
A Bandits Approach to Intelligent Tutoring Systems using

Concept Evolution

Sudha S+, Arun Rajkumar+
+Indian Institute of Technology Madras

Abstract

With the huge number of learning resources available online today, the Intelligent Tutoring Systems (ITS)
are of great need more than ever. An ITS is a system that personalizes the course contents to each learner. In
this paper, we address the problem of suggesting an effective & efficient learning sequences to learners based on
their knowledge levels. We take a multi-armed bandits approach to action choosing where we suggest that action
which has the highest estimated learning outcome at each step. We model the actions as Beta distributions & the
learners’ knowledge level as concept vectors. We also learn the prerequisite relationships that can exist among
the concepts automatically. We propose a novel algorithm that achieves the goal efficiently. Our experimental
results show that our algorithm’s performance is comparable to that of the optimal algorithm.

1 Introduction

Traditional teaching methods utilize a uniform approach for all learners, disregarding individual abilities and needs.
Intelligent Tutoring Systems (ITS) adapt teaching strategies according to learner’s unique parameters. This paper
presents an ITS framework for devising tailored learning actions sequences for each learner, optimizing concept
learning. We model this problem as a Multi-Armed Bandits setting, viewing learning actions as arms and the
learning level gained as rewards. The model also considers prerequisite relationships between concepts.

Our approach allows a learner’s knowledge level to range between 0 and 1, a shift from the conventional binary
(0, 1) states. This accounts for varying mastery levels of a concept. Our framework permits each learning action
to contribute variably to multiple concepts. We also incorporate prerequisite relationships between concepts with
varying intensity levels. The algorithm autonomously learns these prerequisite relationships, negating the need for
expert input.

2 Related Work

[1] suggests a Zone of Proximal Development (ZPD)-based action sequence selection, incorporating multi-armed
bandits to maximize rewards. Their method relies heavily on time-consuming ZPD graph creation by an expert, a
dependency absent in our approach.

[2] applies a POMDP approach to ITS in a question-and-answer context, limiting learner concept understanding
to binary (0,1) values. Our method allows continuous values in [0,1] for knowledge levels, uses practical learning
actions like videos, and doesn’t require prerequisite information.[3] also applies a POMDP approach to ITS, but
solving a POMDP is generally challenging due to the polynomial number of states.

[4] embeds Personalised Learning Action (PLA) between fixed assessment sequences to boost immediate assess-
ment performance using the CLUB & ACLUB algorithms. Unlike them, our goal is efficient concept learning, not
immediate assessment performance.

[5] proposes a Thompson Sampling & Knowledge Gradient variation for PLAs to improve immediate assessment
performance, but doesn’t address prerequisite dependencies. Our focus is on concept learning. [6] merges automatic
curriculum generation with ZPDES bandits approach, framing curriculum generation as a graph coloring problem.
This approach requires intensive ZPD graph initialization.

3 Problem Setting & Modelling Assumptions

N denotes the count of learners in an ITS system aiming to learn K concepts. Each learner i’s knowledge state is
indicated by vector Ci ∈ [0, 1]K , with Cij signifying learner i’s mastery of concept j (e.g., C23 = 0.7 means learner

1

2 has 70% grasp of concept 3). ITS system’s objective is to teach all N learners all K concepts to a threshold θ
level of mastery.

ITS possesses a set of actions A (e.g., videos, lectures) affecting the learner’s knowledge level. The system learns
the impact of these actions over time. Concept relationships are considered in two cases: one assumes independence,
and the other considers prerequisite relationships affecting the impact of an action on a concept.

Learner-specific parameters determine individual learning rates, accommodating variations between fast and
slow learners. The ITS must deduce these rates. We assume learner knowledge evolves Markovianly, and knowledge
level estimates are assumed to be noisy.

Independent Concepts:

For the independent concepts, the effect of action a on concept i at round t is given as follows:

ct+1
i = cti +Beta(αa, βa, c

t
i) · (1− cti) (1)

where a is the action chosen at time step t and Beta(αa, βa, c
t
i) is the CDF value of the action a at value cti.

Dependent Concepts:

The value update for the dependent concepts is as follows:

ct+1
i = cti +

D∑
j=1

ctjλj−>i · Beta(αa, βa, c
t
i) · (1− cti) (2)

where D is the number of prerequisite concepts to ci and
∑D

j=1 λj−>i = 1

Here again, Beta(αa, βa, c
t
i) is the value of the Beta CDF at value cti.

Learner Specific Parameter:To model the learner’s unique abilities, we use a user specific parameter γi ∈
[0, 1]. The effect of an action on a learner then will depend on the action, the specific learner & the current
knowledge state of the learner. This is made formal below:

ct+1
i = cti + γi · Beta(αa, βa, c

t
i) · (1− cti) (3)

Parameters to Estimate: The ITS system is completely specified using 2 ∗K action parameters that govern
the Beta CDFs, and K∗N parameters that describe the learner’s knowledge state and N learner specific parameters.

4 ITS-BPECE - Bandits Based Parameter Estimtation for Concept
Evolution

This section gives an overview of the parameter estimation for the independent & dependent concepts. The param-
eters that need to be estimated for the independent and the dependent concepts are different. Hence, the estimation
approaches vary as well. The subsequent subsections give an overview of the algorithm we propose which we call
Bandits based Parameter Estimation for Concept Evolution (BPECE) and the section ends with a pseudo code of
the BPECE in Algorithm 1.

Algorithm Overview:

We start off by choosing an action uniformly at random till each action has been chosen a minimum of (a small
value) Amin times. We observe the data thus generated which looks as:

{..., (Ct
i1, C

t+1
i1), (Ct′

i2, C
t′+1
i2), ...} (4)

If it is an independent concept in question, we use the Zeroth-Order(ZO) optimization to estimate the action
parameters. The objective function for the ZO in the case of independent concepts is:

f(αa, βa) =

(
ct+1
i − cti
1− cti

)
− Beta(αa, βa, c

t
i) (5)

2

We use the ZO estimation after every Dmin number of data samples we collect and we increase the value of
Dmin over time.

In the dependent concepts case, not only do we have to estimate the action parameters, but also the λj−>i

parameters for all dependency pairs (i, j). We start off by fixing the values of λj−>i = 1
K−1 for all (i, j). We

estimate the Beta parameters using the ZO optimization. To estimate the λj−>i parameters, we fix the Beta
parameters thus obtained. We train a Neural Network (NN) for each dependent concept with the concept vector
being the input and the objective value being the output.

We alternatively fix λj−>i and estimate Beta parameters and fix Beta parameters and estimate λj−>i till the
values of the parameter converge. Algorithm 1 presents the pseudo code of the algorithm.

We incorporate the MAB idea of choosing the arms that have the highest reward by picking those actions that
push the learner concept vectors the farthest. We use a version of ϵ-greedy where we pick the best action with
probability (1− ϵ) and an action uniformly at random with probability ϵ. While we use an ϵ-Greedy strategy, more
sophisticated bandit strategies can also be used in the framework.

Algorithm 1: BPECE

Input: A set of learner concept vector estimates, Cj , j = 1, 2, ...N
Parameters Amin, Dmin, ϵ

Output: Next action aj for each learner j
for j ← 1 to N do

if ∃a ∈ A where count(a) < Amin then
aj ← a

end
else

for cji ∈ Cj do
if cji is Independent then

Estimate the (αa, βa)∀a ∈ A using Zeroth-Order Optimization on 5
end
if cji is Dependent then

Initialize λk−>ji values uniformly ∀(k, ij)
while λk−>ji AND (αa, βa)∀a ∈ A are not converged do

Fix λk−>ji

Estimate (αa, βa)∀a ∈ A using Zeroth-Order Optimization on 5
Fix (αa, βa)∀a ∈ A
Estimate λk−>ji using the Neural Nets

end

end

end

Update C
′

ja
using Equation 3 & 2 ∀a ∈ A

With probability 1− ϵ
aj ← argmaxa∈A ||C

′

ja
− Cj ||2

With probability ϵ
aj ← choose an action a ∈ A uniformly at random

end

end

5 Experiments

Setup: We use as performance metric the number of steps/rounds it takes for all concept values to go beyond 0.9.
We compare our algorithm results against an optimal algorithm. The optimal algorithm we consider is an algorithm
that has all the true parameter values of the actions and the dependencies and uses those to pick the best action
for the learners greedily.

Results for Independent Concepts

Figure 1 depicts the results for the Independent case where we vary different parameters.

3

0 25 50 75 100 125 150 175 200
Students

0

250

500

750

1000

1250

1500

1750

2000

St
ep

s

Opt algorithm
BPECE

(a) # learners vs # Steps

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Concepts

50

75

100

125

150

175

200

225

St
ep

s

Opt algorithm
BPECE

(b) # Concepts vs # Steps

0 25 50 75 100 125 150 175 200
Actions

40

60

80

100

120

140

St
ep

s

Opt algorithm
BPECE

(c) # Actions vs # Steps, #
Stds = 10

0 25 50 75 100 125 150 175 200
Actions

100

150

200

250

300

350

St
ep

s

Opt algorithm
BPECE

(d) # Actions vs # Steps, #
Stds = 20

Figure 1: Number of Steps for the Independent Concepts with varying parameters

0 10 20 30 40 50
Learners

0

100

200

300

400

st
ep

s

Opt algorithm
BPECE

(a) # learners vs # Steps

0 10 20 30 40 50
Learners

6

8

10

12

14

16

st
ep

s

Opt algorithm
BPECE

(b) # learners vs # Avg Steps

Figure 2: Total & Average Number of Steps for Independent Concepts for varying number of learners with the
learner-specific parameter

Results for Independent Concepts with Student-Specific Parameter

Figure 2 shows the results for the case where we include a learner-specific parameter γ that accounts for each
learner’s learning rate. We vary the number of learners from 2 through 50 while fixing the number of actions and
concepts.

Results for Dependent Concepts

Figure 3 shows the results for the number of steps taken with for dependent concepts, while the Figure ?? shows
the average number of steps taken per learner. We vary the number of dependent concepts from 1 to 4 to show how
the algorithm performs in each case.

0 10 20 30 40 50
Students

0

100

200

300

400

500

600

700

800

St
ep

s

Opt algorithm
BPECE, kdep=1
BPECE, kdep=2
BPECE, kdep=3

(a) # learners vs # Steps

5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0
Concepts

40

60

80

100

120

St
ep
s

Opt algorithm
BPECE, kdep=1
BPECE, kdep=2
BPECE, kdep=3
BPECE, kdep=4

(b) # Concepts vs # Steps

0 10 20 30 40 50
Actions

40

60

80

100

St

ep
s

Opt algorithm
BPECE, kdep=1
BPECE, kdep=2
BPECE, kdep=3
BPECE, kdep=4

(c) # Actions vs # Steps

Figure 3: Number of Steps for Dependent Concepts with Varying No of Dependent Concepts

6 Conclusion & Future Work

We proposed a novel bandits based parameter estimation approach to suggest learning actions to learners based on
each learner’s knowledge level. We considered the cases where the concepts are independent and dependent. In the
dependent case, we took into consideration the prerequisite relationships between various concepts. We modeled
each learning action’s effect on a concept as a function of Beta distribution. For the prerequisite relationships, we
trained NNs to estimate the degree of dependence. Finally, we used an ϵ-greedy approach to choose the best action
for the learners. We back our proposed method with extensive experimental results.

As a future work, we can extend the learner-specific parameters to account for the different learning rate each
learner for the dependent concepts as well.

4

References

[1] Benjamin Clement, Didier Roy, Pierre-Yves Oudeyer, and Manuel Lopes. Multi-armed bandits for intelligent
tutoring systems. arXiv preprint arXiv:1310.3174, 2013.

[2] Fangju Wang. Pomdp framework for building an intelligent tutoring system. In CSEDU (1), pages 233–240,
2014.

[3] Jeremiah T Folsom-Kovarik, Gita Sukthankar, and Sae Schatz. Tractable pomdp representations for intelligent
tutoring systems. ACM Transactions on Intelligent Systems and Technology (TIST), 4(2):1–22, 2013.

[4] Andrew S Lan and Richard G Baraniuk. A contextual bandits framework for personalized learning action
selection. In EDM, pages 424–429, 2016.

[5] Indu Manickam, Andrew S Lan, and Richard G Baraniuk. Contextual multi-armed bandit algorithms for
personalized learning action selection. In 2017 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 6344–6348. IEEE, 2017.

[6] Tong Mu, Karan Goel, and Emma Brunskill. Program2tutor: Combining automatic curriculum generation with
multi-armed bandits for intelligent tutoring systems. In Conference on Neural Information Processing Systems,
2017.

5

