, and ϵ > 0 is a small constant. RMSprop [35]
is an earlier method that sets β1 = 0.

One special case, and simplification, of Adam is to consider β1 = β2 = ϵ = 0 which gives
SignSGD:

wk+1 = wk − ηksign[gk]. (SignSGD)

A practical variant of SignSGD, shown successful in language modeling [16], computes an
EMA (or momentum) on the gradients before applying the sign [3]:

wk+1 = wk − ηksign[EMAβ[gk]]. (Signum)

In practice, every language modeling pipeline (see e.g. [13]) incorporates some gradient clipping
strategy [26], a component known to stabilize training in the autoregressive setting and to make
gradients more robust to the stochasticity of language [47]. Global norm clipping (that we abbreviate
Gclip), processes gradients fresh out of the backward pass:

clip[gk] = min

{
1,

1

∥gk∥2

}
gk.

In our experiments, we start from vanilla SGD with momentum: wk+1 = wk−ηkEMAβ[gk] and ablate
on the positive effect of Gclip before applying momentum. Regarding coordinate clipping (Cclip), a
softer version of sign, we consider applying it to EMAβ[gk] – in connection with Signum.

Research on Adam, a short summary. Despite initial concerns on generalization [40] and
convergence [29], after the introduction of decoupled weight decay (i.e., AdamW [21]) Adam rapidly
became the de-facto standard optimizer in deep learning, with works highlighting its landscape
adaptation properties [25] and its debated connections to empirical Fisher preconditioning [15].

With the advent of Transformers [38], early works noticed an intriguing gap with SGD per-
formance in language modeling [42] (much larger than what can be observed, e.g., in CNNs on
image data), that was initially attributed to heavy-tail noise in text data [32, 46] – suggesting Adam
performance to be correlated with its adaptive coordinate clipping mechanism [46].

As models became larger and more hardware-demanding, interest spiked in the community
to reduce the memory footprint of Adam [18, 50] and to search for more efficient options [7, 20].
Current trends, draw an intriguing connection between Adam and SignSGD [2], and in particular

2. We show in Table 3 that the presence of bias correction does not affect our results at the best hyperparameter
configuration. However, for all our runs, we use the Pytorch implementation including this factor, for simplicity.
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with its momentum variant: Signum [3]. This connection was first suggested in early attempts to
understand Adam’s empirical performance [1], and has recently gained renewed attention in light
of transformer architectures and their heterogeneous optimization landscapes [17, 24, 36, 49, 51].
These landscape-based arguments are now more compelling, as recent evidence shows that Adam
and signed momentum methods outperform SGD even in deterministic settings [16].

Our approach. While we find an abundance of connections between Adam and simpler methods
such as Signum (with less hyperparameters) in the modern literature, the compute requirements for
comprehensive research on Adam on small to medium scale language models is prohibitive for most
academic optimization researchers, especially given the combinatorial exploding hyperparameter
grid needed for bulletproof comparisons. Our efforts in §2 are therefore devoted to delivering a
comprehensive reference for optimizer performance in many LM settings. We summarize findings in
two main takeaways (Figure 2) and provide theoretical investigations (§3) based on our findings.

Appendix B. Experimental details

For pre-training Transformers on Causal Language Modeling, we build upon the nanoGPT [13]
implementation, augmenting it with Rotational Positional Embedding [34], RMSNorm [44], and
SwiGLU [31]. All our models have a vocabolary size of 50280 and make use of GPT-Neox
tokenizer [5]. We adopt an enhanced training recipe, made popular by large language models such
as LLaMa [37]. These modifications include: training in bfloat16; employing a linear learning
rate warm-up for 10% of the training steps, followed by cosine annealing to 1e − 5. Clipping is
used (unless specified) for gradient norms above 1; we have no weight tying between embedding
and last linear layer. We always report validation perplexity on a separate subset consisting of 100M
tokens. Seeds, when provided, are relative to distinct network initialization.

Computational Resources. All our experiments at a 160M parameter scale are performed on a
single NVIDIA A100-SXM4-80GB. At compute optimality (most of our experiments) each run
takes approximately 5.83 hours. Our runs at a 410M parameter scale are performed on 8 NVIDIA
A100-SXM4-80GB GPUs, each run takes approximately 4.83 hours. For all our runs, we fill up
memory and optimize for the gradient accumulation steps.

Code. All our runs use the repository

https://github.com/Niccolo-Ajroldi/plainLM

Model settings (160 M). We use the same setting as [4], configuration can be found here: https:
//github.com/EleutherAI/pythia/blob/main/models/160M/pythia-160m.yml

• Layers: 12 Transformer [38] layers

• Attention heads: 12

• Hidden size: 768

• Attention implementation: Flashattention [10].

• MLP type: SwiGLU [31] with expansion factor 8/3.

• Backbone: PreLN transformer [42].
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• Normalization: RMSnorm [44] for both Attention and MLP.

• Position embeddings: Rotary embeddings (RoPE) to 25% of dimensions ([34])

• Initialization: the MLP and Attention output weights are initialized with variance
0.02/

√
2#layers (scaling also similar to [28]). All other weights (comprising embeddings) are

initialized with a standard deviation of 0.02 (Nguyen and Salazar [23], Wang and Komatsuzaki
[39], Sec. 2.2). Biases are always initialized at zero.

• Precision: Mixed precision FP16 enabled.

• Dropout: Disabled for both hidden and attention layers (see also Chowdhery et al. [8]).

Model settings (410 M). We use the same setting as [4], configuration can be found here: https:
//github.com/EleutherAI/pythia/blob/main/models/410M/pythia-410m-deduped.
yml

• Layers: 24 Transformer layers

• Attention heads: 16

• Hidden size: 1024

• Other settings as 160M parameters.

B.1. Experiments on SlimPajama – 160M parameters model

We present 3 experiments sections:

• Section B.1.1 – core setting, ablating on all optimizers.

• Section B.1.2 – ablating on a smaller sequence length.

• Section B.1.3 – ablating at different batch sizes.

All our experiments here use the Cerebras SlimPajama-627B [33] dataset: https://huggingface.
co/datasets/cerebras/SlimPajama-627B.

B.1.1. SEQUENCE LENGTH 2048, BATCH SIZE 256, 3.2 B TOKENS (6200 GRADIENT STEPS)

This setup comprises a total of 570 full training runs. We always use warm-up (10%) and cosine
anneal until a learning rate of 1e− 5. This setting is Chinchilla-optimal (20 tokens/parameter).

Core experiments: These are the core experimental results for this setting.

• SGD with momentum β and global clipping to 1 (Gclip, dampening to 1− β)
— 84 full runs (Figure 4, top).

(η, β, λ) ∈ [2.0, 1.0, 0.5, 0.25, 0.125, 0.0625, 0.03125]

× [0.9875, 0.975, 0.95, 0.9]

× [0, 1e− 3, 1e− 4].
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• SGD with momentum β and (1) global clipping of raw gradient to 1 (Gclip) and (2) coordinate
clipping (Cclip) to 1 after momentum is applied. Dampening is set to 1− β, λ (weight decay)
is set to 0
— 24 full runs (Figure 4, bottom).

(η, β, λ) ∈ [2.0, 1.0, 0.5, 0.25, 0.125, 0.0625]

× [0.9875, 0.975, 0.95, 0.9]

• SGD with momentum β (vanilla, dampening to 1− β, no clipping). λ = 0 (weight decay).
— 28 full runs (Figure 5)

(η, β) ∈ [0.25, 0.125, 0.0625, 0.03125, 0.015625, 0.0078125, 0.00390625]

× [0.9875, 0.975, 0.95, 0.9].

• Adam with global norm clipping to 1 and with λ = 0.1 (weight decay) and ϵ = 1e− 8 (usual
setup, see Biderman et al. [4]).
– 200 full runs (Figure 2)

(η, β1, β2) ∈ [0.016, 0.008, 0.004, 0.002, 0.001]

× [0.9875, 0.975, 0.95, 0.9, 0.8]

× [0.996875, 0.99375, 0.9875, 0.975, 0.95, 0.9, 0.8, 0.6]

• RMSprop implemented using the AdamW class using β1 = 0. We again use λ = 0.1 (weight
decay) and ϵ = 1e− 8.
– 48 full runs (Figure 6).

(η, β2) ∈ [0.004, 0.002, 0.001, 0.0005, 0.00025, 0.000125]

× [0.9875, 0.975, 0.95, 0.9, 0.8, 0.6, 0.4, 0.0]

• Signum with weight decay λ = 0.1 as also suggested by [51] (Figure 5, top left panel). We
ablate on presence of global norm gradient clipping (to norm 1).
– 70 full runs (Figure 2).

(η, β, clip) ∈ [0.004, 0.002, 0.001, 0.0005, 0.00025, 0.000125, 0.0000625]

× [0.9875, 0.975, 0.95, 0.9, 0.8]

× [True,False]

Note that Signum with and without gradient clipping are two different methods: here, clipped
gradients are first averaged and only then the sign is taken. Instead, clipping on the EMA of
signed gradients (next method) should have no effect (apart from non-determinism).

• EMASign with weight decay λ = 0.1. We ablate on the presence of global norm gradient
clipping (to norm 1) out of mistake: the two methods are equal!
– 70 runs (35 duplicate runs) (Figure 7)

(η, β, clip) ∈ [0.001, 0.0005, 0.00025, 0.000125, 0.0000625, 0.00003125, 0.000015625]

× [0.9875, 0.975, 0.95, 0.9, 0.8]

× [True,False]
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Ablations: These ablations were performed to test side-claims in the paper.

• Adam with global norm clipping to 1 and λ = 0.1, β1 = β2 = 0.95, η = 0.008 (best setup
from Figure 2). Ablated are
– 6 full runs (Table 2).

ϵ ∈ [1e− 3, 1e− 6, 1e− 8, 1e− 10, 1e− 12, 1e− 15],

and influence of initializing exponential moving averages to zero (default, ZI) or to the
stochastic quantity of interest (gradient initialization, GI). At the same time, we try to remove
bias correction. These experiments are presented with 3 random initialization seeds:
– 9 full runs (Table 3).

• Signum with global norm clipping to 1 and λ = 0.1, β = 0.95 (best setting from Figure 2):
we ablate on fixed mollifiers for zero-initialized (ZI) or gradient-initialized (GI) momentum.
The mollified we study is mk/(

√
mk + ϵ):

(η, ϵ) ∈ [0.001, 0.0005, 0.00025, 0.000125]× [1e− 3, 1e− 6, 1e− 9]

– 12 full runs (Table 2). We additionally test the influence of ZI vs. GI with three random seeds
at ϵ = 0.
– 5 full runs (Table 3).

Other: for the best-performing variants of core experiments, we initialize the model with two other
random seeds. This accounts for
– 14 additional full runs (Table 1).

B.1.2. SEQUENCE LENGTH 512, BATCH SIZE 256, 3.2 B TOKENS (24800 GRADIENT STEPS)

This setup comprises a total of 55 full training runs. We test our core claims (Signum underperforms
Adam, β1 = β2 works well) at a smaller sequence length. Setting is exactly the same as §B.1.1 for
all methods, unless stated otherwise.

• Adam, we limit this ablation to β1 = 0.95,

(η, β2) ∈ [0.001, 0.002, 0.004, 0.008, 0.016]× [0.99375, 0.9875, 0.975, 0.95, 0.9, 0.8]

– 25 full runs (Figure 8).

• Signum, we do a full ablation using global norm gradient clipping to 1.

(η, β) ∈ [0.0000625, 0.000125, 0.00025, 0.0005, 0.001, 0.002]×[0.9875, 0.975, 0.95, 0.9, 0.8]

– 30 full runs (Figure 8).
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B.1.3. SEQUENCE LENGTH 2048, VARIABLE BATCH SIZE, 2.5 B TOKENS

We use here a slightly reduced token budget (2.5B, 20 tokens for every non-embedding parameter)
and run the same Adam tuning experiment presented in Figure 2 for batch size 256. We actually run
this experiment again at a batch size of 256, and test batch sizes of 128 and 512 reducing or doubling
the number of steps accordingly (same token budget). The sequence length is still 2048, and the
dataset SlimPajama. Due to the reduced number of tokens, each run takes approximately 4.7 hours
on our hardware. We implement variation of batch size using gradient accumulation (4, 8, 16) at a
micro-batch size of 32 sequences. This setup comprises a total of 500 full training runs.

Adam with λ = 0.1 (weight decay) and ϵ = 1e− 8 (usual setup, see Biderman et al. [4]), we
clip gradients to global norm 1.

• For batch size 256:

(η, β1, β2) ∈ [0.016, 0.008, 0.004, 0.002, 0.001]

× [0.9875, 0.975, 0.95, 0.9, 0.8]

× [0.996875, 0.99375, 0.9875, 0.975, 0.95, 0.9, 0.8, 0.6]

• For batch size 128 and 512:

(η, β1, β2) ∈ [0.0005, 0.001, 0.0014, 0.002, 0.0028, 0.004, 0.0056, 0.008, 0.0112, 0.016]

× [0.975, 0.95, 0.9]

× 1− [4, 2, 1, 0.5, 0.25] · (1− β1) (i.e. 3 higher and 2 lower values in grid)

Note that here we overturned the learning rate, the reason for this is the square root scaling law
in Compagnoni et al. [9], Malladi et al. [22]: if batch size scales by 2, learning rate should scale as√
2. We see in §C.3 that this indeed seems to hold true, yet noise prevents us from making precise

verification claims.

– 500 full runs (§C.3).

B.2. Experiments on SlimPajama – 410M parameters model, 8.2 B tokens

All our experiments here use the Cerebras SlimPajama-627B [33] dataset: https://huggingface.
co/datasets/cerebras/SlimPajama-627B. We focus on evaluating whether β1 = β2
yields good performance in this settings. We scale up the batch size by a factor 2 compared to
Section B.1, as suggested by [45]. We perform our experiments at compute optimality (8.2B tokens,
20 tokens per parameter).

Adam with λ = 0.1 (weight decay) and ϵ = 1e− 8 (usual setup, see Biderman et al. [4]), we
clip gradients to global norm 1:

• β1 = 0.9

(η, β2) ∈ [0.016, 0.008, 0.004, 0.002]× [0.95, 0.9, 0.8]

• β1 = 0.95

(η, β2) ∈ [0.016, 0.008, 0.004, 0.002]× [0.9875, 0.975, 0.95, 0.9]
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• β1 = 0.975

(η, β2) ∈ [0.016, 0.008, 0.004, 0.002]× [0.99375, 0.9875, 0.975, 0.95]

– 44 full runs (Figure 3).

B.3. Experiments on Fineweb – 160M parameters model, 3.2B tokens – no weight decay

While testing our claims on a different dataset, we also crucially remove weight decay here. Our
setting is otherwise identical to that of §B.1.1: Sequence length is 2048, batch size is 256, model has
160 parameters and we train on 3.2B tokens from Fineweb [27] https://huggingface.co/
datasets/HuggingFaceFW/fineweb.

• Adam with λ = 0 (no weight decay!) and ϵ = 1e− 8 (usual setup, see Biderman et al. [4]).
We clip gradients to global norm 1.

(η, β1, β2) ∈ [0.032, 0.016, 0.008, 0.004, 0.002, 0.001]

× [0.975, 0.95, 0.9]

× [0.9875, 0.975, 0.95, 0.9, 0.8]

– 90 full runs (Figure 12)

• Signum with λ = 0 (no weight decay) as also suggested by [51] (Figure 5, top left panel). We
clip gradients to global norm 1.

(η, β) ∈ [0.004, 0.002, 0.001, 0.0005, 0.0000625, 0.00025, 0.000125]

× [0.975, 0.95, 0.9]

– 24 full runs (Figure 12).

Appendix C. Complementary Experimental Results

The results in this section complement the discussion in §2. We organize them in 5 subsections, and
report all technical details in §B.

• §C.1 outlines all hyperparameter tuning curves for the setting in Table 1 for SGD (with/without
clipping and with/without weight decay) – Figure 4 and 5, RMSprop without momentum –
Figure 6, and momentum on top of SignSGD – Figure 7.

• §C.3 validates that β1 = β2 is a strong-performing option for Adam across different batchsizes.

• §C.2 validates that β1 = β2 is a strong-performing option for Adam at a shorter sequence
length. Here, we also show that Signum performance is still suboptimal (cf. Figure 2).

• §C.4 reproduces the Signum-Adam gap on Fineweb [27]. Compared to Figure 2 and the
settings above, here we compare at zero weight decay to eliminate this additional confounder.

• §C.5 confirms on the validity of our findings when ablating on nuances of Signum and Adam
such as initialization and bias correction.
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C.1. Tuning for Table 1

Setup Summary. 160 M parameters LM on SlimPajama, trained for 3.2 B tokens at a batchsize of
256 × 2048 sequence length.

Comment. Our objective here is to tune to best, despite the combinatorially exploding number of
options, our methods in Table 1. Details regarding our hyperparameters grid and model configurations
are reported in §B. We remind that tuning for Signum and Adam is presented directly in the main
paper as Figure 2. All figures below show optimal tuning jointly in learning rate and momentum
space. While tuning for RMSprop and momentum on SignSGD is straightforward, SGD requires
more attention: we found that removing weight decay was always beneficial when global norm
clipping the raw gradient, hence we adopt this option also for the non-clipped variant, and for the
variant that includes an additional coordinate clipping step after applying momentum. We believe
this is due to the decoupled nature of weight decay, combined with the high learning rates required
for good performance in SGD.

Finalizing Table 1. After careful tuning, we select for each method the best configuration (given
by figures below) and run two additional seeds to report final results with confidence bars.
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Figure 4: (top) SGD with global norm clipping. We found it beneficial to remove weight decay: the best
setting achieves 37.53 ppl, while a slightly larger wd leads to 38.11. a weights decay of 0.001 is too large and
yields 93.7 best validation perplexity. (bottom) SGD with global norm clipping on raw gradients, followed by
coordinate clipping on momentum. We remove weight decay as suggested by the top plot. We observe an
improvement of 5 perplexity points.
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Figure 5: SGD without coordinate-wise clipping at zero weight decay (as suggested by Figure 4 ).
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Figure 6: RMSprop with decoupled weight decay 0.1. Implemented with Pytorch AdamW setting β1 = 0.
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Figure 7: Momentum on SignSGD with decoupled weight decay. We implement this just for completeness to
show that it is performing worse than Signum. Clipping has mathematically no effect (we did not notice at
first, so we show the result anyways).
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C.2. Effect of Shorter Sequence Length in Figure 2

We run part of the experiments in Figure 2 at a lower sequence length (512), for a batch size of 256
sequences (as Figure 2). The model here still sees 3.2B tokens (compute optimal), but number of
effective optimizer steps is 4 times bigger compared to the 2048 sequence length setting. While we
still observe a sizeable gap between Signum and Adam, we note that this is smaller here, as noted
also by Zhao et al. [51] in a similar setting.
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Figure 8: AdamW vs Signum, same setting as Figure 2, but at a smaller sequence length (512).
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C.3. Batch size ablation for Figure 2

We run part of the experiments in Figure 2 at a lower and higher batch size. All other details remain
the same and are summarized in §B – except for the number of steps performed: due to limitations
in our resources, we chose here to train models for 2.5B tokens – i.e. a slightly undertrained
setting (optimal would be 3.2B). In line with [9, 22] we consider half-steps when tuning. All
experiments use a weight decay of 0.1.

Despite some imperfections, we notice that β1 = β2 is a strong choice even at different batch
sizes, our Takeaway 2.
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Figure 9: Adam, batch size 256 trained for 2.5B tokens. Other settings are same setting as Figure 2.
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Figure 10: Adam, batch size 512 trained for 2.5B tokens. Other settings are same setting as Figure 2.
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Figure 11: Adam, batch size 128 trained for 2.5B tokens. Other settings are same setting as Figure 2.
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C.4. Figure 2 on Fineweb (no weight decay)

Finally, we evaluate our findings – both strong performance of equal βs in Adam and substantial
gap with Signum on a different dataset (Fineweb [27]). All other experiments in this paper are
performed on SlimPajama. To add an additional axis of variation compared to previously presented
settings, we here remove weight decay from all methods.
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Figure 12: Adam and Signum (no weight decay) on Fineweb. Other settings are same as Figure 2. For
visualization purposes, here we rescaled the visualized learning rate of Signum by a factor ∼ 10.
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C.5. Effect of Bias Correction and Zero Initialization on Adam
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Figure 13: Adding an ϵ mollifier to Signum, i.e.,
using mk/(

√
m2

k+ϵ) offered little to no improvement.
We also test both zero initialization (ZI) and gradient
initialization (GI) for m, and find similar results with
no significant improvement.

When comparing Signum with Adam, here are
a few confounders that might affect results:
The value of epsilon in Adam was shown to
be important for numerical stability, and might
affect performance [43]. We show in Table 2
that one can choose an extremely small ϵ value
in our setting. We cross-check the impact of
including an ϵ factor in Signum: we found that
little can be gained from this strategy (Figure 13).
In short, we found that ϵ is not a crucial parameter
in our setup. This is also liked to our findings on
adaptive mollifiers, cf. §3.
Initialization of moving average parameters.
In Figure 13 we also ablate on initialization of
the moving average in Signum and found no substantial differences. We perform this same ablation
for Adam and report comprehensive results with seeds in Figure 3.
Bias correction. While bias correction in Adam is helpful in early training, final validation perfor-
mance is almost unchanged, see the full training curve and results with seeds in Figure 14.
Table 2: Effect of ϵ in AdamW– other parameters optimally tuned for ϵ = 10−8 (setting: Figure 2). All values
between ϵ ∈ [10−6, 10−15] result in a similar validation perplexity.

ϵ = 1e− 3 ϵ = 1e− 6 ϵ = 1e− 8 ϵ = 1e− 10 ϵ = 1e− 12 ϵ = 1e− 15

Val ppl 23.34± 0.31 21.56± 0.19 21.86± 0.21 21.87± 0.04 21.89± 0.2 21.91± 0.18

Table 3: ZI denotes Zero init of EMA parameters, GI denotes init of EMA parameters to the measurement at
first iteration, BC denotes Bias Correction. Not doing ZI means we initialize m and v at g0 and g20 respectively.
Default for Adam is ZI and BC. Default for Signum+WD is less clear. We found that initialization does not
affect much performance in Signum, yet it does in Adam. Performing bias correction is not as important as
initialization in Adam.

Adam (+ZI+BC) Adam (+ZI-BC) Adam (+GI-BC) Signum (+GI) Signum (+ZI)
Val ppl 21.86± 0.21 21.89± 0.16 22.58± 0.35 23.23± 0.16 23.30± 0.25
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Figure 14: Effect of eliminating bias correction in Adam. The difference between variants vanishes as
iterations progress. Plotted is the average dynamics over 3 random seeds.
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Appendix D. Missing proofs and derivations

D.1. Proof of Equation 2

For this proof we will use the abbreviation

vk := EMAβ[g
2
k].

With this abbreviation the Adam update can be written as

dk =
mk√
vk

=
mk√

m2
k + vk −m2

k

.

Next we will show that vk −m2
k = βEMAβ[(mk−1 − gk)

2]. Indeed by expanding the update of vk+1

and mk+1 we have that

vk+1 −m2
k+1 = βvk + (1− β)g2k+1 − (βmk + (1− β)gk+1)

2

= βvk + (1− β)g2k+1 − (β2m2
k + (1− β)2g2k+1 + 2β(1− β)gk+1mk)

= βvk − β2m2
k + (1− β)βg2k+1 − 2β(1− β)gk+1mk

= βvk − βm2
k + βm2

k − β2m2
k + (1− β)βg2k+1 − 2β(1− β)gk+1mk

= β(vk −m2
k) + β(1− β)m2

k + β(1− β)g2k+1 − 2β(1− β)gk+1mk

= β(vk −m2
k) + β(1− β)(mk − gk+1)

2.

By setting δk = vk −m2
k we have that

δk+1 = βδk + β(1− β)(mk − gk+1)
2 = βEMAβ[(mk−1 − gk)

2]

where we used the definition of the EMA recurrence in (10).

D.2. Necessity of equal betas for variance interpretation

Adam with hyperparameters β1, β2 ∈ (0, 1) has update of form

mk√
m2

k + γEMAτ [(amk−1 − bgk)2]
,

for some a, b, γ ∈ R and τ ∈ (0, 1) if an only if β1 = β2.

Let us expand the expression.

vk+1 −m2
k+1 = β2vk + (1− β2)g

2
k+1 − (β1mk + (1− β1)gk+1)

2

= β2vk + (1− β2)g
2
k+1 − [β2

1m
2
k + (1− β1)

2g2k+1 + 2β1(1− β1)mkgk+1]

= β2vk − β2
1m

2
k + [(1− β2)− (1− β1)

2]g2k+1 − 2β1(1− β1)mkgk+1
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The case of equal betas. Notice that if β1 = β2 = β, then

(1− β)− (1− β)2 = 1− β − (1 + β2 − 2β) = 1− β − 1− β2 + 2β = β(1− β),

and so the expression gets simplified:

vk+1 −m2
k+1 = βvk − β2m2

k + β(1− β)[g2k+1 − 2mkgk+1]

Now add and subtract βm2
k, to get

vk+1 −m2
k+1 = β(vk −mk+1) + β(1− β)[m2

k + g2k+1 − 2mkgk+1].

where the last term is the perfect square (mk − gk+1)
2.

The general setting. One might hope for the “stars aligning” into a perfect square also in the
general setting. For this to happen, we need to require that the term

[(1− β2)− (1− β1)
2]g2k+1 − 2β1(1− β1)mkgk+1

allows for such a simplification to happen. That is, assume to start from

(amk − bgk+1)
2 = a2mk − 2abmkgk+1 + b2g2k+1.

we need
b2 = (1− β2)− (1− β1)

2, ab = β1(1− β1).

so

a =
β1(1− β1)√

(1− β2)− (1− β1)2
.

Therefore:(
β1(1− β1)√

(1− β2)− (1− β1)2
mk −

√
(1− β2)− (1− β1)2gk+1

)2

=
β2
1(1− β1)

2

(1− β2)− (1− β1)2
m2

k + [(1− β2)− (1− β1)
2]g2k+1 − 2β1(1− β1)mkgk+1

Therefore, in the general setting, we can write

vk+1 −m2
k+1 = β2vk −

(
β2
1 +

β2
1(1− β1)

2

(1− β2)− (1− β1)2

)
m2

k+

+

(
β1(1− β1)√

(1− β2)− (1− β1)2
mk −

√
(1− β2)− (1− β1)2gk+1

)2

Massaging a bit, we get

vk+1 −m2
k+1 = β2vk −

β2
1(1− β2)

(1− β2)− (1− β1)2
m2

k+

+

(
β1(1− β1)√

(1− β2)− (1− β1)2
mk −

√
(1− β2)− (1− β1)2gk+1

)2
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which implies

vk+1 −m2
k+1 = β2

(
vk −

β2
1(1− β2)

β2(1− β2)− β2(1− β1)2
m2

k

)
+

+

(
β1(1− β1)√

(1− β2)− (1− β1)2
mk −

√
(1− β2)− (1− β1)2gk+1

)2

.

Therefore, the formula holds true if and only if

β2
1(1− β2)

β2(1− β2)− β2(1− β1)2
= 1.

That is, if and only if

β2
1(1− β2) = β2(1− β2)− β2(1− β1)

2.

The condition simplifies, as it reads:

β2
1 − β2

1β2 = β2 − β2
2 − β2 − β2β

2
1 + 2β1β2.

which simplified is
β2
1 + β2

2 − 2β1β2 = 0.

i.e.
(β1 − β2)

2 = 0 ⇐⇒ β1 = β2.

D.3. Proof of the variational perspective

Recall that

− log p(gk+1 | m,σ2) =
1

2
log σ2 +

1

2σ2
(gk+1 −m)2,

KL
(
N (mk, σ

2
k) ∥N (m,σ2)

)
=

1

2

[
σ2
k

σ2
+

(mk −m)2

σ2
− 1− log

(
σ2
k

σ2

)]
.

Therefore

F (m,σ2) = − log p(gk+1 | m,σ2) +
1

λ
KL
(
N (mk, σ

2
k) ∥N (m,σ2)

)
=

1

2
log σ2 +

1

2σ2
(gk+1 −m)2 +

1

2λ

[
σ2
k

σ2
+

(mk −m)2

σ2
− 1− log

(
σ2
k

σ2

)]
Since we are not optimizing for σ2

k, we can replace − log
(
σ2
k

σ2

)
= log(σ2) and drop constants, gives

the following objective function

min
m,σ2≥0

F (m,σ2) =
1

2

1 + λ

λ
log(σ2) +

1

2σ2

[
(g −m)2 +

1

λ

(
σ2
k + (mk −m)2

)]
+ const.
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Stationarity in m: Differentiating in m and setting to zero gives

∂F

∂m
= − 1

σ2
(g −m)− 1

λσ2
(mk −m) = 0.

Multiplying by λσ2, we get:

−λ(g −m)− (mk −m) = 0 ⇒ m =
λg +mk

1 + λ
. (11)

Stationarity in σ2: Differentiating in σ2 and setting to zero gives

∂F

∂σ2
=

1

2

1 + λ

λ
· 1

σ2
− 1

2σ4

[
(g −m)2 +

1

λ

(
σ2
k + (mk −m)2

)]
= 0.

Multiplying both sides by 2σ4, and re-arranging gives:

1 + λ

λ
σ2 = (g −m)2 +

1

λ

(
σ2
k + (mk −m)2

)
.

Multiplying through by λ
1+λ gives

σ2 =
λ(g −m)2 +

[
σ2
k + (mk −m)2

]
1 + λ

. (12)

Now using m = λg+mk
1+λ from (11) we have that

g −m =
g −mk

1 + λ
, mk −m =

λ(mk − g)

1 + λ
.

Therefore:

(g −m)2 =
(g −mk)

2

(1 + λ)2
, (mk −m)2 =

λ2(g −mk)
2

(1 + λ)2
.

Using the above in the expression for σ2 in (12), we get:

σ2 =
λ(g −mk)

2

(1 + λ)2
+

σ2
k

1 + λ
.

This, together with (11) gives the final solution

mk+1 =
mk + λg

1 + λ
and σ2

k+1 =
σ2
k

1 + λ
+

λ(g −mk)
2

(1 + λ)2
.

If we use the standard momentum parameterization, which corresponds to β = 1
1+λ we arrive at the

stated results (6) and (7) of the theorem.
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Appendix E. Why an adaptive trust region? Insights from heterogeneous quadratics

While our theoretical analysis in §3 offers a new perspective on Adam, it is not tied to any specific
architecture. To enhance intuition and provide a controlled setting for future work, we validate
our findings on a simplified model of transformer loss landscapes introduced by Zhang et al. [49],
building on signal propagation theory [24].

As noted in Kunstner et al. [17], Zhang et al. [49], Zhao et al. [51], the landscape of autoregressive
language models is highly heterogeneous: Hessian blocks associated with semantically distinct
parameter groups (e.g., normalization layers, embeddings, or softmax-related parameters) exhibit
markedly different eigenspectra and thus demand different learning rates. In contrast to homogeneous
models (e.g., CNNs), this heterogeneity is where Adam significantly outperforms SGD [cf. 52].

Figure 15 illustrates this point. On a toy heterogeneous quadratic landscape, tuned Adam with
equal β values substantially outperforms tuned SGD with momentum, echoing results from Zhang
et al. [49]. We also observe that Signum closes much of the gap but still falls short of Adam. This
is consistent with our findings in Table 1 for language models.

block 1
block 2

block 3
Eigenvalues 
(both Hessians)

Figure 15: Top row: Training performance (median and 25%/75% quantiles over 10 seeds) of SGD, Signum,
and Adam on two 9-dimensional convex quadratic problems inspired by Zhang et al. [49]. All optimizers
use moving average parameters set to 0.95, with a 10% warmup followed by cosine decay to zero. Both
problems share the same Hessian eigenspectrum and have a 3× 3 block structure. The landscape on the left
is homogeneous, with each block containing both large and small eigenvalues. The landscape on the right
is heterogeneous, with each block having eigenvalues of different magnitudes. In this setting, Adam clearly
outperforms SGD, with Signum closing part of the gap. Bottom row: Dynamics of the variance term Eq. (2).
The value of this term varies both across iterations and across blocks, adapting to the local curvature structure.
This adaptive behavior improves performance over Signum in the heterogeneous setting.

Setup. Our setup here is inspired directly from the results and discussions in Zhang et al. [49].
Specifically, we consider the loss

L(w) =
1

2
w⊤Hw
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where we construct the Homogeneous and Heterogeneous Hessians using the following proce-
dure:

• We fix the eigenvalues, equal in both cases, to

eig(Hhom) = eig(Hhet) = {1, 2, 3, 99, 100, 101, 4998, 4999, 5000}.

• We choose both Hessians to be block-diagonal, with blocks of size 3× 3. The homogeneous
Hessian has eigenvalues of different magnitude in each block, while the Heterogeneous keeps
similar magnitudes in each block.

H_details_het = [[1,2,3],[99,100,101],[4998,4999,5000]]
H_details_hom = [[1,99,4998],[2,100,4999],[3,101,5000]]

• For each block, we apply a random rotation to the diagonal matrix of eigenvalues, specific to
each block. Each rotation is sampled from the Haar measure by decomposition of a random
3× 3 positive semidefinite matrix AA⊤, where A ∈ R3×3 has i.i.d. Gaussian entries.

The result is shown in Figure 15.
Next, to introduce stochasticity in this setting, we simply take the square root of the Hessian to

define a 9× 9 design matrix X

H = X⊤X, X = H
1
2

and subsample a number (the batchsize) of rows of X at each iteration.
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iteration

10 4
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100
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lo
ss

Fixed  mollifier on Signum
 = 10.0
 = 1.0
 = 0.1
 = 0.01

Figure 16: Counterpart of Figure 13 for
the heterogeneous quadratic example. We
do not observe gains adding a fixed mollifier
mk/

√
m2

k + ϵ (placing inside or outside
√
·

has no qualitative effect).

Comment. In §3, we showed that the key difference
between Signum and Adam lies in the variance correc-
tion term βEMAβ[(mk−1 − gk)

2] in the denominator. Un-
derstanding how this term evolves is essential: it can-
not be approximated by a constant. In the second row
of Figure 15, we observe that the variance estimate not
only varies over time, but also differs in scale across the
three blocks—mimicking the parameter groupings in trans-
former models. This block-wise variation reinforces the
idea that the variance term dynamically adapts to the local
curvature and cannot be substituted by a fixed value. In
Figure 16 and 13, we show a similar effect in heteroge-
neous quadratic and language models, respectively: replac-
ing βEMAβ[(mk−1 − gk)

2] with a fixed constant ϵ cannot
provide the same adaptive effect.

Appendix F. Signal Processing Perspective

In this last section, we examine Adam through a signal processing lens, to get qualitative insights into
its distinction with Signum and other SignSGD with momentum variants. Setting β1 = β2 = β,
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we can write the Adam update, without bias correction (see §C.5) as simply

dk =
√

1− β

∑k
i=0 β

igk−i√∑k
i=0 β

ig2k−i

.

where (gk)k is the gradient signal. The results in Figure 2 clearly show that this is a near-optimal
performing method.

One might wonder if this special case allows for a simpler graphical interpretatoin of Adam.

Graphical intuition. We denote by dk the update of Adam:

dk =

(√
EMAβ[g2k] + ϵ

)−1

EMAβ[gk]

and plot its dynamics as a function of a synthetic one-dimensional gradient in Figure 17.
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dk if β1 = β2 = 0.0
dk if β1 = β2 = 0.9
dk if β1 = β2 = 0.95
dk if β1 = β2 = 0.975
dk if β1 = β2 = 0.9875
dk if β1 = β2 = 0.99375
dk if β1 = β2 = 0.996875

Figure 17: Filtering effect for same β1 = β2.

In the example of Figure 17, we chose the synthetic gradient signal gk = 1.8 sin(0.03k) exp(−0.0025k):
this is a damped periodic signal. Note that this is pure filtering, there is no loss or learning process.
We note the following:

1. β1 = β2 = 0 is obviously just sign(gk). This is plotted for comparison.

2. For any β1 = β2 ̸= 0, dk is bounded by 1 in magnitude. It’s dynamics however, for e.g.
β1 = β2 > 0 is smooth and follows more closely the gradient, while being bounded. It is
somehow a rescaled version.

3. Very interestingly, dk is blind to the decay term exp(−0.0025k), the output is perfectly periodic
for every β1 = β2.

Towards understanding what is a functional form for this, note that dk cannot be reduced to
momentum on the sign or sign on the momentum(Signum): both variants actually destroy the
signal shape, while dk maintains the shape of the original signal and has clear invariance properties.
The behavior of signSGD with momentum (2 variants) is shown in Figure 18: as one can see, the
behavior is drastically different from dk in Figure 17.

Properties. Adam can be seen as a very special operator T on gradient sequences (gk)
∞
k=0 ∈

G ⊆ ℓ∞ (with normed vector space structure and notation), indeed has four distinctive properties.
T : (gk)

∞
k=0 → (dk)

∞
k=0.

29



IN SEARCH OF ADAM’S SECRET SAUCE

1. It is causal.

2. It is invariant to positive scaling: T (α · g) = T (g), for any α > 0.

3. It is odd: T (−g) = −T (g).

4. It has bounded infinity norm: ∥T (g)∥∞ ≤ 1 for all g ∈ ℓ∞.

5. Density: For any b ∈ [−1, 1] and any arbitrary k > 0, there exists (gk)∞k=0 such that dk = b.

We are amazed by these rich set of properties, thickening our interest in better understanding the
properties of Adam mollification, which we study in §3.
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EMAβ(sign(gk)) if β=0.99375
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Figure 18: Filtering induced by signSGD with momentum (2 variants, the one below is Signum).
Compare with Figure 17.
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Figure 19: Adam-like filtering compared to sign of EMA (Signum), detail.
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