
Under review as a conference paper at ICLR 2024

FEDDA: FASTER ADAPTIVE GRADIENT METHODS FOR
FEDERATED CONSTRAINED OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Federated learning (FL) is an emerging learning paradigm in which a set of dis-
tributed clients learns a task under the coordination of a central server. The FedAvg
algorithm is one of the most widely used methods to solve FL problems. In FedAvg,
the learning rate is a constant rather than changing adaptively. Adaptive gradient
methods have demonstrated superior performance over the constant learning rate
schedules in non-distributed settings, and they have recently been adapted to FL.
However, the majority of these methods are designed for unconstrained settings.
Meanwhile, many crucial FL applications, like disease diagnosis and biomarker
identification, often rely on constrained formulations such as Lasso and group
Lasso. It remains an open question as to whether adaptive gradient methods can
be effectively applied to FL problems with constrains. In this work, we introduce
FedDA, a novel adaptive gradient framework for FL. This framework utilizes a
restarted dual averaging technique and is compatible with a range of gradient esti-
mation methods and adaptive learning rate schedules. Specifically, an instantiation
of our framework FedDA-MVR achieves sample complexity Õ(K−1ϵ−1.5) and
communication complexity Õ(K−0.25ϵ−1.25) for finding a stationary point ϵ in
the constrained setting with K be the number of clients. We conduct experiments
over both constrained and unconstrained tasks to confirm the effectiveness of our
approach.

1 INTRODUCTION

As an emerging machine learning technique, federated learning (FL) has recently been applied to
many important health and biomedicine applications (M et al., 2023; Joshi et al., 2022; Antunes et al.,
2022; Xu et al., 2021a; A et al., 2022). The FL enables big data analyses in healthcare (especially for
rare diseases) via allowing a set of distributed located hospitals, medical centers, insurance companies,
etc., to jointly perform a machine learning task under the coordination of a central server over their
privately-held data. For example, in a recent FL study, the data from 71 sites across 6 continents are
used to generate an automatic tumor boundary detector for the rare disease of glioblastoma (S et al.,
2022). Among these FL healthcare applications, federated biomarker identification (Sheller et al.,
2020) is one of the most important learning tasks to help researchers and clinicians detect informative
biomarkers from distributed biomedical datasets to understand the underlying disease mechanisms,
diagnose disease earlier, and design drugs. Different to prediction tasks, the federated biomarker
identification often utilizes the constrained formulations, such as Lasso and group Lasso, which often
requires specific optimization solvers.

A widely used method in Federated Learning (FL) is the FedAvg (Local-SGD) algorithm (McMahan
et al., 2017). As indicated by its name, FedAvg performs (stochastic) gradient descent steps on each
client and averages local states periodically. Recently, researchers incorporated adaptive gradient
methods to the FL setting (Reddi et al., 2020; Karimireddy et al., 2020a; Chen et al., 2020b) to
accelerate FedAvg. For instance, Reddi et al. (2016) introduced FedAdam, which incorporates the
Adam optimizer for server updates; Karimireddy et al. (2020a) proposed MIME, which supports
adaptive gradients in local updates. These adaptive gradient methods have demonstrated significant
performance enhancements compared to FedAvg. However, these methods are designed for the
unconstrained setting and cannot be directly applied over the constrained formulations as in the
biomarker identification tasks. In fact, FL problems with constraints remain under-explored in the

1

Under review as a conference paper at ICLR 2024

Table 1: Comparisons of representative Federated Learning algorithms for finding an ϵ-
stationary point of equation 1 i.e., ∥∇f(x)∥2 ≤ ϵ or its equivalent variants. Gc(f, ϵ) denotes the
number of gradient queries w.r.t. f (k)(x) for k ∈ [K]; Cc(f, ϵ) denotes the number of communication
rounds; State means what state the algorithm maintains locally (Primal/Dual); Local-Adaptive means
whether the algorithm performs adaptive gradient descent locally or not; Constrained means whether
the algorithm can solve both constrained and unconstrained problems or not.

Type Algorithm Gc(f, ϵ) Cc(f, ϵ) State Local-Adaptive Constrained

Non-adaptive

FedAvg McMahan et al. (2017) O(K−1ϵ−2) O(ϵ−1.5) Primal/Dual × ×
FedDualAvg Yuan et al. (2021) O(K−1ϵ−2) O(K−1ϵ−2) Dual × ✓

FedCM Xu et al. (2021b) Õ(K−1ϵ−2) Õ(K−1ϵ−2) Primal/Dual × ×
FedGLOMO Das et al. (2020) Õ(K−0.5ϵ−1.5) Õ(ϵ−1.5) Primal/Dual × ×
STEM Khanduri et al. (2021a) Õ(K−1ϵ−1.5) Õ(ϵ−1) Primal/Dual × ×

Adaptive

FedAdam Reddi et al. (2020) O(K−1ϵ−2) O(K−0.5ϵ−1) Primal × ×
Local-AMSGrad Chen et al. (2020b) O(K−1ϵ−2) O(K−1ϵ−2) Primal ✓ ×

MIME-MVR Karimireddy et al. (2020a) Õ(K−0.5ϵ−1.5) O(K−0.5ϵ−1.5) Primal ✓ ×
FAFED Wu et al. (2022) Õ(K−1ϵ−1.5) Õ(ϵ−1) Primal ✓ ×

FedDA-MVR(Ours) Õ(K−1ϵ−1.5) Õ(K−0.25ϵ−1.25) Dual ✓ ✓

literature. In Yuan et al. (2021), authors proposed FedDualAvg to solve FL problems with non-
smooth regularizers. In FedDualAvg, model parameters are transformed into a dual space using a
map determined by the regularizer. Averaging is then conducted in this dual space across all clients.
FedDualAvg can be used to solve federated constrained optimization problems when regularizers are
indicator functions defined over the constraints set. However, FedDualAvg uses constant learning
rate as FedAvg, thus suffers the same slow convergence rate. In fact, it is an open question if adaptive
learning rates can be used to accelerate the solving of federated constrained optimizations.

In this work, we propose the Federated Dual-averaging Adaptive-gradient (FedDA), a general
adaptive gradient framework for federated constrained optimization. FedDA is based on the dynamic
mirror descent view of adaptive gradients (Huang et al., 2021). More specifically, suppose we have
an adaptive matrix H such that it is diagonal and its ith diagonal element represents the adaptive
gradient for the ith coordinate of the model parameter. Then if we view the parameter space as the
primal space and the matrix H as a linear mirror map, the adaptive gradient update step is equivalent
to a mirror descent update step. Since adaptive gradients are updated at each iteration, the mirror map
H is also dynamic. Our FedDA is inspired by this mirror descent view of adaptive gradients.

In FedDA, the server maintains the global adaptive matrix and the global model weight. In each
epoch, each client receives the current global adaptive matrix and global model weight. Then it
performs multiple steps of ’dual-averaging’ style mirror descent (Nesterov, 2009). More specifically,
the client aggregates dual states, and only recover model weight (primal states) through the adaptive
matrix (mirror map) when the gradient query is needed. Note that the adaptive matrix is fixed during
local updates. After local updates, the server averages the dual states and then updates the global
primal state and the adaptive matrix. There are two important characteristics of FedDA. Firstly, we
fix the adaptive matrix during local updates to makes sure that all clients share the same dual space.
Secondly, the aggregation and averaging is performed in the dual space instead of the primal space. In
fact, in the constrained case, the mapping from dual space to the primal space involves the non-linear
projection operation. Although averaging dual states leads to an unbiased estimate of the global
gradient, averaging primal states leads to biased estimation due to projection. In summary, FedDA
adopts the restarted dual-averaging strategy, where the adaptive matrix (mirror map) is refreshed at
each global epoch and clients perform dual averaging locally with a fixed mirror map. Our FedDA is
a general framework: it is flexible to the choices of adaptive gradient methods and also can combine
with various gradient estimation methods. Furthermore, although it is designed for the constrained
case, FedDA works well in the unconstrained FL setting too. We highlight our contribution as
follows:

(i) We propose FedDA, a fast adaptive gradient framework for constrained federated opti-
mization problems. The framework is based on a restarted dual averaging technique and
incorporates a large family of adaptive gradient methods.

(ii) FedDA-MVR, an instantiation of our framework, obtains the sample complexity of
Õ(K−1ϵ−1.5) and communication complexity of Õ(K−0.25ϵ−1.25). The iteration com-
plexity matches the optimal rate of non-adaptive federated algorithms. FedDA-MVR
uses the momentum-based variance-reduction gradient estimation, and exponential moving
average of the gradient square as adaptive learning rates.

2

Under review as a conference paper at ICLR 2024

(iii) We empirically verify the efficacy of the FedDA in solving biomarker identification tasks:
the colorrectal cancer prediction task and the splice site detection task. Furthermore, we
also verify the efficacy of FedDA over non-constrained FL tasks through classification tasks
over CIFAR-10 and FEMNIST datasets.

Notations. ∇f(x) denotes the first-order derivatives of the function f(x) w.r.t. variable x. ξ denotes
a random sample and ∇f(x; ξ) is the stochastic estimate ∇f(x). O(·) is the big O notation, and
Õ(·) hides logarithmic terms. Id denotes a d-dimensional identity matrix. Diag(x) denotes the
matrix whose diagonal is the vector x. ∥ · ∥ denotes the ℓ2 norm for vectors and the spectral norm for
matrices, respectively. ⟨·, ·⟩ denotes the Euclidean inner product. [K] denotes the set of {1, 2, ...,K}.
For a random variable X , E[X] denotes its expectation.

2 RELATED WORKS

Algorithms in Federated Learning. Federated Learning (McMahan et al., 2017) defines the task
to learn from a set of distributed located clients under the coordination of a server. McMahan et al.
(2017) proposed the FedAvg algorithm, in which each client performs multiple steps of gradient
descent with its local data and then sends the updated model to the server for averaging. The idea of
FedAvg algorithm resembles the Local-SGD algorithm, which is studied in a more general distributed
setting for a longer time (Mangasarian & Solodov, 1993). The convergence of the local-SGD method
has been heavily analyzed in the literature (Stich, 2018; Karimireddy et al., 2019b; Dieuleveut &
Patel, 2019; Khaled et al., 2020; Yu et al., 2019; Woodworth et al., 2020; Woodworth, 2021; Glasgow
et al., 2022). Various acceleration methods of FedAvg are considered and we list a few representatives
here. Karimireddy et al. (2020b) adopted the idea of variance reduction technique for non-distributed
finite sum problems: a ‘control variate’ which contains historical full gradient information is used
to correct the bias of local gradients. Karimireddy et al. (2020a) proposed a general framework
(MIME) to translate a centralized optimizer into the FL setting, including adaptive gradient methods.
In Das et al. (2020); Khanduri et al. (2021a), momentum-based variance reduction is applied to the
FL setting to control the noise of the stochastic gradients. In Das et al. (2020), the authors maintained
a server momentum state and a client momentum state, while in Khanduri et al. (2021b), the authors
maintained a momentum state and the momentum was averaged periodically similar to the primal
state.

Adaptive gradient methods are also studied in the FL setting. The ‘Adaptive Federated Optimiza-
tion’ Reddi et al. (2020) method proposed to use adaptive gradients on the server side while the local
gradients are used to update the states of the adaptive gradient methods. Tong et al. (2020); Wang
et al. (2022) extend the method in Reddi et al. (2020) to include the AMSGrad method. In Chen
et al. (2020b), the authors first showed the divergence of a naive local AMSGrad method that directly
averages the primal states periodically. The authors then proposed Local-AMSGrad, a method in
which clients update adaptive learning rates locally and average at the synchronization step. At the
server average step, both primal states and local adaptive learning rates are averaged to replace the old
states. More recently, Chen et al. (2020b); Wu et al. (2022) proposed to use fixed adaptive learning
rates locally. Finally, another line of research Tang et al. (2020; 2021); Lu et al. (2022); Chen et al.
(2020a) considers federated adaptive learning rates through the compression approach, these methods
communicate local gradients at every step, but the compression techniques are used to reduce the
communication cost. All these methods study federated adaptive methods in the unconstrained case.
For solving problems with constraint in FL, a related work is Yuan et al. (2021), where authors
propose a modified local-SGD method based on the dual-averaging, however, it does not support the
adaptive gradient methods.

Adaptive Gradients in the Non-distributed Learning. Adaptive gradient methods are widely used
in the non-distributed machine learning setting. The first adaptive gradient method i.e. Adagrad
was proposed in Duchi et al. (2011), where the method was shown to outperform SGD in the sparse
gradient setting. Since Adagrad does not perform well under dense gradient setting and non-convex
setting, some of its variants are proposed, such as SC-Adagra (Mukkamala & Hein, 2017) and
SAdagrad (Chen et al., 2018b). Furthermore, Adam (Kingma & Ba, 2014) and YOGI (Zaheer et al.,
2018) proposed to use the exponential moving average instead of the arithmetic average used in
Adagrad. Adam/YOGI is widely used and very successful in deep learning applications; however,
Adam diverges in some settings and the gradient information quickly disappears, so AMSGrad (Reddi

3

Under review as a conference paper at ICLR 2024

et al., 2018) is proposed, and it applies an extra ‘long term memory’ variable to preserve the past
gradient information to handle the convergence issue of Adam. The convergence of Adam-type
methods is also studied in the literature (Chen et al., 2019; Zhou et al., 2018; Liu et al., 2019; Guo
et al., 2021; Huang et al., 2021). Adaptive gradient methods with good generalization performance
are also proposed, such as AdamW (Loshchilov & Hutter, 2018), Padam (Chen et al., 2018a),
Adabound (Luo et al., 2019), Adabelief (Zhuang et al., 2020) and AaGrad-Norm (Ward et al., 2019).

3 PRELIMINARIES

In this section, we introduce some preliminaries. We consider the following formulation of Federated
Learning (FL) with K clients:

min
x∈X⊂Rd

{
f(x) :=

1

K

K∑
k=1

{
f (k)(x) := Eξ(k)∼D(k) [f (k)(x; ξ(k))]

}}
. (1)

For the kth client, we optimize the loss objective f (k)(x) : X → R which is smooth and possibly
non-convex, and x denotes the variable of interest. X ⊂ Rd is a compact and convex set. ξ(k) ∼ D(k)

is a random example that follows an unknown data distribution D(k). The formulation in equation 1
includes both the homogeneous case i.e. f (k)(x) = f (j)(x) for any k, j ∈ [K], and the heterogeneous
case i.e. f (k)(x) ̸= f (j)(x) for some k, j ∈ [K].

Next, we introduce some basics of adaptive gradient methods from a mirror-descent perspective.
Generally, mirror descent is associated with a mirror map Φ(x). Given the objective f(x) and
the primal state xt ∈ X at tth step, we first map the primal state to the mirror space via the
mirror map yt = ∇Φ(xt), then we perform the gradient descent step in the mirror space: yt+1 =
yt − η∇f(xt), where η is the learning rate, finally, we map yt+1 back to the primal space as xt+1 =
argmin

x∈X
DΦ(x, x̂t+1), where yt+1 = ∇Φ(x̂t+1) and DΦ(x, y) denotes the Bregman Divergence

associated to Φ: DΦ(x, y) = Φ(x)− Φ(y)− ⟨∇Φ(y), x− y⟩. Equivalently, the mirror descent step
can also be written as a Bregman proximal gradient step as follows: xt+1 = argmin

x∈X
η⟨∇f(xt), x⟩+

DΦ(x, xt). For the adaptive gradient methods, we uses the following mirror map: Φ(x) = 1
2x

THx,
where H is a positive definite adaptive matrix. Many adaptive gradient methods can be written in the
following proximal gradient descent form:

xt+1 = argmin
x∈X

η⟨νt, x⟩+
1

2
(x− xt)

THt(x− xt), (2)

we replace the gradient ∇f(x) with the generalized gradient estimation νt, besides, we replace H
with Ht based on the fact that the adaptive matrix is updated at every step. Next, we show some
examples of adaptive gradients methods that can be phrased as the above formulation. For the
Adagrad (Duchi et al., 2011) method, we set

νt = ∇f(xt, ξt), Ht = Diag(
√
µt), µt =

1

t

t∑
i=1

ν2i (3)

For Adam (Kingma & Ba, 2014), we have:

ν̂t = (1− β1)∇f(xt, ξt) + β1ν̂t−1, µ̂t = (1− β2)∇f(xt, ξt)2 + β2µ̂t−1

νt = ν̂t/(1− γt1), µt = µ̂t/(1− γt2), Ht = Diag(
√
µt + ϵ) (4)

where β1, β2, γ1, γ2 are some constants.

4 LOCAL ADAPTIVE GRADIENTS VIA DUAL AVERAGING

In this section, we introduce FedDA, a fast adaptive gradient framework for federated constrainted
optimization problems. The procedure of FedDA is summarized in Algorithm 1. In Algorithm 1, we
perform E global steps and at each global step, every client runs Algorithm 2.

4

Under review as a conference paper at ICLR 2024

Algorithm 1 FedDA-Server
1: Input: Number of global epochs E, size of the first mini-batch b1, tuning parameters {βτ}Ei=1;
2: Initialize: Choose x0 ∈ X and each client selects a mini-batch samples B(k)

0 of size b1 to
evaluate ∇f (j)(x0,B(k)

0) locally and the server averages local gradients to compute ν0;
3: for τ = 0 to E − 1 do
4: for the client k ∈ [K] in parallel do
5: (z(k)τ+1,I , ν(k)τ+1,I) = FedDA-client(xτ , ντ , Hτ)
6: end for
7: Compute zτ+1 = 1

K

∑K
k=1 z

(k)
τ+1,I ;

8: Compute xτ+1 = argmin
x∈X

{−⟨x, zτ+1⟩+ 1
2 (x− xτ)

THτ (x− xτ) };

9: Compute ντ+1 = 1
K

∑K
k=1 ν

(k)
τ+1,I , Hτ+1 = V(Hτ , zτ+1, βτ);

10: end for

Algorithm 2 FedDA-Client (xτ , ντ , Hτ)

1: Input: Number of local steps I , mini-batch size b, tuning parameters {ητ+1,i}I−1
i=0 , {ατ+1,i}Ii=1;

2: Initialize: x(k)τ+1,0 = xτ ; ν(k)τ+1,0 = ντ ; z(k)τ+1,0 = 0;
3: for i = 0 to I − 1 do
4: Compute z(k)τ+1,i+1 = z

(k)
τ+1,i − ητ+1,iν

(k)
τ+1,i;

5: Compute x(k)τ+1,i+1 = argmin
x∈X

{−⟨x, z(k)τ+1,i+1⟩+ 1
2 (x− x

(k)
τ+1,0)

THτ (x− x
(k)
τ+1,0) };

6: Compute ν(k)τ+1,i+1 = U(ν(k)τ+1,i, x
(k)
τ+1,i+1, x

(k)
τ+1,i;ατ+1,i+1,B(k)

τ+1,i+1), where B(k)
τ+1,i+1 is a

minibatch of size b of random samples from the client k;
7: end for
8: Output: Send z(k)τ+1,I , ν(k)τ+1,I to the server.

In Algorithm 2, clients receive the current model weight xτ , gradient estimation ντ and adaptive
gradient matrix Hτ . The clients then perform I local training steps: line 3- line 7 in Algorithm 2.
For each step, we first accumulate the dual state in the variable z(k)τ,i (line 4), then we calculate the

local primal state x(k)τ,i (line 5), which is a proximal gradient step similar to equation 2. Note that for
many constraints, the proximal operators are well defined and require minor extra computational
overhead. The function of this step is to map the aggregated dual state z(k)τ,i back to the primal space,

and we use the primal state to query the gradient to update the estimation of the gradient ν(k)τ,i (line
6). Note that we use a fixed adaptive matrix Hτ during local steps, this makes the clients share the
same dual space. In line 6 of Algorithm 2, we update the gradient estimation ν(k)τ,i . The update rule
U(·) is general, e.g.,the momentum-based variance reduction update equation 5 and the momentum
update equation 6 as follows (ατ,i is a momentum coefficient):

ν
(k)
τ+1,i+1 = ∇f (k)(x(k)τ+1,i+1,B

(k)
τ+1,i+1) + (1− ατ+1,i+1)(ν

(k)
τ+1,i −∇f (k)(x(k)τ+1,i,B

(k)
τ+1,i+1))

(5)

and

ν
(k)
τ+1,i+1 = ατ+1,i+1∇f (k)(x(k)τ+1,i+1,B

(k)
τ+1,i+1) + (1− ατ+1,i+1)ν

(k)
τ+1,i (6)

After the client finishes Algorithm 2, it returns the aggregated local dual states z(k)τ+1,I and the local

gradient estimation ν(k)τ+1,I to the server. The server first averages the local dual states (line 8 of
Algorithm 1) to get zτ+1. We can average local dual states as all clients have a common dual space.
The server then calculates the new primal states xτ+1 as in line 9 of Algorithm 1. Next, the gradient
estimation ντ is also updated by averaging local gradient estimates (line 10 of Algorithm 1). Finally,
we update the adaptive matrix Hτ (line 11 of Algorithm 1). The update rule V is general, e.g.,

µτ+1 = βτ+1z
2
τ+1/η

2
τ+1,I−1 + (1− βτ+1)µτ , Hτ+1 = Diag(

√
µτ+1 + ϵ) (7)

5

Under review as a conference paper at ICLR 2024

and

µτ+1 = βτ+1||zτ+1||/ητ+1,I−1 + (1− βτ+1)µτ , Hτ+1 = (µτ+1 + ϵ)Id (8)

where we set µ0 = 0, ϵ is some constant. In summary, Algorithm 1 aggregates and averages dual
states at each global round. The adaptive matrix Hτ is fixed during local updates and is refreshed on
the server side at each global round. Since the algorithm uses a new mirror map (adaptive gradient
matrix) at each global round, we name the strategy as restarted dual averaging.
Remark 4.1. A notable characteristic of FedDA is the dual-averaging strategy in local updates, this
contrasts with the ’primal averaging’ strategy used by many existing adaptive FL algorithms (Pra-
neeth Karimireddy et al., 2020). In fact, dual-averaging is essential for FedDA to solve federated
constrained optimization problems, due to the fact that primal and dual states are connected through
a non-linear mapping (i.e. the projection operation).
Remark 4.2. By choosing different update rules U and V , we can create many variants of FedDA. An
representative is FedDA-MVR, in which we update ν(k)τ,i with momentum-based variance reduction
(equation 5) and the adaptive matrix Hτ with an exponential average of the square of the gradient
(equation 7). In the subsequent discussion, we focus on this variant and perform both theoretical and
empirical analysis, and defer the discussion of other variants to the appendix.

5 THEORETICAL ANALYSIS

In this section, we provide the theoretical analysis of our FedDA framework; more specifically, we
focus on the analysis of FedDA-MVR. FedDA-MVR uses equation 7 to update the adaptive matrix
Hτ and equation 5 to update the gradient estimation ν(k)τ,i . We first state the assumptions we need in
our analysis:

5.1 SOME MILD ASSUMPTIONS

Assumption 5.1 (Bounded Client Heterogeneity). The difference of gradients between different
workers are bounded: ∥∇f (k)(x)−∇f (ℓ)(x)∥2 ≤ ζ2, ∀k, ℓ ∈ [K].

We measure the heterogeneity of the clients in terms of gradient dissimilarity. The above assumption
or its similar form is also exploited in the analysis of other FL Algorithms, such as in Khanduri et al.
(2021a); Das et al. (2020).

Assumption 5.2. The function f(x) is bounded from below in X , i.e., f∗ = infx∈X f(x).

Assumption 5.3 (Unbiased and Bounded-variance Stochastic Gradient). The stochastic gradients
are unbiased with bounded variance, i.e. E[∇f (k)(x; ξ(k))] = ∇f (k)(x) and there exists a constant
σ such that E∥∇f (k)(x; ξ(k))−∇f (k)(x)∥2 ≤ σ2,∀ ξ(k) ∼ D(k), ∀ k ∈ [K]

Assumption 5.2 guarantees the feasibility of the Federated Learning problem equation 1, and As-
sumption 5.3 is widely used in stochastic optimization analysis.

Assumption 5.4. The adaptive matrix Hτ is symmetric positive definite, i.e. there exists a constant
ρ > 0 such that Hτ ⪰ ρId ≻ 0, ∀t ≥ 1,

In our analysis, we assume the adaptive matrix is positive definite, and this requirement can be easily
satisfied by many adaptive gradient methods. Firstly, most adaptive gradient methods always have
non-negative adaptive learning rates, such as equation 3 and equation 4. To make it positive, we can
add a bias term ϵ such as in the Adam update rule equation 4.

Assumption 5.5 (Sample Gradient Lipschitz Smoothness). The stochastic functions f (k)(x, ξ(k))
with ξ(k) ∼ D(k) for all k ∈ [K], satisfy the mean squared smoothness property, i.e, we have
E∥∇f (k)(x; ξ(k))−∇f (k)(y; ξ(k))∥2 ≤ L2∥x− y∥2 for all x, y ∈ Rd

The smoothness assumption above is a slightly stronger requirement than the standard smooth
condition, but this assumption is widely used in the analysis of variance reduction methods, such as
SPIDER Fang et al. (2018) and STORM Cutkosky & Orabona (2019).

6

Under review as a conference paper at ICLR 2024

5.2 CONVERGENCE PROPERTY OF FED-MVR

In this subsection, we study the convergence property of our FedDA-MVR variant. For convenience
of discussion, we redefine the subscript t = τI + i, i.e. we denote the t step as the i local step in the
τ global round. Similarly, we denote the total number of running steps as T = EI . We analyze our
algorithm through the following measure:

Gt =
ρ2

η2t
||x̃t − x̃t+1||2 + ||ν̄t −∇f(x̃t)||2 (9)

where ν̄t denotes the average gradient estimation at the tth step and x̃t denotes the virtual global
primal state at the tth step (see Section B.2 in the appendix for formal definitions). In Remark B.18
of the appendix, we discuss the intuition of the measure Gt. In particular, in the unconstrained case
i.e. when X = Rd, the measure upper-bounds the square norm of the gradient. Therefore, the
convergence of our measure Gt means the convergence to a first-order stationary point. Now, we are
ready to provide the main result of our convergence theorem.

Theorem 5.6. In Algorithm 1, given the parameter κ = ρK2/3

L , c = 96L2

Kρ2 + ρ
72κ3LK0.5I2 , w =

max{2, 483I6K3.5}, b1 ≥ 1, b ≥ 1, β > 0 and choose learning rate ηt = κ
(wt+t+I)1/3

, the
momentum coefficient αt = cη2t , the adaptive gradient coefficient βt = β and the mini-batch size of
b1 for the first iteration and b for other iterations, then we have:

1

T

T−1∑
t=0

E[Gt] ≤
[
96LK0.5I2

T
+

2L

K2/3T 2/3

]
(f(x0)− f∗) +

[
72KI4

b1T
+

3K0.5I2

2b1K2/3T 2/3

]
σ2

+ 1922 ×
(
48K0.5I2

T
+

1

K2/3T 2/3

)
×
(
σ2

4b
+

2ζ2

21

)
log(T + 1).

Note, by choosing a proper value of local updates I and using a minibatch of samples for the first
iteration to decrease the noise, our result matches the best known convergence rate for stochastic
federated gradient methods Khanduri et al. (2021a), i.e. our algorithms has sample complexity of
Õ(ϵ−1.5) with a linear speed up w.r.t the number of clients K. More formally, we have the following
corollary:
Corollary 5.7. Suppose in Algorithm 1, we set I = O((T/K3.5)1/6), and use sample minibatch of

size O(K0.5I2) in the initialization, then we have: 1
T

∑T
t=1

(
E[Gt]

)
= Õ(1

K2/3T 2/3), and to reach

an ϵ-stationary point, we need to make Õ(K−1ϵ−1.5) number of steps and need Õ(K−0.25ϵ−1.25)
number of communication rounds.

As shown by Corollary 5.7, FedDA-MVR achieves iteration complexityO(K−1ϵ−1.5) which matches
the optimal rates of non-convex stochastic optimization (Arjevani et al., 2019). In contrast, FedDu-
alAvg (Yuan et al., 2021) shows the convergence rate of O(ϵ−2) for the general non-convex objective
under the strong the bounded gradient assumption. Our FedDA-MVR achieves a faster convergence
rate and does not require the bounded gradient assumption. As for the communication complexity, we
reach Õ(K−0.25ϵ−1.25). Some methods achieve O(ϵ−1) communication rate such as STEM (Khan-
duri et al., 2021a) and FAFED (Wu et al., 2022). However, STEM does not consider the adaptive
gradient methods nor the constrained setting; FAFED considers the adaptive gradient methods, but it
requires the strong assumption of bounded gradient and only considers the unconstrained setting.

6 EXPERIMENTS

In this section, we perform experiments to verify the efficacy of the proposed adaptive FL frame-
work FedDA on federated biomarker identification task and the general classification task. More
specifically, we consider the variant of FedDA-MVR here, and defer experiments for other variants
to Section A of the appendix. We consider three sets of experiments: Colorrectal Cancer Survival
Prediction, Splice Site Detection and a general multiclass image classification task. All experiments
are run on a machine with an Intel Xeon Gold 6248 CPU and 4 Nvidia Tesla V100 GPUs. The code is
written in Pytorch. We simulate the Federated Learning environment through the Pytorch.distributed
package.

7

Under review as a conference paper at ICLR 2024

Figure 1: Results for the PATHMNIST Yang et al. (2021) dataset. Plots show the Train Accuracy,
Test Accuracy, Density vs Number of Rounds (E in Algorithm 1) respectively. The post-fix of L1

means the L1 constraints. Number of local steps I is chosen as 5.

Figure 2: Results for the MEMset Donar Dataset Meier et al. (2008). Plots show the Train Loss, Train
Accuracy and the Correlation Coefficient (between prediction and targets). The post-fix of L1 means
L1 constraints and GL means Group Lasso constraints. Number of local steps I is chosen as 5.

6.1 COLORRECTAL CANCER SURVIVAL PREDICTION WITH BIOMARKER IDENTIFICATION

In this subsection, we consider a colorrectal cancer prediction task on the PATHMNST dataset (Yang
et al., 2021; Kather et al., 2019), which contains 9 different classes and 89996 training images. We
equally randomly split the training set into 10 clients. We use the original test set for the metric.
In this task, we impose the L1 sparsity constraint to identify biomarkers. We compare with the
following baselines: FedAvg (McMahan et al., 2017) and FedDualAvg (Yuan et al., 2021). For our
FedDA-MVR, we train with and without the L1 constraint.

The results are summarized in Figure 1, the plots are averaged over 5 independent runs and then
smoothed. In Figure 1, FedDualAvg and FedDA-MVR-L1 consider the L1 constraint, while FedAvg
and FedDA-MVR do not. We show results of Train/Test Accuracy and also the number of non-zero
(below a threshold) elements in the parameter (the rightmost plot in Figure 1). As shown in the plots,
FedDA-MVR-L1 outperforms unconstrained FedDA-MVR in all metrics, in particular, FedDA learns
a much sparser model and therefore can better identify important factors for cancer survival than
other methods. Furthermore, FedDA-MVR-L1 also outperforms FedAvg and FedDualAvg in all
metrics. This shows that our algorithm can effectively exploit adaptive gradient information in the
constrained case. For more details of this experiment, please refer to Section A.1 of the appendix.

6.2 SPLICE SITE DETECTION WITH BIOMARKER IDENTIFICATION

In this subsection, we consider a splice site detection task on the MEMset Donar Dataset (Meier et al.,
2008). Splice sites are the regions between coding (exons) and non-coding (introns) DNA segments.
Splice site detection plays an important role in gene finding. We follow the train/test split in (Meier
et al., 2008) and then randomly split the training set to 10 clients. Group Lasso is widely used to solve
the splice site detection problem, so we use FedDA-MVR with the Group Lasso constraint in the
experiments. For the baselines, we compare with FedAvg (McMahan et al., 2017), FedDualAvg Yuan
et al. (2021) and FedDA-MVR without constraints. For FedDualAvg, we consider the L1 constraint
and Group Lasso constraint.

The results are summarized in Figure 2, the plots are averaged over 5 independent runs and then
smoothed. As shown in the plots, FedDA-MVR-GL outperforms unconstrained FedDA-MVR and
FedDA-MVR-L1. In fact, FedDA-MVR-GL gets better performance by identifying meaningful
feature groups. Furthermore, FedDA-MVR-GL also outperforms FedAvg and FedDualAvg-GL
(FedDualAvg-L1). This shows that our algorithm can effectively exploit acceleration of adaptive
gradients. For more details of this experiment, please refer to Section A.1 of the appendix.

8

Under review as a conference paper at ICLR 2024

Figure 3: Results for (Homogeneous) CIFAR10 dataset (Top) and FEMNIST (Bottom). From left to
right, we show Train Loss, Train Accuracy, Test Loss, Test Accuracy w.r.t the number of rounds (E in
Algorithm 1), respectively. I is chosen as 5.

6.3 IMAGE CLASSIFICATION TASK WITH CIFAR10 AND FEMNIST

Note that FedDA is a general framework for FL and it can solve both constrained biomarker identifi-
cation tasks and also the general unconstrained tasks. So, in this subsection, we consider an uncon-
strained image classification task. More specifically, we consider two datasets: CIFAR10 (Krizhevsky
et al., 2009) and FEMNIST (Caldas et al., 2018). We construct both homogeneous and heteroge-
neous cases based on CIFAR10. For the homogeneous case, we uniformly randomly distribute
them into 10 clients and for the experimental setting of the heterogeneous case, please see Ap-
pendix A.3. FEMNIST is a Federated dataset of hand-written digits; it contains hand-written digits of
3550 users. Data distribution of FEMNIST is heterogeneous for different writing styles of people.
In this task, we compare our method with the following baselines: the non-adaptive methods: Fe-
dAvg (McMahan et al., 2017), FedCM (Xu et al., 2021b), STEM (Khanduri et al., 2021a) and adaptive
methods: FedAdam (Reddi et al., 2020), Local-Adapt (Wang et al., 2021), Local-AMSGrad (Chen
et al., 2020b), MIME-MVR (Praneeth Karimireddy et al., 2020). FedAMS (Wang et al., 2022) and
FedAMSGrad (Tong et al., 2020) get similar performance as FedAdam, so we omit it in the plots.

For all methods, we tune their hyper-parameters to find the best setting. The results are summarized
in Figure 3, the plots are averaged over 5 runs and then smoothed. As shown in the figures, our
FedDA-MVR outperforms all baselines. In addition, the FedAvg algorithm has competitive training
performance; however, it tends to overfit the training data severely and suffers most from the
heterogeneity. Then we observe that adaptive methods in general get better train and test performance.
Finally, the superior performance of our method compared with the three adaptive baselines shows
that our method exploits adaptive information better; for example, MIME-MVR also exploits the
momentum-based variance reduction technique, but it fixes all optimizer states during local updates,
in contrast, we only fix the adaptive matrix but update the momentum ν

(k)
t , k ∈ [K] at every step.

For the full set of experiments, please refer to Section A.1 and A.2 of the appendix.

7 CONCLUSION

In this paper, we proposed the FedDA an adaptive gradient framework for federated constrained
optimization. FedDA incorporates various adaptive gradients and momentum-based acceleration
methods. More specifically, we adopt the Mirror Descent view of adaptive gradients and propose to
maintain and average the dual states in the training, meanwhile we fix the adaptive matrix during
local training such that the dual spaces are aligned among clients. We also analyze the convergence
property of our Framework: for the variant FedDA-MVR, we proved that it reaches an ϵ-optimal
stationary point with Õ(K−1ϵ−1.5) gradient queries and Õ(K−0.25ϵ−1.25) communication rounds.
Finally, we validate our algorithm for both biomarker identification tasks and general unconstrained
image classification tasks. The numerical results show the superior performance of our algorithm
compared to various baseline methods.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Rahman A, Hossain MS, Muhammad G, Kundu D, Debnath T, Rahman M, Khan MSI, Tiwari P,
and Band SS. Federated learning-based ai approaches in smart healthcare: concepts, taxonomies,
challenges and open issues. Cluster Comput., pp. 1–41, 2022.

Rodolfo Stoffel Antunes, Cristiano André da Costa, Arne Küderle, Imrana Abdullahi Yari, and Björn
Eskofier. Federated learning for healthcare: Systematic review and architecture proposal. ACM
Trans. Intell. Syst. Technol., 13(4), 2022.

Yossi Arjevani, Yair Carmon, John C Duchi, Dylan J Foster, Nathan Srebro, and Blake Woodworth.
Lower bounds for non-convex stochastic optimization. arXiv preprint arXiv:1912.02365, 2019.

Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečnỳ, H Brendan McMa-
han, Virginia Smith, and Ameet Talwalkar. Leaf: A benchmark for federated settings. arXiv
preprint arXiv:1812.01097, 2018.

Congliang Chen, Li Shen, Haozhi Huang, Wei Liu, and Zhi-Quan Luo. Efficient-adam:
Communication-efficient distributed adam with complexity analysis. 2020a.

Jinghui Chen, Dongruo Zhou, Yiqi Tang, Ziyan Yang, and Quanquan Gu. Closing the gener-
alization gap of adaptive gradient methods in training deep neural networks. arXiv preprint
arXiv:1806.06763, 2018a.

Xiangyi Chen, Sijia Liu, Ruoyu Sun, and Mingyi Hong. On the convergence of a class of adam-
type algorithms for non-convex optimization. In 7th International Conference on Learning
Representations, ICLR 2019, 2019.

Xiangyi Chen, Xiaoyun Li, and Ping Li. Toward communication efficient adaptive gradient method.
In Proceedings of the 2020 ACM-IMS on Foundations of Data Science Conference, pp. 119–128,
2020b.

Zaiyi Chen, Yi Xu, Enhong Chen, and Tianbao Yang. Sadagrad: Strongly adaptive stochastic gradient
methods. In International Conference on Machine Learning, pp. 913–921. PMLR, 2018b.

Ashok Cutkosky and Francesco Orabona. Momentum-based variance reduction in non-convex sgd.
In Advances in Neural Information Processing Systems, pp. 15236–15245, 2019.

Rudrajit Das, Anish Acharya, Abolfazl Hashemi, Sujay Sanghavi, Inderjit S Dhillon, and Ufuk
Topcu. Faster non-convex federated learning via global and local momentum. arXiv preprint
arXiv:2012.04061, 2020.

Aymeric Dieuleveut and Kumar Kshitij Patel. Communication trade-offs for local-sgd with large step
size. Advances in Neural Information Processing Systems, 32, 2019.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

Cong Fang, Chris Junchi Li, Zhouchen Lin, and Tong Zhang. Spider: Near-optimal non-convex opti-
mization via stochastic path-integrated differential estimator. In Advances in Neural Information
Processing Systems, pp. 689–699, 2018.

Margalit R Glasgow, Honglin Yuan, and Tengyu Ma. Sharp bounds for federated averaging (local sgd)
and continuous perspective. In International Conference on Artificial Intelligence and Statistics,
pp. 9050–9090. PMLR, 2022.

Zhishuai Guo, Yi Xu, Wotao Yin, Rong Jin, and Tianbao Yang. On stochastic moving-average
estimators for non-convex optimization. arXiv preprint arXiv:2104.14840, 2021.

Feihu Huang, Junyi Li, and Heng Huang. Super-adam: Faster and universal framework of adaptive
gradients. arXiv preprint arXiv:2106.08208, 2021.

Madhura Joshi, Ankit Pal, and Malaikannan Sankarasubbu. Federated learning for healthcare domain
- pipeline, applications and challenges. ACM Trans. Comput. Healthcare, 3(4), 2022.

10

Under review as a conference paper at ICLR 2024

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank J Reddi, Sebastian U Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for on-device federated
learning. arXiv preprint arXiv:1910.06378, 2019a.

Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian Stich, and Martin Jaggi. Error feedback
fixes signsgd and other gradient compression schemes. In International Conference on Machine
Learning, pp. 3252–3261. PMLR, 2019b.

Sai Praneeth Karimireddy, Martin Jaggi, Satyen Kale, Mehryar Mohri, Sashank J Reddi, Sebastian U
Stich, and Ananda Theertha Suresh. Mime: Mimicking centralized stochastic algorithms in
federated learning. arXiv preprint arXiv:2008.03606, 2020a.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International Conference on Machine Learning, pp. 5132–5143. PMLR, 2020b.

Jakob Nikolas Kather, Johannes Krisam, Pornpimol Charoentong, Tom Luedde, Esther Herpel, Cleo-
Aron Weis, Timo Gaiser, Alexander Marx, Nektarios A Valous, Dyke Ferber, et al. Predicting
survival from colorectal cancer histology slides using deep learning: A retrospective multicenter
study. PLoS medicine, 16(1):e1002730, 2019.

Ahmed Khaled, Konstantin Mishchenko, and Peter Richtárik. Tighter theory for local sgd on identical
and heterogeneous data. In International Conference on Artificial Intelligence and Statistics, pp.
4519–4529. PMLR, 2020.

Prashant Khanduri, Pranay Sharma, Haibo Yang, Mingyi Hong, Jia Liu, Ketan Rajawat, and Pramod
Varshney. Stem: A stochastic two-sided momentum algorithm achieving near-optimal sample and
communication complexities for federated learning. Advances in Neural Information Processing
Systems, 34, 2021a.

Prashant Khanduri, Siliang Zeng, Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. A
near-optimal algorithm for stochastic bilevel optimization via double-momentum. arXiv preprint
arXiv:2102.07367, 2021b.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei
Han. On the variance of the adaptive learning rate and beyond. arXiv preprint arXiv:1908.03265,
2019.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2018.

Yucheng Lu, Conglong Li, Minjia Zhang, Christopher De Sa, and Yuxiong He. Maximizing
communication efficiency for large-scale training via 0/1 adam. arXiv preprint arXiv:2202.06009,
2022.

Liangchen Luo, Yuanhao Xiong, Yan Liu, and Xu Sun. Adaptive gradient methods with dynamic
bound of learning rate. arXiv preprint arXiv:1902.09843, 2019.

Moshawrab M, Adda M, Bouzouane A, Ibrahim H, and Raad A. Reviewing federated machine
learning and its use in diseases prediction. Sensors, 23(4):2112, 2023.

Olvi L Mangasarian and Mikhail V Solodov. Backpropagation convergence via deterministic
nonmonotone perturbed minimization. Advances in Neural Information Processing Systems, 6,
1993.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial Intelli-
gence and Statistics, pp. 1273–1282. PMLR, 2017.

11

Under review as a conference paper at ICLR 2024

Lukas Meier, Sara Van De Geer, and Peter Bühlmann. The group lasso for logistic regression. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 70(1):53–71, 2008.

Mahesh Chandra Mukkamala and Matthias Hein. Variants of rmsprop and adagrad with logarithmic
regret bounds. In International Conference on Machine Learning, pp. 2545–2553. PMLR, 2017.

Yurii Nesterov. Primal-dual subgradient methods for convex problems. Mathematical programming,
120(1):221–259, 2009.

Sai Praneeth Karimireddy, Martin Jaggi, Satyen Kale, Mehryar Mohri, Sashank J Reddi, Sebastian U
Stich, and Ananda Theertha Suresh. Mime: Mimicking centralized stochastic algorithms in
federated learning. arXiv e-prints, pp. arXiv–2008, 2020.

Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečnỳ,
Sanjiv Kumar, and H Brendan McMahan. Adaptive federated optimization. arXiv preprint
arXiv:2003.00295, 2020.

Sashank J Reddi, Ahmed Hefny, Suvrit Sra, Barnabas Poczos, and Alex Smola. Stochastic variance
reduction for nonconvex optimization. In International conference on machine learning, pp.
314–323, 2016.

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. In
International Conference on Learning Representations, 2018.

Pati S, Baid U, Edwards B, et al. Federated learning enables big data for rare cancer boundary
detection. Nat Commun., 13(1):7346, 2022.

M.J. Sheller, B. Edwards, G.A. Reina, et al. Federated learning in medicine: facilitating multi-
institutional collaborations without sharing patient data. Sci Rep, 10:12598, 2020.

Sebastian U Stich. Local sgd converges fast and communicates little. arXiv preprint arXiv:1805.09767,
2018.

Hanlin Tang, Shaoduo Gan, Samyam Rajbhandari, Xiangru Lian, Ji Liu, Yuxiong He, and Ce Zhang.
Apmsqueeze: A communication efficient adam-preconditioned momentum sgd algorithm. arXiv
preprint arXiv:2008.11343, 2020.

Hanlin Tang, Shaoduo Gan, Ammar Ahmad Awan, Samyam Rajbhandari, Conglong Li, Xiangru Lian,
Ji Liu, Ce Zhang, and Yuxiong He. 1-bit adam: Communication efficient large-scale training with
adam’s convergence speed. In International Conference on Machine Learning, pp. 10118–10129.
PMLR, 2021.

Qianqian Tong, Guannan Liang, and Jinbo Bi. Effective federated adaptive gradient methods with
non-iid decentralized data. arXiv preprint arXiv:2009.06557, 2020.

Jianyu Wang, Zheng Xu, Zachary Garrett, Zachary Charles, Luyang Liu, and Gauri Joshi. Local
adaptivity in federated learning: Convergence and consistency. arXiv preprint arXiv:2106.02305,
2021.

Yujia Wang, Lu Lin, and Jinghui Chen. Communication-efficient adaptive federated learning. In
International Conference on Machine Learning, pp. 22802–22838. PMLR, 2022.

Rachel Ward, Xiaoxia Wu, and Leon Bottou. Adagrad stepsizes: Sharp convergence over nonconvex
landscapes. In International Conference on Machine Learning, pp. 6677–6686. PMLR, 2019.

Blake Woodworth. The minimax complexity of distributed optimization. arXiv preprint
arXiv:2109.00534, 2021.

Blake Woodworth, Kumar Kshitij Patel, Sebastian Stich, Zhen Dai, Brian Bullins, Brendan Mcmahan,
Ohad Shamir, and Nathan Srebro. Is local sgd better than minibatch sgd? In International
Conference on Machine Learning, pp. 10334–10343. PMLR, 2020.

Xidong Wu, Feihu Huang, Zhengmian Hu, and Heng Huang. Faster adaptive federated learning.
arXiv preprint arXiv:2212.00974, 2022.

12

Under review as a conference paper at ICLR 2024

J. Xu, B.S. Glicksberg, C. Su, et al. Federated learning for healthcare informatics. J Healthc Inform
Res, 5:1–19, 2021a.

Jing Xu, Sen Wang, Liwei Wang, and Andrew Chi-Chih Yao. Fedcm: Federated learning with
client-level momentum. arXiv preprint arXiv:2106.10874, 2021b.

Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bilian Ke, Hanspeter Pfister, and
Bingbing Ni. Medmnist v2: A large-scale lightweight benchmark for 2d and 3d biomedical image
classification. arXiv preprint arXiv:2110.14795, 2021.

Hao Yu, Sen Yang, and Shenghuo Zhu. Parallel restarted sgd with faster convergence and less
communication: Demystifying why model averaging works for deep learning. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 33, pp. 5693–5700, 2019.

Honglin Yuan, Manzil Zaheer, and Sashank Reddi. Federated composite optimization. In International
Conference on Machine Learning, pp. 12253–12266. PMLR, 2021.

Manzil Zaheer, Sashank Reddi, Devendra Sachan, Satyen Kale, and Sanjiv Kumar. Adaptive methods
for nonconvex optimization. In Advances in neural information processing systems, pp. 9793–9803,
2018.

Dongruo Zhou, Jinghui Chen, Yuan Cao, Yiqi Tang, Ziyan Yang, and Quanquan Gu. On the conver-
gence of adaptive gradient methods for nonconvex optimization. arXiv preprint arXiv:1808.05671,
2018.

Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar C Tatikonda, Nicha Dvornek, Xenophon Pa-
pademetris, and James Duncan. Adabelief optimizer: Adapting stepsizes by the belief in observed
gradients. Advances in Neural Information Processing Systems, 33, 2020.

13

Under review as a conference paper at ICLR 2024

A EXPERIMENTAL DETAILS AND RESULTS

In this section, we add additional experiments. In Section A.1, we consider more variants of FedDA
besides FedDA-MVR. More specifically, we consider four variants of FedDA. We introduce two
cases for the update of the adaptive matrix Hτ in equation 7 and equation 8 and we denote them as
case 1 and case 2, similarly, we denote equation 5 and equation 6 as case 1 and case 2 of gradient
estimation respectively. So we have four different variants, we denote them as FedDA-i-j, for
i, j ∈ {1, 2}, where i shows the choice of gradient estimation and j shows the choice of adaptive
matrix update rule. Note FedDA-MVR corresponds to FedDA-1-1 as we choose Case 1 of gradient
estimation and Case 1 of adaptive matrix update in Algorithm 1. We also introduce more details such
as the hyper-parameter choices. Then in Section A.2, we perform some ablation studies and compare
our FedDA with other baselines in more detail; In Section A.3, we include experiments when we
construct heterogeneous dataset from CIFAR10; Finally in Section A.4, we show the form of our
FedDA when I = 1, i.e. no local steps.

A.1 EXPERIMENTAL RESULTS FOR MORE VARIANTS OF FEDDA

A.1.1 COLORRECTAL CANCER SURVIVAL PREDICTION WITH BIOMARKER IDENTIFICATION

Figure 4: Results for the PATHMNIST dataset. Plots show the Train Accuracy, Test Accuracy,
Density vs Number of Rounds (E in Algorithm 1) respectively. The post-fix of L1 means we consider
the L1 constraints.

In this task, for L1 constraint, we consider the constraint set of |x|1 ≤ ϵ, where x is the model
parameter and ϵ is some constant. We use a 4-layer convolutional neural network with 32 filters at
each layer. We have 10 clients and run 20000 steps (T), average states with interval 5 (I) and use
mini-batch size of 16. Besides, we calculate density with threshold 0.01. For other hyper-parameters,
we perform grid search and choose the best setting for each method. More specifically, for the SGD
method, we use learning rate 0.01; for the FedDualAvg algorithm, we use local learning rate 0.1,
global learning rate 0.1, L1 constraint 0.01; for our FedDA-MVR, we use learning rate 0.01, w as
100000, c as 5000000, β as 0.999 and τ as 0.01, for the L1 regularized version FedDA-MVR-L1, we
also add L1 constraint ϵ = 0.01. For other variants of FedDA: for FedDA-2-1, we use learning rate
0.001, α as 0.9, β as 0.999, τ as 0.01; for FedDA-1-2, we use learning rate 1, w as 10000, c as 200, β
as 0.999, τ as 0.001, L1 constraint 0.01; for FedDA-2-2, we use learning rate 0.01, α 0.9, β as 0.999,
τ as 0.01, L1 constraint 0.01.

The experimental results for different variants of FedDA is summarized in Figure 4. As shown by the
plots, all variants of FedDA get good performance, but we find FedDA-MVR (FedDA-1-1) gets most
sparse model as measured by the density metric.

A.1.2 SPLICE SITE DETECTION WITH BIOMARKER IDENTIFICATION

In this task, for group lasso constraint, we consider the constraint set of
∑q

i=1 |xq|2 ≤ ϵ, where x
is the model parameter, q is the number of groups, xq denotes a subset of parameters of group q, ϵ
is some constant. The MEMset donor data set consists of a training set of 8415 true and 179,438
false human donor sites, and a test set of 4208 true and 89,717 false donor sites. A sequence of a
real splice site consists of the last three bases of the exon and the first six bases of the intron. A
training sample is a sequence of length of 7 with values in {A,C,G, T}. The data are available

14

Under review as a conference paper at ICLR 2024

Figure 5: Results for the MEMset Donar Dataset. Plots show the Train Loss, Train Accuracy and the
correlation coefficient, respectively.

at http://hollywood.mit.edu/burgelab/maxent/ssdata/. We follow Meier et al.
(2008) to create a balanced training set with 5610 true/false samples and an unbalanced validation
set with 2805 true/59804 false samples. We have 10 clients and randomly evenly distribute the
training data over 10 clients. We consider the logistic regression model with group lasso constraint
and include all the three-way and lower order interactions. In the experiments, we run 2000 steps
(T), average states with interval 5 (I) and use mini-batch size of 16. For other hyper-parameters, we
perform grid search and choose the best setting for each method. More specifically, for the FedAvg
method, we use learning rate 0.1; for the FedDualAvg algorithm with L1 constraint, we use local
learning rate 0.1, global learning rate 0.2, L1 constraint 0.01; for the FedDualAvg algorithm with
group lasso constraint, we use local learning rate 0.1, global learning rate 0.5, L1 constraint 0.01;
for our FedDA-MVR, we use learning rate 0.1, w as 10000, c as 40000, β as 0.999 and τ as 0.01,
for the L1 constrained version FedDA-MVR-L1, we also add L1 constraint 0.01, for the group lasso
version FedDA-MVR-GL, we also add group lasso constraint of coefficient 0.01. For other variants
of FedDA: for FedDA-1-2, we use learning rate 1, w as 10000, c as 200, β as 0.999, τ as 0.001, group
lasso constraint 0.01; for FedDA-2-1, we use learning rate 0.001, α as 0.9, β as 0.999, τ as 0.01,
group lasso constraint 0.01; for FedDA-2-2, we use learning rate 0.01, α 0.9, β as 0.999, τ as 0.01,
group lasso constraint 0.01.

The experimental results for different variants of FedDA is summarized in Figure 5. As shown by
the plots, all variants of FedDA get good performance, but we find FedDA-MVR (FedDA-1-1) gets
the highest test correlation coefficient among all variants. Note that the correlation coefficient is the
maximum (among all possible threshold, and we find 0.95 is the best value for all methods) Pearson
correlation between the binary random variable of the true class membership and the binary random
variable of the predicted class membership.

A.1.3 IMAGE CLASSIFICATION TASK WITH CIFAR10 AND FEMNIST

In this unconstrained federated image classification task, we use a 4-layer convolutional neural
network with 64 filters at each layer. For the FEMNIST dataset, we randomly sample 50 users at
each global round. We run 20000 steps (T), average states with interval 5 (I) and use mini-batch
size of 16. For other hyper-parameters, we perform grid search and choose the best setting for each
method. In the CIFAR10 related experiments, for the SGD method, we use learning rate 0.005; for
the FedCM algorithm, we use learning rate 0.01, momentum coefficient α as 0.9; for the FedAdam
algorithm, we use local learning rate 0.001, global learning rate 0.002, momentum coefficient 0.9,
coefficient for adaptive matrix β as 0.999; for the Local-Adapt algorithm, we use local learning rate
0.001, global learning rate 0.002, momentum coefficient 0.9, coefficient for adaptive matrix β as
0.999; for the Local-AMSGrad algorithm, we use learning rate 0.001, momentum coefficient 0.9,
adaptive matrix coefficient 0.999; for the MIME-MVR algorithm, we use learning rate 0.1, w 100, c
as 2000; for the STEM algorithm, we use learning rate 0.1, w 100 and c 2000; for our FedDA-MVR,
we use learning rate 0.02, w as 10000, c as 1000000, β as 0.999 and τ as 0.01. For other variants of
FedDA: for FedDA-2-1, we use learning rate 0.001, α as 0.9, β as 0.999, τ as 0.01; for FedDA-1-2,
we use learning rate 1, w as 5000, c as 100, β as 0.999, τ as 0.01; for FedDA-2-2, we use learning
rate 0.01, α 0.9, β as 0.999, τ as 0.01.

Then in the FEMNIST experiments, for the SGD method, we use learning rate 0.1; for the FedCM
algorithm, we use learning rate 0.1, momentum coefficient α as 0.9; for the FedAdam algorithm,

15

http://hollywood.mit.edu/burgelab/maxent/ssdata/

Under review as a conference paper at ICLR 2024

Figure 6: Results for CIFAR10 dataset. From left to right, we show Train Loss, Train Accuracy, Test
Loss, Test Accuracy w.r.t the number of global rounds (E in Algorithm 1), respectively.

Figure 7: Results for FEMNIST dataset. From left to right, we show Train Loss, Train Accuracy,
Test Loss, Test Accuracy w.r.t the number of global rounds (E in Algorithm 1), respectively.

we use local learning rate 0.02, global learning rate 0.04, momentum coefficient 0.9, coefficient for
adaptive matrix β as 0.999; for the Local-Adapt algorithm, we use local learning rate 0.02, global
learning rate 0.02, momentum coefficient 0.9, coefficient for adaptive matrix β as 0.999; for the
Local-AMSGrad algorithm, we use learning rate 0.0005, momentum coefficient 0.9, adaptive matrix
coefficient 0.999; for the MIME-MVR algorithm, we use learning rate 1, w 10000, c as 400; for the
STEM algorithm, we use learning rate 1, w 10000 and c 400; for our FedDA-MVR, we use learning
rate 0.02, w as 10000, c as 1000000, β as 0.999 and τ as 0.01. For other variants of FedDA: for
FedDA-2-1, we use learning rate 0.001, α as 0.9, β as 0.999, τ as 0.01; for FedDA-1-2, we use
learning rate 1, w as 5000, c as 100, β as 0.999, τ as 0.01; for FedDA-2-2, we use the learning rate
0.01, α 0.9, β as 0.999, τ as 0.01.

The experimental results for different variants of FedDA is summarized in Figure 6 and 7. As shown
by plots, all variants of FedDA get good performance. FedDA-MVR (FedDA-1-1) gets the best
performance in most metrics, we observe that its test loss show some extent of overfitting in the late
training stage.

A.2 MORE DISCUSSION OF EXPERIMENTAL RESULTS

In this subsection, we make more detailed comparison between our FedDA and other baselines
(The experiments are over homogeneous CIFAR10 dataset). In Figure 8, we compare FedCM with
FedDA-2-1 and FedDA-2-2 for different values of local steps I . Since FedDA-2-1 and FedDA-2-2
do not use variance reduction acceleration, the superior performance shows the effectiveness of
using adaptive gradients in our framework. Next, In Figure 9, we compare Local-AMSGrad vs
FedDA-2-1 for different values of I , FedDA-2-1 outperforms Local-AMSGrad for all I and with a
greater margin for larger I . Note both Local-AMSGrad and FedDA-2-1 use Adam-style adaptive
gradients (equation 6 and equation 7) and have same communication cost per epoch. In Figure 10,
we compare FedAdam and Local-Adapt with FedDA-2-1. All methods use Adam-style adaptive
gradients. FedAdam only performs adaptive gradients over the server, Local-Adapt performs both
local and global adaptive gradients, but the state of the local adaptive gradient is refreshed per epoch.
We have two observations: First, the Local-Adapt method has very marginal improvement over
FedAdam, which shows the restarted strategy used by Local-Adapt is less effective than our method;
Second, both FedAdam and Local-Adapt benefit little from increasing the I value (compared to our
FedDA-2-1). For FedAdam, this shows the limitation of only applying adaptive gradients at the server
level. Finally, in Figure 11, we change I for all four variants of our FedDA. As shown by the figure,
our framework can benefit from more local steps.

16

Under review as a conference paper at ICLR 2024

Figure 8: Comparison between FedCM vs FedDA-2-1 and FedDA-2-2. From top to bottom, we show
I = 5, 10, 20 respectively. The number inside the parentheses is the value of I .

Figure 9: Comparison between Local-AMSGrad vs FedDA-2-1. From top to bottom, we show
I = 5, 10, 20 respectively. The number inside the parentheses is the value of I .

A.3 IMAGE CLASSIFICATION TASK WITH HETEROGENEOUS CIFAR10

For the heterogeneous case, we create heterogeneity in the training set as follows: Suppose we have
10 clients, for ith client, we distribute ρ-percent samples of ith class, and (1− ρ)/9-percent samples
of other classes, where 0 < ρ ≤ 1. Note for ρ close to 1, the ith client will be dominated by images
of ith class, thus the data distribution among clients will be very different. In our experiments, we
choose ρ = 0.8. This means the ith client has 4000 images of ith class and 111 images of other
classes. This creates a high level of heterogeneity.

17

Under review as a conference paper at ICLR 2024

Figure 10: Comparison between FedAdam and Local-Adapt vs FedDA-2-1. The number inside the
parentheses is the value of I .

Figure 11: Ablation study of local steps I . From top row to the bottom row, we show results for
FedDA-1-1, FedDA-1-2, FedDA-2-1 and FedDA-2-2. The number inside the parentheses is the value
of I .

For hyper-parameters, we perform grid search and choose the best setting for each method. For
the SGD method, we use learning rate 0.01; for the FedCM algorithm, we use learning rate 0.01,
momentum coefficient α as 0.9; for the FedAdam algorithm, we use local learning rate 0.001, global
learning rate 0.002, momentum coefficient 0.9, coefficient for adaptive matrix β as 0.999; for the
Local-Adapt algorithm, we use local learning rate 0.001, global learning rate 0.002, momentum
coefficient 0.9, coefficient for adaptive matrix β as 0.999; for the Local-AMSGrad algorithm, we use
learning rate 0.001, momentum coefficient 0.9, adaptive matrix coefficient 0.999; for the MIME-MVR
algorithm, we use learning rate 0.1, w 100, c as 2000; for the STEM algorithm, we use learning rate

18

Under review as a conference paper at ICLR 2024

Figure 12: Results for heterogeneous CIFAR10 dataset. From left to right, we show Train Loss, Train
Accuracy, Test Loss, Test Accuracy w.r.t the number of rounds (E in Algorithm 1), respectively. I is
chosen as 5.

0.1, w 100 and c 2000; for our FedDA-MVR/FedDA-1-1, we use learning rate 0.02, w as 10000, c as
1000000, β as 0.999 and τ as 0.01. For other variants of FedDA: for FedDA-2-1, we use learning rate
0.001, α as 0.9, β as 0.999, τ as 0.01; for FedDA-1-2, we use learning rate 1, w as 5000, c as 100, β
as 0.999, τ as 0.01; for FedDA-2-2, we use learning rate 0.01, α 0.9, β as 0.999, τ as 0.01.

19

Under review as a conference paper at ICLR 2024

B PROOF OF THEOREMS

In this section, we provide the convergence analysis of our algorithm.

B.1 PRELIMINARY PROPOSITIONS

Proposition B.1. Let {θk}, k ∈ K be K vectors. Then the following are true: ||θi + θj ||2 ≤
(1 + λ)||θi||2 + (1 + 1

λ)||θj ||
2 for any a > 0 and ||

∑K
k=1 θk||2 ≤ K

∑K
k=1 ||θk||2

Proposition B.2. For a finite sequence z(k) ∈ Rd for k ∈ [K] define z̄ := 1
K

∑K
k=1 z

(k), we then
have

∑K
k=1 ∥z(k) − z̄∥2 ≤

∑K
k=1 ∥z(k)∥2.

Proposition B.3. Let z0 > 0 and z1, z2, . . . , zT ≥ 0. We have
∑T

t=1
zt

z0+
∑t

i=t zi
≤ log(1+

∑t
i=1 zi
z0

).

These propositions are standard results. For proofs, the reader can refer to Lemma 3 of Karimireddy
et al. (2019a) for Proposition 1 and Lemma C.1 and Lemma C.2 in Khanduri et al. (2021a) for
Propositions 2 and 3.

B.2 PRELIMINARY LEMMAS IN LOCAL UPDATES

We first introduce some notation. For 0 ≤ i ≤ I , we denote:

ψ
(k)
τ,i (x) = −⟨x, z(k)τ,i ⟩+

1

2
(x− x

(k)
τ,0)

THτ−1(x− x
(k)
τ,0), (10)

then, by definition (Line 4 of Algorithm 2), we have:

x
(k)
τ,i = argmin

x∈X
ψ
(k)
τ,i (x), (11)

we also define

ψ̃τ,i(x) = −⟨x, z̄τ,i⟩+
1

2
(x− xτ,0)

THτ−1(x− xτ,0), (12)

where z̄τ,i = 1
K

∑K
k=1 z

(k)
τ,i is the virtual average of z(k)τ,i and xτ,0 = xτ . Then we define

x̃τ,i = argmin
x∈X

ψ̃τ,i(x), (13)

Remark B.4. Note that the global primal state x̃i is not the arithmetic mean of the local states x(k)i in
general.

Finally, we also define

d̃τ,i =
1

ητ,i
(x̃τ,i − x̃τ,i+1), d

(k)
τ,i =

1

ητ,i
(x

(k)
τ,i − x

(k)
τ,i+1), k ∈ [K], i ∈ [I], (14)

Furthermore, recall that by the procedure of Algorithm 2 (line 6), we have

ν̄τ,i =
1

ητ,i
(z̄τ,i − z̄τ,i+1), ν

(k)
τ,i =

1

ητ,i
(z

(k)
τ,i − z

(k)
τ,i+1), k ∈ [K], i ∈ [I], (15)

Remark B.5. When it is clear from the context, we omit the global epoch τ in the subscript of the
definitions, i.e. we use ψ(k)

i (x), ψ̃i(x), x
(k)
i , x̃i, d̃i, d

(k)
i , ν̄i, ν

(k)
i and H .

Next, we introduce the following lemma related to local updates. We omit the global epoch number τ
in the subscript.
Lemma B.6. For any i ∈ [I] and k ∈ [K], we have the following inequalities be satisfied:

1. ⟨ν(k)i , d
(k)
i ⟩ ≥ ρ||d(k)i ||2, ||ν(k)i || ≥ ρ||d(k)i ||

2. ⟨ν̄i, d̃i⟩ ≥ ρ||d̃i||2, ||ν̄i|| ≥ ρ||d̃i||;

20

Under review as a conference paper at ICLR 2024

3. ||z(k)i − z̄i|| ≥ ρ||x(k)i − x̃i||;

Proof. The first and second claims follow similar derivations, and we provide only the derivations
for the first claim. First, if i = 1, we have

x
(k)
1 = argmin

x∈X
− ⟨x, z(k)1 ⟩+ 1

2
(x− x

(k)
0)TH(x− x

(k)
0),

by the first-order optimality condition, we have:

⟨−z(k)1 +H(x
(k)
1 − x

(k)
0), u− x

(k)
1 ⟩ ≥ 0, ∀ u ∈ X ,

choose u = x
(k)
0 and use the fact that z(k)1 = −η0ν0, we have:

η0||ν(k)0 ||×||x(k)0 −x(k)1 || ≥ η0⟨ν(k)0 , x
(k)
0 −x(k)1 ⟩ ≥ (x

(k)
1 −x(k)0)TH(x

(k)
1 −x(k)0) ≥ ρ||x(k)0 −x(k)1 ||2

we use the Cauchy-Schwartz inequality in the leftmost inequality and use the strong convexity
assumption of the adaptive matrix in the rightmost inequality, we get the result in the lemma.

Next if i > 0, by the definition of ψ(k)
i (x), we have:

ψ
(k)
i (x

(k)
i+1)− ψ

(k)
i (x

(k)
i) = −⟨z(k)i , x

(k)
i+1 − x

(k)
i ⟩+ 1

2
(x

(k)
i+1 − x

(k)
i)TH(x

(k)
i+1 + x

(k)
i − 2x

(k)
0)

(16)

Then by the definition of x(k)i , and the first order optimality condition, we have

⟨−z(k)i +H(x
(k)
i − x

(k)
0), u− x

(k)
i ⟩ ≥ 0, ∀ u ∈ X ,

if we pick u = x
(k)
i+1, we have −⟨z(k)i , x

(k)
i+1 − x

(k)
i ⟩ ≥ −(x

(k)
i+1 − x

(k)
i)TH(x

(k)
i − x

(k)
0), plug this

inequality to equation 16, we have:

ψ
(k)
i (x

(k)
i+1)− ψ

(k)
i (x

(k)
i)

≥ −(x
(k)
i+1 − x

(k)
i)TH(x

(k)
i − x

(k)
0) +

1

2
(x

(k)
i+1 − x

(k)
i)TH(x

(k)
i+1 + x

(k)
i − 2x

(k)
0)

≥ 1

2
(x

(k)
i+1 − x

(k)
i)TH(x

(k)
i+1 − x

(k)
i)

Similarly for ψ(k)
i+1, we have:

ψ
(k)
i+1(x

(k)
i+1)− ψ

(k)
i+1(x

(k)
i) = −⟨z(k)i+1, x

(k)
i+1 − x

(k)
i ⟩+ 1

2
(x

(k)
i+1 − x

(k)
i)TH(x

(k)
i+1 + x

(k)
i − 2x

(k)
0)

and by the definition of x(k)i+1 and the first order optimality condition, we can get

⟨−z(k)i+1 +H(x
(k)
i+1 − x

(k)
0), u− x

(k)
i+1⟩ ≥ 0, ∀ u ∈ X ,

pick u = x
(k)
i , we have −⟨z(k)i+1, x

(k)
i+1−x

(k)
i ⟩ ≤ −(x

(k)
i+1−x

(k)
i)TH(x

(k)
i+1−x

(k)
0), plug this inequality

to the above equality, we have:

ψ
(k)
i+1(x

(k)
i+1)− ψ

(k)
i+1(x

(k)
i)

≤ −(x
(k)
i+1 − x

(k)
i)TH(x

(k)
i+1 − x

(k)
0) +

1

2
(x

(k)
i+1 − x

(k)
i)TH(x

(k)
i+1 + x

(k)
i − 2x

(k)
0)

≤ −1

2
(x

(k)
i+1 − x

(k)
i)TH(x

(k)
i+1 − x

(k)
i)

Next, by definition of ψ(k)
i (x) and ψ(k)

i+1(x), we have:

ψ
(k)
i+1(x

(k)
i+1)− ψ

(k)
i+1(x

(k)
i) = ψ

(k)
i (x

(k)
i+1)− ψ

(k)
i (x

(k)
i) + ηi⟨ν(k)i , x

(k)
i+1 − x

(k)
i ⟩

Finally, we combine the above relations and have:

ηi||ν(k)i ||×||x(k)i −x(k)i+1|| ≥ ηi⟨ν(k)i , x
(k)
i −x(k)i+1⟩ ≥ (x

(k)
i+1−x

(k)
i)TH(x

(k)
i+1−x

(k)
i) ≥ ρ||x(k)i −x(k)i+1||

2

21

Under review as a conference paper at ICLR 2024

we use the Cauchy-Schwartz inequality in the leftmost inequality and use the strong convexity
assumption of the adaptive matrix in the rightmost inequality, we get the result in the claim of the
lemma.

Next, we prove the third claim, by the definition of ψ(k)
i+1, we have:

ψ
(k)
i+1(x

(k)
i+1)− ψ

(k)
i+1(x̃i+1) = −⟨z(k)i+1, x

(k)
i+1 − x̃i+1⟩+

1

2
(x

(k)
i+1 − x̃i+1)

TH(x
(k)
i+1 + x̃i+1 − 2x

(k)
0)

By the definition of x(k)i+1 and first order optimality condition, we have

⟨−z(k)i+1 +H(x
(k)
i+1 − x

(k)
0), u− x

(k)
i+1⟩ ≥ 0, ∀ u ∈ X ,

pick u = x̃i+1, we have −⟨z(k)i+1, x
(k)
i+1 − x̃i+1⟩ ≤ −(x

(k)
i+1 − x̃i+1)

TH(x
(k)
i+1 − x

(k)
0). Plug this

inequality back to the above inequality, we have:

ψ
(k)
i+1(x

(k)
i+1)− ψ

(k)
i+1(x̃i+1)

≤ −(x
(k)
i+1 − x̃i+1)

TH(x
(k)
i+1 − x

(k)
0) +

1

2
(x

(k)
i+1 − x̃i+1)

TH(x
(k)
i+1 + x̃i+1 − 2x

(k)
0)

≤ −1

2
(x

(k)
i+1 − x̃i+1)

TH(x
(k)
i+1 − x̃i+1)

Then for ψ̃i+1(x), we have:

ψ̃
(k)
i+1(x

(k)
i+1)− ψ̃i+1(x̃i+1) = −⟨z̄i+1, x

(k)
i+1 − x̃i+1⟩+

1

2
(x

(k)
i+1 − x̃i+1)

TH(x
(k)
i+1 + x̃i+1 − 2x̃0)

By the definition of x̃i+1 and first order optimality condition, we have:

⟨−z̄i+1 +H(x̃i+1 − x̃0), u− x̃i+1⟩ ≥ 0, ∀ u ∈ X ,

pick u = x
(k)
i+1, we have −⟨z̄i+1, x

(k)
i+1 − x̃i+1⟩ ≥ −(x

(k)
i+1 − x̃i+1)

TH(x̃i+1 − x̃0). Plug this
inequality back to the above inequality, we have:

ψ̃i+1(x
(k)
i+1)− ψ̃i+1(x̃i+1)

≥ −(x
(k)
i+1 − x̃i+1)

TH(x̃i+1 − x̃0) +
1

2
(x

(k)
i+1 − x̃i+1)

TH(x
(k)
i+1 + x̃i+1 − 2x̃0)

≥ 1

2
(x

(k)
i+1 − x̃i+1)

TH(x
(k)
i+1 − x̃i+1)

Next, since we have x(k)0 = x̃0, then by the definition of ψ(k)
i+1(x) and ψ̃i+1(x) we have:

ψ
(k)
i+1(x

(k)
i+1)− ψ

(k)
i+1(x̃i+1) = ψ̃i+1(x

(k)
i+1)− ψ̃i+1(x̃i+1)− ⟨z(k)i+1 − z̄i+1, x

(k)
i+1 − x̃i+1⟩

Next, we combine the above relations and have:

||z(k)i+1 − z̄i+1|| × ||x(k)i+1 − x̃i+1|| ≥ ⟨z(k)i+! − z̄i+1, x
(k)
i+1 − x̃i+1⟩

≥ (x
(k)
i+1 − x̃i+1)

TH(x
(k)
i+1 − x̃i+1) ≥ ρ||x(k)i+1 − x̃i+1||2

where the first inequality is by the Cauchy-Schwartz inequality and the last inequality is by the
positive definiteness of H . This concludes the proof of the first inequality in the lemma.

22

Under review as a conference paper at ICLR 2024

B.3 STATE CONSENSUS ERROR

As each client performs local update, the states i.e. z(k)τ,i and ν(k)τ,i drift away, the following lemmas
bound this difference. We omit the global epoch number τ in the subscript.

Lemma B.7. For each 0 ≤ i ≤ I , and suppose iterates z(k)i , k ∈ [K] are generated from Algorithm
2, we have:

K∑
k=1

E∥z(k)i − z̄i∥2 ≤ (I − 1)

i−1∑
ℓ=1

η2ℓ

K∑
k=1

E∥ν(k)ℓ − ν̄ℓ∥2,

where the expectation is w.r.t the stochasticity of the algorithm.

Proof. Based on Algorithm 2, we have z(k)0 = z̄0 = 0, the inequality in the lemma holds trivially.
Otherwise, we have

z
(k)
i = −

i−1∑
ℓ=0

ηℓν
(k)
ℓ and z̄i = −

i−1∑
ℓ=0

ηℓν̄ℓ.

So we have:
K∑

k=1

∥z(k)i − z̄i∥2 =

K∑
k=1

∥∥∥ i−1∑
ℓ=1

(
ηℓν

(k)
ℓ − ηℓν̄ℓ

)∥∥∥2 ≤ (I − 1)

i−1∑
ℓ=1

η2ℓ

K∑
k=1

∥ν(k)ℓ − ν̄ℓ∥2

where the equality uses the fact ν(k)0 = ν0 for k ∈ [K], the inequality uses the Proposition B.1 and
the fact that we have i ≤ I . We get the claim in the lemma by taking expectation on both sides of the
above inequality. This completes the proof.

Lemma B.8. For i ∈ [I], we have:

K∑
k=1

||d(k)i − d̃i||2 ≤ 42(I − 1)

ρ2η2i

i∑
ℓ=1

η2ℓ

K∑
k=1

E∥ν(k)ℓ − ν̄ℓ∥2

where the expectation is w.r.t the stochasticity of the algorithm.

Proof. Firstly, when i = 0, x(k)0 = x̃0, z(k)1 = z̄1, so we have x(k)1 = x̃1 by Line 5 of Algorithm 2,
and then we have η0d

(k)
0 = x

(k)
0 −x(k)1 = x̃0− x̃1 = ηtd̃0, the inequality in the lemma holds trivially.

Next when i > 0, we have:

η2i ||d
(k)
i − d̃i||2 = ||x(k)i − x

(k)
i+1 − (x̃i − x̃i+1)||2 ≤ 2||x(k)i − x̃i||2 + 2||x(k)i+1 − x̃i+1||2

≤ 22

ρ2
(
||z(k)i − z̄i||2 + ||z(k)i+1 − z̄i+1||2

)
The last inequality uses claim 3 of Lemma B.6. Sum over k ∈ [K] and use Lemma B.7, we have:

ρ2η2i

K∑
k=1

||d(k)i − d̃i||2 ≤ 22(I − 1)

i−1∑
ℓ=1

η2ℓ

K∑
k=1

E∥ν(k)ℓ − ν̄ℓ∥2 + 22(I − 1)

i∑
ℓ=1

η2ℓ

K∑
k=1

E∥ν(k)ℓ − ν̄ℓ∥2

≤ 42(I − 1)

i∑
ℓ=1

η2ℓ

K∑
k=1

E∥ν(k)ℓ − ν̄ℓ∥2

This completes the proof.

23

Under review as a conference paper at ICLR 2024

B.4 DESCENT LEMMA

In this subsection, we bound the descent of function value f(x̃τ,i) over the virtual sequence x̃τ,i.

Lemma B.9. Suppose that the sequence {x(k)τ,i }
I−1
i=0 be generated from Algorithm 2, then we have

f(x̃τ+1) ≤ f(x̃τ)−
I−1∑
i=0

(
3ρητ+1,i

4
−
η2τ+1,iL

2

)
∥d̃τ+1,i∥2 +

I−1∑
i=0

ητ+1,i

ρ
∥ēτ+1,i∥2

where ēτ,i = ν̄τ,i − 1
K

∑K
k=1 ∇f (k)(x

(k)
τ,i).

Proof. Since the function f(x) is L-smooth, we have (we omit the global epoch number τ for ease
of notation):

f(x̃i+1) ≤ f(x̃i) + ⟨∇f(x̃i), x̃i+1 − x̃i⟩+
L

2
∥x̃i+1 − x̃i∥2 = f(x̃i)− ηi⟨∇f(x̃i), d̃i⟩+

Lη2i
2

∥d̃i∥2

= f(x̃i)− ηi⟨ν̄i, d̃i⟩ − ηi⟨∇f(x̃i)− ν̄i, d̃i⟩+
Lη2i
2

∥d̃i∥2

(a)

≤ f(x̃i)− (ρηi −
Lη2i
2

)∥d̃i∥2 − ηi⟨∇f(x̃i)− ν̄i, d̃i⟩

(b)

≤ f(x̃i)−
(
ρηi −

η2iL

2

)
∥d̃i∥2 +

ρηi
4

∥d̃i∥2 +
ηi
ρ
∥ν̄i −∇f(x̃i)∥2

(c)

≤ f(x̃i)−
(
3ρηi
4

− η2iL

2

)
∥d̃i∥2 +

ηi
ρ
∥ēi∥2

In inequality (a), we use claim 1 of Lemma B.6; inequality (b) uses Young’s inequality; inequality (c)
denotes ēi = ν̄i −∇f(x̃i). For ẽi, we have: For the τ global epoch, we sum over i = 0 to I − 1, we
have:

f(x̃τ+1,I) ≤ f(x̃τ+1,0)−
I−1∑
i=0

(
3ρητ+1,i

4
−
η2τ+1,iL

2

)
∥d̃τ+1,i∥2 +

I−1∑
i=0

2ητ+1,i

ρ
∥ēτ+1,i∥2

Follow the update rules in Algorithm 1 and Algorithm 2, we have x̃τ+1,0 = xτ and x̃τ+1,I = xτ+1.
This completes the proof.

B.5 GRADIENT ERROR CONTRACTION

In this subsection, we bound the gradient estimation error ēτ,i, where we have ēτ,i = ν̄τ,i −∇f(x̃τ,i)
as defined in Lemma B.9, additionally, we also define the global gradient estimation error eτ as
ēτ = ντ − ∇f(xτ). Note we have eτ = ēτ,I = ēτ+1,0. We first show a fact about ē0, the initial
gradient estimation error.

Lemma B.10. For e0 := ν0 −∇f(x0), suppose we choose mini-batch size of |B(k)
0 | = b1, k ∈ [K]],

we have: E∥e0∥2 ≤ σ2

b1K
.

Proof. By line 1 of Algorithm 1, we have:

E∥e0∥2 = E
∥∥∥∥ν0 − 1

K

K∑
k=1

∇f (k)(x0)
∥∥∥∥2

= E
∥∥∥∥ 1

K

K∑
k=1

∇f (k)(x0;B(k)
0)− 1

K

K∑
k=1

∇f (k)(x0)
∥∥∥∥2

(a)

≤ 1

K2

K∑
k=1

E
∥∥∥∥∇f (k)(x0;B(k)

0)−∇f (k)(x0)
∥∥∥∥2 (b)

≤ σ2

b1K
.

where (a) follows from the following: From the unbiased gradient assumption, we have:
E
[
∇f (k)(x(k)0 ;B(k)

0)
]
= ∇f (k)(x(k)0), for all k ∈ [K]. Moreover, the samples B(k)

0 and B(ℓ)
0 at

24

Under review as a conference paper at ICLR 2024

the kth and the ℓth clients are chosen uniformly randomly, and independent of each other for all
k, ℓ ∈ [K]] and k ̸= ℓ. Inequality (b) results from the bounded variance assumption. This completes
the proof.

Lemma B.11. Define ēτ,i := ν̄τ,i − 1
K

∑K
k=1 ∇f (k)(x̃τ,i), then for every τ ≥ 1 and i ≥ 1, suppose

αi < 1 and clients use batchsize b in the training, then we have:

E∥ēτ,i∥2 ≤ (1− ατ,i)
2E∥ēτ,i−1∥2 +

256(I − 1)L2

ρ2K

i−1∑
ℓ=1

η2τ,ℓ

K∑
k=1

E∥ν(k)τ,ℓ − ν̄τ,ℓ∥2

+
8η2τ,i−1L

2

K
E∥d̃τ,i−1∥2 +

4α2
τ,iσ

2

bK

where the expectation is w.r.t the stochasticity of the algorithm.

Proof. Consider the error term ∥ēi∥2, i ≥ 1 (we omit the global epoch number τ for ease of notation),
we have:

E∥ēi∥2 = E
∥∥∥∥ν̄i − 1

K

K∑
k=1

∇f (k)(x̃i)
∥∥∥∥2

= E
∥∥∥∥ 1

K

K∑
k=1

∇f (k)(x(k)i ;B(k)
i) + (1− αi)

(
ν̄i−1 −

1

K

K∑
k=1

∇f (k)(x(k)i−1;B
(k)
i)

)
− 1

K

K∑
k=1

∇f (k)(x̃i)
∥∥∥∥2

= E
∥∥∥∥ 1

K

K∑
k=1

((
∇f (k)(x(k)i ;B(k)

i)−∇f (k)(x̃i)
)

− (1− αi)
(
∇f (k)(x(k)i−1;B

(k)
i)−∇f (k)(x̃i−1)

))
+ (1− αi)ēi−1

∥∥∥∥2
= (1− αi)

2E∥ēi−1∥2 +
1

K2
E
∥∥∥∥ K∑

k=1

[(
∇f (k)(x(k)i ;B(k)

i)−∇f (k)(x̃i)
)

− (1− αi)
(
∇f (k)(x(k)i−1;B

(k)
i)−∇f (k)(x̃i−1)

)]∥∥∥∥2
≤ (1− αi)

2E∥ēi−1∥2 +
2

K2
E
∥∥∥∥ K∑

k=1

[(
∇f (k)(x(k)i ;B(k)

i)−∇f (k)(x(k)i)
)

− (1− αi)
(
∇f (k)(x(k)i−1;B

(k)
i)−∇f (k)(x(k−1)

i−1)
)]∥∥∥∥2

+
2

K2
E
∥∥∥∥ K∑

k=1

[(
∇f (k)(x(k)i)−∇f (k)(x̃i)

)
− (1− αi)

(
∇f (k)(x(k)i−1)−∇f (k)(x̃i−1)

)]∥∥∥∥2

≤ (1− αi)
2E∥ēi−1∥2 +

2

K2

K∑
k=1

E
∥∥∥∥(∇f (k)(x(k)i ;B(k)

i)−∇f (k)(x(k)i)
)

− (1− αi)
(
∇f (k)(x(k)i−1;B

(k)
i)−∇f (k)(x(k)i−1)

)∥∥∥∥2
+

2

K

K∑
k=1

E
∥∥∥∥(∇f (k)(x(k)i)−∇f (k)(x̃i)

)
− (1− αi)

(
∇f (k)(x(k)i−1)−∇f (k)(x̃i−1)

)∥∥∥∥2
where the first equality uses the definition of ν̄i; last equality follows from expanding the norm
using the inner products across k ∈ [K] and noting that the cross terms of the second term is zero in
expectation because of the samples are sampled independently at different workers.

25

Under review as a conference paper at ICLR 2024

We first consider the second term above:
E
∥∥(∇f (k)(x(k)i ;B(k)

i)−∇f (k)(x(k)i)
)
− (1− αi)

(
∇f (k)(x(k)i−1;B

(k)
i)−∇f (k)(x(k)i−1)

)∥∥2
= E

∥∥(1− ai)
[(
∇f (k)(x(k)i ;B(k)

i)−∇f (k)(x(k)i)
)
−
(
∇f (k)(x(k)i−1;B

(k)
i)−∇f (k)(x(k)i−1)

)]
+ αi

(
∇f (k)(x(k)i ;B(k)

i)−∇f (k)(x(k)i)
)∥∥2

≤ 2(1− αi)
2E
∥∥(∇f (k)(x(k)i ;B(k)

i)−∇f (k)(x(k)i−1;B
(k)
i)
)
−
(
∇f (k)(x(k)i)−∇f (k)(x(k)i−1)

)∥∥2
+ 2α2

iE
∥∥∇f (k)(x(k)i ;B(k)

i)−∇f (k)(x(k)i)
∥∥2

≤ 2(1− αi)
2E
∥∥∇f (k)(x(k)i ;B(k)

i)−∇f (k)(x(k)i−1;B
(k)
i)
∥∥2 + 2α2

iσ
2/b

≤ 2(1− αi)
2L2E∥x(k)i − x

(k)
i−1∥

2 + 2a2iσ
2/b ≤ 2(1− αi)

2L2η2i−1E∥d
(k)
i−1∥

2 + 2α2
iσ

2/b

≤ 4(1− αi)
2L2η2i−1E∥d

(k)
i−1 − d̃i−1∥2 + 4(1− αi)

2L2η2i−1E∥d̃i−1∥2 + 2α2
iσ

2/b

where we use Proposition B.1 in the first inequality and the bounded variance assumption in the
second inequality.

For the third term, we have:

E
∥∥∇f (k)(x(k)i)−∇f (k)(x̃i)− (1− αi)

(
∇f (k)(x(k)i−1)−∇f (k)(x̃i−1)

)∥∥2
(a)

≤ 2E
∥∥∇f (k)(x(k)i)−∇f (k)(x̃i)

∥∥2 + 2E
∥∥(1− αi)

(
∇f (k)(x(k)i−1)−∇f (k)(x̃i−1)

)∥∥2
≤ 2L2E

∥∥x(k)i − x̃i
∥∥2 + 2L2(1− αi)

2E
∥∥x(k)i−1 − x̃i−1

∥∥2
(b)

≤ 2L2

ρ2
E
∥∥z(k)i − z̄i

∥∥2 + 2L2(1− αi)
2

ρ2
E
∥∥z(k)i−1 − z̄i−1

∥∥2
where (a) uses Proposition B.1; (b) uses claim 3 of Lemma B.6;

Finally, we combine the above inequalities together to get:

E∥ēi∥2 ≤ (1− αi)
2E∥ēi−1∥2 +

4α2
iσ

2

bK
+

8η2i−1L
2

K2

K∑
k=1

E∥d(k)i−1 − d̃i−1∥2

+
8η2i−1L

2

K
E∥d̃i−1∥2 +

8L2

Kρ2

K∑
k=1

[
E
∥∥z(k)i − z̄i

∥∥2 + E
∥∥z(k)i−1 − z̄i−1

∥∥2]

≤ (1− αi)
2E∥ēi−1∥2 +

4α2
iσ

2

bK
+

128(I − 1)L2

K2ρ2

i−1∑
ℓ=1

η2ℓ

K∑
k=1

E∥ν(k)ℓ − ν̄ℓ∥2

+
16η2i−1L

2

K
E∥d̃i−1∥2 +

16(I − 1)L2

Kρ2

i−1∑
ℓ=1

η2ℓ

K∑
k=1

E∥ν(k)ℓ − ν̄ℓ∥2

≤ (1− αi)
2E∥ēi−1∥2 +

4α2
iσ

2

bK

+
8η2i−1L

2

K
E∥d̃i−1∥2 +

256(I − 1)L2

Kρ2

i−1∑
ℓ=1

η2ℓ

K∑
k=1

E∥ν(k)ℓ − ν̄ℓ∥2

The first inequality the assumption that αi < 1; the second inequality uses Lemma B.7 and
Lemma B.8. This completes the proof.

Lemma B.12. For τ ≥ 0 and i ∈ [I]. Suppose we have ητ,i = κ
(wτ,i+i+τI)1/3

, and have αi < 1,
wτ,i ≥ 2, ητ,i ≤ ρ

48LK0.5I2 be satisfied, we have:

Kρ

64L2

(
E∥ēτ+1∥2

ητ+1,I−1
− E∥ēτ∥2

ητ,I−1

)
≤ −

I−1∑
i=0

3ητ+1,i

2ρ
E∥ēτ+1,i∥2 +

I−1∑
i=0

ητ+1,iρ

8
E∥d̃τ+1,i∥2

+

I−1∑
i=0

σ2c2η3τ+1,iρ

16bL2
+

8I(I − 1)

ρ

I∑
ℓ=1

ητ+1,ℓ

K∑
k=1

E∥ν(k)τ+1,ℓ − ν̄τ+1,ℓ∥2

26

Under review as a conference paper at ICLR 2024

Proof. Using Lemma B.11 at the global epoch τ − 1, then for i ≥ 0 (we denote ητ,−1 = ητ−1,I−1

for all τ ≥ 1), we have:
E∥ēτ,i+1∥2

ητ,i
− E∥ēτ,i∥2

ητ,i−1

≤
[
(1− aτ,i+1)

2

ητ,i
− 1

ητ,i−1

]
E∥ēτ,i∥2 +

256(I − 1)L2

ρ2Kητ,i

i∑
ℓ=1

η2τ,ℓ

K∑
k=1

E∥ν(k)τ,ℓ − ν̄τ,ℓ∥2

+
8L2ητ,i
K

E∥d̃τ,i∥2 +
4a2τ,i+1σ

2

ητ,ibK

(a)

≤
(
η−1
τ,i − η−1

τ,i−1 − cητ,i
)
E∥ēτ,i∥2 +

512(I − 1)L2

ρ2K

i∑
ℓ=1

ητ,ℓ

K∑
k=1

E∥ν(k)τ,ℓ − ν̄τ,ℓ∥2

+
8L2ητ,i
K

E∥d̃τ,i∥2 +
4σ2c2η3τ,i
bK

,

where inequality (a) utilizes the fact that (1 − ατ,i)
2 ≤ 1 − ατ,i ≤ 1 and aτ,i+1 = cη2τ,i for all

i ∈ [I], and the following fact: suppose we choose ητ,i = κ/(wi+ i+τI)
1/3, then for 0 ≤ l ≤ i < I ,

we have:
ητ,l
ητ,i

=
(wi + i+ τI)1/3

(wl + l + τI)1/3
=

(
1 +

wi + i− wl − l

wl + l + τI

)1/3

≤
(
1 +

(I − 1)

wl + l + τI

)1/3

≤ 1 +
(I − 1)

3(wl + l + τI)
≤ 2 (17)

The first inequality is by the fact that wi ≤ wl and 0 < i− l < I − 1, the second last inequality uses
the concavity of x1/3 as: (x+ y)1/3 − x1/3 ≤ y/3x2/3, while the last inequality uses the fact that
wl ≥ 0, I ≥ 1, l ≥ 0, τ ≥ 1.

For the difference η−1
i − η−1

i−1, we have:

1

ητ,i
− 1

ητ,i−1
=

(wi + i+ τI)1/3

κ
− (wi−1 + i− 1 + τI)1/3

κ

(a)

≤ (wi−1 + i+ τI)1/3

κ
− (wi−1 + i− 1 + τI)1/3

κ
(b)

≤ 1

3κ(wi−1 + i− 1 + τI)2/3

(c)

≤ 22/3κ2

3κ3(wi + i+ τI)2/3
(c)
=

22/3

3κ3
η2i

(d)

≤ ρ

72κ3LK0.5I2
ηi,

(18)

where inequality (a) is because that we choose w ≤ w, (b) results from the concavity of x1/3

as: (x + y)1/3 − x1/3 ≤ y/(3x2/3), (c) used the fact that w ≥ 2, finally, (d) and (e) utilize
the definition of ητ,i and the condition that ητ,i ≤ ρ

48LK0.5I2 , respectively. So if we choose c =

96L2

Kρ2
+

ρ

72κ3LK0.5I2
we have: η−1

τ,i − η−1
τ,i−1 − cητ,i ≤ − 96L2

Kρ2 ητ,i,

Therefore, we have:

E∥ēτ,i+1∥2

ητ,i
− E∥ēτ,i∥2

ητ,i−1
≤ −96L2ητ,i

Kρ2
E∥ēτ,i∥2 +

512(I − 1)L2

ρ2K

i∑
ℓ=1

ητ,ℓ

K∑
k=1

E∥ν(k)τ,ℓ − ν̄τ,ℓ∥2

+
8L2ητ,i
K

E∥d̃τ,i∥2 +
4σ2c2η3τ,i
bK

,

Multiplying Kρ/64L2 on both sides, we have:

Kρ

64L2

(
E∥ēτ,i+1∥2

ητ,i
− E∥ēτ,i∥2

ητ,i−1

)
≤ −3ητ,i

2ρ
E∥ēτ,i∥2 +

8(I − 1)

ρ

i∑
ℓ=1

ητ,ℓ

K∑
k=1

E∥ν(k)τ,ℓ − ν̄τ,ℓ∥2

+
ητ,iρ

8
E∥d̃τ,i∥2 +

σ2c2η3τ,iρ

16L2b
.

27

Under review as a conference paper at ICLR 2024

Then we sum the above inequality from 0 to I − 1 and get:

Kρ

64L2

(
E∥ēτ,I∥2

ητ,I−1
− E∥ēτ,0∥2

ητ−1,I−1

)
≤ −

I−1∑
i=0

3ηi
2ρ

E∥ēτ,i∥2 +
I−1∑
i=0

8(I − 1)

ρ

i∑
ℓ=1

ηℓ

K∑
k=1

E∥ν(k)τ,ℓ − ν̄τ,ℓ∥2

+

I−1∑
i=0

ητ,iρ

8
E∥d̃τ,i∥2 +

I−1∑
i=0

σ2c2η3τ,iρ

16L2b

≤ −
I−1∑
i=0

3ηi
2ρ

E∥ēτ,i∥2 +
8I(I − 1)

ρ

I∑
ℓ=1

ηℓ

K∑
k=1

E∥ν(k)τ,ℓ − ν̄τ,ℓ∥2

+

I−1∑
i=0

ητ,iρ

8
E∥d̃τ,i∥2 +

I−1∑
i=0

σ2c2η3τ,iρ

16L2b

By definition, we have ēτ,0 = eτ−1 and ēτ,I = eτ , then we get the results in the lemma by replacing
τ by τ + 1.

B.6 DESCENT IN POTENTIAL FUNCTION

We define the potential function as follows:

Φτ := f(x̃τ) +
Kρ

64L2

∥eτ∥2

ητ−1,I−1
. (19)

Next, we characterize the descent in the potential function.

Lemma B.13. For any τ ≥ 0, we have:

E[Φτ+1 − Φτ] ≤ −
I−1∑
i=0

(
5ρητ+1,i

8
−
η2τ+1,iL

2

)
E∥d̃i∥2 −

1

2ρ

I−1∑
i=0

ητ+1,iE∥ēτ+1,i∥2

+
σ2c2ρ

16L2b

I−1∑
i=0

η3τ+1,i +
8I(I − 1)

ρ

I∑
i=1

ητ+1,i

K∑
k=1

E∥ν(k)τ+1,i − ν̄τ+1,i∥2,

where the expectation is w.r.t the stochasticity of the algorithm.

Proof. We can the inequality in the lemma by combining Lemma B.9 and Lemma B.12

B.7 ACCUMULATED GRADIENT ERROR

In this subsection, we bound the gradient consensus error given by term
∑K

k=1 E∥ν
(k)
τ,i − ν̄τ,i∥2.

Lemma B.14. For i ≥ 1 and αi < 1, we have:

K∑
k=1

E∥ν(k)τ,i − ν̄τ,i∥2 ≤ (1 +
1

I
)

K∑
k=1

E
∥∥ν(k)τ,i−1 − ν̄τ,i−1

∥∥2 + 8KIL2η2τ,i−1E∥d̃τ,i−1∥2 +
8KIσ2c2η4τ,i−1

b

+ 16KIζ2c2η4τ,i−1 +
96I2L2

ρ2

i−1∑
ℓ=1

ητ,ℓ2
K∑

k=1

E∥ν(k)τ,ℓ − ν̄τ,ℓ∥2

where the expectation is w.r.t. the stochasticity of the algorithm.

28

Under review as a conference paper at ICLR 2024

Proof. By the update rule of ν(k)i (we omit the global epoch step for convenience), we have:

E∥ν(k)i − ν̄i∥2

= E
∥∥∥∥∇f (k)(x(k)i ;B(k)

i) + (1− αi)
(
ν
(k)
i−1 −∇f (k)(x(k)i−1;B

(k)
i)
)

−
(

1

K

K∑
j=1

∇f (j)(x(j)i ;B(j)
i) + (1− αi)

(
ν̄i−1 −

1

K

K∑
j=1

∇f (j)(x(j)i−1;B
(j)
i)
))∥∥∥∥2

= E
∥∥∥∥(1− αi)

(
ν
(k)
i−1 − ν̄i−1

)
+∇f (k)(x(k)i ;B(k)

i)− 1

K

K∑
j=1

∇f (j)(x(j)i ;B(j)
i)

− (1− αi)

(
∇f (k)(x(k)i−1;B

(k)
i)− 1

K

K∑
j=1

∇f (j)(x(j)i−1;B
(j)
i)

)∥∥∥∥2

≤ (1 + β)(1− αi)
2E
∥∥∥∥ν(k)i−1 − ν̄i−1

∥∥∥∥2 + (1 + 1

β

)
E
∥∥∥∥∇f (k)(x(k)i ;B(k)

i)− 1

K

K∑
j=1

∇f (j)(x(j)i ;B(j)
i)

− (1− αi)

(
∇f (k)(x(k)i−1;B

(k)
i)− 1

K

K∑
j=1

∇f (j)(x(j)i−1;B
(j)
i)

)∥∥∥∥2, (20)

where the last inequality uses Proposition B.1.

Next, we consider the second term:

E
∥∥∥∥∇f (k)(x(k)i ;B(k)

i)− 1

K

K∑
j=1

∇f (j)(x(j)i ;B(j)
i)

− (1− αi)

(
∇f (k)(x(k)i−1;B

(k)
i)− 1

K

K∑
j=1

∇f (j)(x(j)i−1;B
(j)
i)

)∥∥∥∥2
(a)

≤ 2E
∥∥∥∥∇f (k)(x(k)i ;B(k)

i)− 1

K

K∑
j=1

∇f (j)(x(j)i ;B(j)
i)

−
(
∇f (k)(x(k)i−1;B

(k)
i)− 1

K

K∑
j=1

∇f (j)(x(j)i−1;B
(j)
i)

)∥∥∥∥2

+ 2α2
iE
∥∥∥∥∇f (k)(x(k)i−1;B

(k)
i)− 1

K

K∑
j=1

∇f (j)(x(j)i−1;B
(j)
i)

∥∥∥∥2
(b)

≤ 2E
∥∥∥∥(∇f (k)(x(k)i ;B(k)

i)−∇f (k)(x(k)i−1;B
(k)
i)
)∥∥∥∥2

+ 2α2
iE
∥∥∥∥∇f (k)(x(k)i−1;B

(k)
i)− 1

K

K∑
j=1

∇f (j)(x(j)i−1;B
(j)
i)

∥∥∥∥2
(c)

≤ 2L2E
∥∥∥∥x(k)i − x

(k)
i−1

∥∥∥∥2 + 2α2
iE
∥∥∥∥∇f (k)(x(k)i−1;B

(k)
i)− 1

K

K∑
j=1

∇f (j)(x(j)i−1;B
(j)
i)

∥∥∥∥2, (21)

where inequality (a) uses Proposition B.1; inequality (b) uses Proposition B.2; inequality (c) uses the
smoothness assumption.

29

Under review as a conference paper at ICLR 2024

Next, we consider the second term in equation 21 above, we have

E
∥∥∥∥∇f (k)(x(k)i−1;B

(k)
i)− 1

K

K∑
j=1

∇f (j)(x(j)i−1;B
(j)
i)

∥∥∥∥2
= E

∥∥∥∥(∇f (k)(x(k)i−1;B
(k)
i)−∇f (k)(x(k)i−1)

)
− 1

K

K∑
j=1

(
∇f (j)(x(j)i−1;B

(j)
i)−∇f (j)(x(j)i−1)

)
+∇f (k)(x(k)i−1)−

1

K

K∑
j=1

∇f (j)(x(j)i−1)

∥∥∥∥2
≤ 2E

∥∥∥∥(∇f (k)(x(k)i−1;B
(k)
i)−∇f (k)(x(k)i−1)

)
− 1

K

K∑
j=1

(
∇f (j)(x(j)i−1;B

(j)
i)−∇f (j)(x(j)i−1)

)∥∥∥∥2

+ 2E
∥∥∥∥∇f (k)(x(k)i−1)−

1

K

K∑
j=1

∇f (j)(x(j)i−1)

∥∥∥∥2
(a)

≤ 2E
∥∥∥∥(∇f (k)(x(k)i−1;B

(k)
i)−∇f (k)(x(k)i−1)

)∥∥∥∥2 + 2E
∥∥∥∥∇f (k)(x(k)i−1)−

1

K

K∑
j=1

∇f (j)(x(j)i−1)

∥∥∥∥2
≤ 2E

∥∥(∇f (k)(x(k)i−1;B
(k)
i)−∇f (k)(x(k)i−1)

)∥∥2 + 4E
∥∥∇f (k)(x̃i−1)−∇f(x̃i−1)

∥∥2
+ 8E

∥∥∇f (k)(x(k)i−1)−∇f (k)(x̃i−1)
∥∥2 + 8E

∥∥∥∥∇f(x̃i−1)−
1

K

K∑
j=1

∇f (j)(x(j)i−1)

∥∥∥∥2
(b)

≤ 2σ2

b
+

4

K

K∑
j=1

E∥∇f (k)(x̃i−1)−∇f (j)(x̄i−1)∥2

+ 8L2E∥x(k)i−1 − x̃i−1∥2 +
8L2

K

K∑
j=1

E∥x(j)i−1 − x̃i−1∥2

(c)

≤ 2σ2

b
+ 4ζ2 + 8L2E∥x(k)i−1 − x̃i−1∥2 +

8L2

K

K∑
j=1

E∥x(j)i−1 − x̃i−1∥2, (22)

where inequality (a) uses Proposition B.2; inequality (b) utilizes bounded variance assumption; (c)
uses the bounded heterogeneity assumption. Finally, substituting equation 22 and equation 21 into
equation 20 and sum over all K workers, we get

K∑
k=1

E∥ν(k)i − ν̄i∥2

≤ (1− αi)
2(1 + β)

K∑
k=1

E
∥∥ν(k)i−1 − ν̄i−1

∥∥2 + 2L2

(
1 +

1

β

) K∑
k=1

E∥x(k)i − x
(k)
i−1∥

2

+
4Kσ2

b

(
1 +

1

β

)
α2
i + 8Kζ2

(
1 +

1

β

)
α2
i + 32L2

(
1 +

1

β

)
α2
i

K∑
k=1

E∥x(k)i−1 − x̃i−1∥2

where the second inequality uses claim 3 of the Lemma B.6. For the term
∑K

k=1 E∥x
(k)
i − x

(k)
i−1∥2,

we have:
K∑

k=1

E∥x(k)i − x
(k)
i−1∥

2 ≤ 2

K∑
k=1

E∥x(k)i − x̃i − (x
(k)
i−1 − x̃i−1)∥2 + 2

K∑
k=1

E∥x̃i − x̃i−1∥2

≤ 4

K∑
k=1

E∥x(k)i − x̃i∥2 + 4

K∑
k=1

E∥x(k)i−1 − x̃i−1∥2 + 2Kη2i−1E∥d̃i−1∥2

30

Under review as a conference paper at ICLR 2024

So we have:
K∑

k=1

E∥ν(k)i − ν̄i∥2

≤ (1− αi)
2(1 + β)

K∑
k=1

E
∥∥ν(k)i−1 − ν̄i−1

∥∥2 + 4KL2η2i−1

(
1 +

1

β

)
E∥d̃i−1∥2

+ 8L2

(
1 +

1

β

) K∑
k=1

E∥x(k)i − x̃i∥2

+
4Kσ2

b

(
1 +

1

β

)
α2
i + 8Kζ2

(
1 +

1

β

)
α2
i + 40L2

(
1 +

1

β

) K∑
k=1

E∥x(k)i−1 − x̃i−1∥2

Next using Lemma B.7, we have:

K∑
k=1

E∥ν(k)i − ν̄i∥2

≤ (1− αi)
2(1 + β)

K∑
k=1

E
∥∥ν(k)i−1 − ν̄i−1

∥∥2 + 4KL2η2i−1

(
1 +

1

β

)
E∥d̃i−1∥2

+
8L2

ρ2

(
1 +

1

β

) K∑
k=1

E∥z(k)i − z̄i∥2

+
4Kσ2

b

(
1 +

1

β

)
α2
i + 8Kζ2

(
1 +

1

β

)
α2
i +

40L2

ρ2

(
1 +

1

β

) K∑
k=1

E∥z(k)i−1 − z̄i−1∥2

≤ (1− αi)
2(1 + β)

K∑
k=1

E
∥∥ν(k)i−1 − ν̄i−1

∥∥2 + 4KL2η2i−1

(
1 +

1

β

)
E∥d̃i−1∥2

+
4Kσ2

b

(
1 +

1

β

)
α2
i + 8Kζ2

(
1 +

1

β

)
α2
i

+
48L2

ρ2

(
1 +

1

β

)
(I − 1)

i−1∑
ℓ=1

η2ℓ

K∑
k=1

E∥ν(k)ℓ − ν̄ℓ∥2

≤ (1 +
1

I
)

K∑
k=1

E
∥∥ν(k)i−1 − ν̄i−1

∥∥2 + 8KIL2η2i−1E∥d̃i−1∥2 +
8KIσ2c2η4i−1

b

+ 16KIζ2c2η4i−1 +
96I2L2

ρ2

i−1∑
ℓ=1

η2ℓ

K∑
k=1

E∥ν(k)ℓ − ν̄ℓ∥2 (23)

In the last inequality, we choose β = 1/I , then we have (1 + 1/β) ≤ (1 + I) ≤ 2I , we also use the
fact that (1− αi)

2 < 1 and ai = cη2i−1 < 1. This completes the proof.

31

Under review as a conference paper at ICLR 2024

Lemma B.15. For ηi ≤ ρ
48LK0.5I2 , then we have

I2

ρ

I∑
i=1

ηi

K∑
k=1

E∥ν(k)i − ν̄i∥2 ≤ ρ

84

I−1∑
i=0

ηiE∥d̃i∥2 +
(
ρσ2c2

84bL2
+
ρζ2c2

42L2

) I−1∑
i=0

η3i

Proof. By Lemma B.14 (we omit the global epoch number for convenience) we have:

K∑
k=1

E∥ν(k)i − ν̄i∥2 ≤ (1 +
1

I
)

K∑
k=1

E
∥∥ν(k)i−1 − ν̄i−1

∥∥2 + 8KIL2η2i−1E∥d̃i−1∥2 +
8KIσ2c2η4i−1

b

+ 16KIζ2c2η4i−1 +
96I2L2

ρ2

i−1∑
ℓ=1

η2ℓ

K∑
k=1

E∥ν(k)ℓ − ν̄ℓ∥2

≤ (1 +
1

I
)

K∑
k=1

E
∥∥ν(k)i−1 − ν̄i−1

∥∥2 + √
KLρηi−1

6I
E∥d̃i−1∥2 +

√
Kρσ2c2η3i−1

6ILb

+

√
Kρζ2c2η3i−1

3IL
+

96I2L2

ρ2

i−1∑
ℓ=1

η2ℓ

K∑
k=1

E∥ν(k)ℓ − ν̄ℓ∥2, (24)

where in the second inequality, we use the condition that ηi ≤ ρ
48LK0.5I2 . Applying equation 24

recursively from 1 to i. We have:

K∑
k=1

E∥ν(k)i − ν̄i∥2 ≤
√
KLρ

6I

i−1∑
ℓ=0

(
1 +

1

I

)i−1−ℓ

ηℓE∥d̃ℓ∥2 +
√
Kρσ2c2

6ILb

i−1∑
ℓ=0

(
1 +

1

I

)i−1−ℓ

η3ℓ

+

√
Kρζ2c2

3IL

i−1∑
ℓ=0

(
1 +

1

I

)i−1−ℓ

η3ℓ

+
96L2I2

ρ2

i−1∑
ℓ=0

(
1 +

1

I

)i−1−ℓ ℓ∑
ℓ̄=0

η2ℓ̄

K∑
k=1

E∥ν(k)
ℓ̄

− ν̄ℓ̄∥2

(a)

≤
√
KLρ

6I

(
1 +

1

I

)I i−1∑
ℓ=0

ηℓE∥d̃ℓ∥2 +
√
Kρσ2c2

6ILb

(
1 +

1

I

)I i−1∑
ℓ=0

η3ℓ

+

√
Kρζ2c2

3IL

(
1 +

1

I

)I i−1∑
ℓ=0

η3ℓ +
96L2I3

ρ2

(
1 +

1

I

)I i−1∑
ℓ̄=0

η2ℓ̄

K∑
k=1

E∥ν(k)
ℓ̄

− ν̄ℓ̄∥2

(b)

≤
√
KLρ

2I

i−1∑
ℓ=0

ηℓE∥d̃ℓ∥2 +
√
Kρσ2c2

2ILb

i−1∑
ℓ=0

η3ℓ +

√
Kρζ2c2

IL

i−1∑
ℓ=0

η3ℓ

+
288L2I3

ρ2

i−1∑
ℓ=0

η2ℓ

K∑
k=1

E∥ν(k)ℓ − ν̄ℓ∥2, (25)

where inequality (a) is by the fact that 1 + 1/I > 1 and i − 1 − ℓ ≤ I for i ∈ [I] and ℓ ∈ [i] and
inequality (b) is because that (1 + 1/I)I ≤ e < 3.

32

Under review as a conference paper at ICLR 2024

Next, multiplying both sides of equation 25 by ηi and summing over i = 1 to I:

I∑
i=1

ηi

K∑
k=1

E∥ν(k)i − ν̄i∥2 ≤
√
KLρ

2I

I∑
i=1

ηi

i−1∑
ℓ=0

ηℓE∥d̃ℓ∥2 +
√
Kρσ2c2

2ILb

I∑
i=1

ηi

i−1∑
ℓ=0

η3ℓ

+

√
Kρζ2c2

IL

I∑
i=1

ηi

i−1∑
ℓ=0

η3ℓ +
288L2I3

ρ2

I∑
i=1

ηi

i−1∑
ℓ=0

η2ℓ

K∑
k=1

E∥ν(k)ℓ − ν̄ℓ∥2

(a)

≤
√
KLρ

2I

(I∑
i=1

ηi

) I−1∑
ℓ=0

ηℓE∥d̃ℓ∥2 +
(√

Kρσ2c2

2ILb
+

√
Kρζ2c2

IL

)(I∑
i=1

ηi

) I−1∑
ℓ=0

η3ℓ

+
288L2I3

ρ2

(I∑
i=1

ηi

) I−1∑
ℓ=0

η2ℓ

K∑
k=1

E∥ν(k)ℓ − ν̄ℓ∥2

(b)

≤ ρ2

96I2

I−1∑
i=0

ηiE∥d̃i∥2 +
(
ρ2σ2c2

96I2L2b
+
ρ2ζ2c2

48I2L2

) I−1∑
i=0

η3i +
1

8

I−1∑
ℓ=1

ηℓ

K∑
k=1

E∥ν(k)ℓ − ν̄ℓ∥2

where inequality (a) uses the fact that i ≤ I and (b) uses that we choose ηi ≤ ρ/(48LK0.5I2).
Rearranging the terms we have:

7

8

I∑
i=1

ηi

K∑
k=1

E∥ν(k)i − ν̄i∥2 ≤ ρ2

96I2

I−1∑
i=0

ηiE∥d̃i∥2 +
(
ρ2σ2c2

96I2L2b
+
ρ2ζ2c2

48I2L2

) I−1∑
i=0

η3i

Multiplying 8I2/(7Kρ) on both sides, we have:

I2

ρ

I∑
i=1

ηi

K∑
k=1

E∥ν(k)i − ν̄i∥2 ≤ ρ

84

I−1∑
i=0

ηiE∥d̃i∥2 +
(
ρσ2c2

84L2b
+
ρζ2c2

42L2

) I−1∑
i=0

η3i

This completes the proof.

B.8 PROOF OF THE MAIN CONVERGENCE THEOREM

In this subsection, we prove Theorem 5.6 and Corollary 5.7. To prove Theorem 5.6, we firstly show
the following theorem hold:

Theorem B.16. Choosing the parameters as κ =
K2/3ρ

L
, c =

96L2

Kρ2
+

ρ

72κ3LK0.5I2
, wt =

max{2, 483I6K7/2 − t}, and choose ηt = κ
(wt+t)1/3

, then we have:

1

T

T−1∑
t=0

(
E∥d̃t∥2 +

1

ρ2
E∥ēt∥2

)
≤
[
96LI2

ρ2T
+

2L

ρ2K2/3T 2/3

]
(f(x0)− f∗) +

[
72I4

b1ρ2T
+

3I2

2b1ρ2K2/3T 2/3

]
σ2

+
1922

ρ2
×
(
48I2

T
+

1

K2/3T 2/3

)
×
(
σ2

4b
+

2ζ2

21

)
log(T + 1).

Proof. By definition, we have ηt ≤ η0 < κ/w
1/3
0 = ρ/48LK0.5I2, then c = L2

Kρ2

(
96 +

1
72K1.5I2

)
≤ 192L2

Kρ2 and: cη2t ≤ cη20 = 192L2

Kρ2 ∗ ρ2

482L2KI4 < 1, so we have αt < 1, then the

conditions of Lemma B.13-Lemma B.15 are satisfied.

33

Under review as a conference paper at ICLR 2024

Firstly, substitute the gradient consensus error in Lemma B.15 to Lemma B.13, we can write the
descent of potential function as:

E[Φτ+1 − Φτ] ≤ −
I−1∑
i=0

(
5ρητ+1,i

8
−
η2τ+1,iL

2

)
E∥d̃τ+1,i∥2 −

1

2ρ

I−1∑
i=0

ητ+1,iE∥ēτ+1,i∥2

+
σ2c2ρ

16L2b

I−1∑
i=0

η3τ+1,i +
2ρ

21

I−1∑
i=0

ητ+1,iE∥d̃τ+1,i∥2 +
(
2ρσ2c2

21L2b
+

4ρζ2c2

21L2

) I−1∑
i=0

η3τ+1,i

(a)

≤ −
I−1∑
i=0

ρηi
2

E∥d̃τ+1,i∥2 −
1

2ρ

I−1∑
i=0

ητ+1,iE∥ēτ+1,i∥2 +
(
ρσ2c2

4L2b
+
ρζ2c2

4L2

) I−1∑
i=0

η3τ+1,i,

where (a) follows from the fact that ηi ≤ ρ
48LK0.5I2 ≤ ρ

48L .

Suppose we denote T = EI , and t = τI + i for t ≥ 0 and τ ≥ 0. Then we have ηt = ητ+1,i,
d̃t = d̃τ+1,i, ēt = ēτ+1,i. In particular, we denote η−1 = η0 for convenience.

Then we sum the above inequality for τ from 0 to E − 1, and get:

E[ΦE − Φ0]≤−
T−1∑
t=0

(ρηt
2

)
E∥d̃t∥2 −

T−1∑
t=0

ηt
2ρ

E∥ēt∥2 +
(
ρσ2c2

4L2b
+
ρζ2c2

4L2

) T∑
t=0

η3t ,

Rearranging terms, we get:

T∑
t=1

(
ρηt
2

E∥d̃t∥2 +
ηt
2ρ

E∥ēt∥2
)

≤ E[Φ0 − ΦE] +

(
ρσ2c2

4L2b
+
ρζ2c2

4L2

) T−1∑
t=0

η3t

(a)

≤ f(x0)− f∗ +
Kρ

64L2

E∥e0∥2

η0
+

(
ρσ2c2

4L2b
+
ρζ2c2

4L2

) T−1∑
t=0

η3t

(b)

≤ f(x0)− f∗ +
σ2ρ

64b1L2η0
+

(
ρσ2c2

4L2b
+
ρζ2c2

4L2

) T−1∑
t=0

η3t , (26)

where (a) follows from the fact that f∗ ≤ ΦE and (b) results from application of Lemma B.10 and b
is the minibatch size at the first iteration.

Next for the last term of the equation 26 above, we have:

T−1∑
t=0

η3t =

T−1∑
t=0

κ3

wt + t

(a)

≤
T−1∑
t=0

κ3

1 + t

(b)

≤ κ3 ln(T + 1). (27)

where inequality (a) above follows from the fact that we have wt > 1 and inequality (b) follows
from the application of Proposition B.3.

Substituting equation 27 in equation 26, multiplying both sides by 2/(ρηTT) and using the fact that
ηt is non-increasing in t we have

1

T

T−1∑
t=0

(
E∥d̃t∥2 +

1

ρ2
E∥ēt∥2

)
≤ 2(f(x0)− f∗)

ρηTT
+

1

ηTT

σ2

32b1L2η0
+

κ3

ηTT

(
σ2c2

4bL2
+

2ζ2c2

21L2

)
ln(T + 1).

(28)

Now considering each term of equation 28 above separately. For the first term:

1

ηTT
=

(wT + T)1/3

κT

(a)

≤
w

1/3
T

κT
+

1

κT 2/3

(b)

≤ 48LI2K0.5

ρT
+

L

ρK2/3T 2/3
. (29)

where inequality (a) follows from identity (x+ y)1/3 ≤ x1/3 + y1/3 and inequality (b) follows from
the definition of κ and wT Similarly, for the second term of equation 28, we have from the definition

34

Under review as a conference paper at ICLR 2024

of η0 and ηT :

1

ηTT

σ2

32bL2η0
≤
(
48LK0.5I2

ρT
+

L

ρK2/3T 2/3

)
× σ2

32b1L2
× w

1/3
0

κ

≤
(
48LK0.5I2

ρT
+

L

ρK2/3T 2/3

)
× σ2

32b1L2
× 48LK0.5I2

ρ

≤ 72KI4

b1ρ2T
σ2 +

3K0.5I2

2b1ρ2K2/3T 2/3
σ2. (30)

Finally, for the last term in equation 28 above, we have from the definition of the stepsize, ηt,

κ3c2

ηTTL2

(
σ2

4b
+

2ζ2

21

)
ln(T + 1)

≤
(
48LK0.5I2

ρT
+

L

ρK2/3T 2/3

)
× 1922

Lρ
×
(
σ2

4b
+

2ζ2

21

)
log(T + 1)

≤ 1922

ρ2
×
(
48K0.5I2

T
+

1

K2/3T 2/3

)
×
(
σ2

4b
+

2ζ2

21

)
log(T + 1). (31)

Finally, substituting the bounds obtained in equation 29, equation 30 and equation 31 into equation 28,
we get

1

T

T−1∑
t=0

(
E∥d̃t∥2 +

1

ρ2
E∥ēt∥2

)
≤
[
96LK0.5I2

ρ2T
+

2L

ρ2K2/3T 2/3

]
(f(x0)− f∗) +

[
72KI4

b1ρ2T
+

3K0.5I2

2b1ρ2K2/3T 2/3

]
σ2

+
1922

ρ2
×
(
48K0.5I2

T
+

1

K2/3T 2/3

)
×
(
σ2

4b
+

2ζ2

21

)
log(T + 1).

This completes the proof of the theorem.

Now we are ready to show Theorem 5.6. Firstly notice that:

Gt

ρ2
=

1

η2t
||x̃t − x̃t+1||2 +

1

ρ2
||ν̄t −∇f(x̃t)||2 = ||d̃t||2 +

1

ρ2
||ēt||2

Combine with Theorem B.16, we have:

1

T

T−1∑
t=0

E[Gt] ≤
[
96LK0.5I2

T
+

2L

K2/3T 2/3

]
(f(x0)− f∗) +

[
72KI4

b1T
+

3K0.5I2

2b1K2/3T 2/3

]
σ2

+ 1922 ×
(
48K0.5I2

T
+

1

K2/3T 2/3

)
×
(
σ2

4b
+

2ζ2

21

)
log(T + 1).

Remark B.17. For the measure Gt, we discuss its intuition under both the unconstrained and con-
strained case. First, for unconstrained case, i.e. when X = Rd, we have:

||∇f(x̃τ,i)||/||Hτ || = ||Hτ ×H−1
τ ∇f(x̃τ,i)||/||Hτ || ≤ ||H−1

τ ∇f(x̃τ,i)||
= ||H−1

τ ∇f(x̃τ,i)−H−1
τ ν̄τ,i +H−1

τ ν̄τ,i|| ≤ ||H−1
τ ∇f(x̃τ,i)−H−1

τ ν̄τ,i||+ ||H−1
τ ν̄τ,i||

≤ 1

ρ
||ν̄τ,i −∇f(x̃τ,i)||+

1

ητ,i
||x̃τ,i − x̃τ,i+1|| ≤

√
2
√

Gτ,i/ρ

In the last inequality, we use Jensen inequality, and in the second last inequality, we use As-
sumption 5.4 and the fact that x̃τ,i+1 = xτ,0 + H−1

τ z̄τ,i+1 and x̃τ,i = xτ,0 + H−1
τ z̄τ,i and

ητ,iν̄τ,i = z̄τ,i+1− z̄τ,i in the unconstrained case. In other words, we have ||∇f(x̃t)||2 ≤ 2||Hτ ||2
ρ2 Gτ .

Note the coefficient of the right-side is an upper bound of the square condition number of Hτ . It
is common assumption in the analysis of adaptive gradient methods that Ht has a finite condition

35

Under review as a conference paper at ICLR 2024

number Huang et al. (2021). In sum, the convergence of our measure Gt means the convergence to a
first order stationary point in the unconstrained case.

Next, for the constrained case, our measure upper bounds the gradient mapping 1
ητ+1,i

||xτ − x∗τ+1,i||,
x∗t is defined as follows:

x∗τ+1,i = argmin
x∈X

{−⟨x, z∗τ+1,i)⟩+
1

2
(x− xτ)

THτ (x− xτ)}

where z∗τ+1,i =
∑i

ℓ=0 −ηℓ∇f(x̃τ+1,i) is the accumulation of true gradient. Next follow Lemma B.6,
we have:

∥x∗τ+1,i − x̃τ+1,i∥ ≤ 1

ρ
∥z∗τ+1,i − z̄τ+1,i∥

=
1

ρ
∥

i−1∑
l=0

−ητ+1,ℓ(∇f(x̃τ+1,ℓ)− ν̄τ+1,ℓ))∥
(a)

≤
i−1∑
l=0

ητ+1,ℓ

ρ
∥∇f(x̃τ+1,ℓ)− ν̄τ+1,ℓ∥

where inequality (a) is due to the triangle inequality. Next we have:

∥xτ − x∗τ+1,i∥ = ∥xτ − x̃τ+1,i + x̃τ+1,i − x∗τ+1,i∥ ≤ ∥xτ − x̃τ+1,i∥+ ∥x̃τ+1,i − x∗τ+1,i∥

≤ ∥
i−1∑
l=0

d̃τ+1,i∥+ ∥x̃τ+1,i − x∗τ+1,i∥ ≤
i−1∑
l=0

(
∥d̃τ+1,ℓ∥+

ητ+1,ℓ

ρ
∥∇f(x̃τ+1,ℓ)− ν̄τ+1,ℓ∥

)
By Jensen inequality and the definition of the measure equation 9, we have

∥d̃t∥+
ηt
ρ
∥∇f(x̃t)− ν̄t∥ ≤

√
2ηt
ρ

√
Gt,

So we have

1

ητ+1,i
∥xτ − x∗τ+1,i∥ ≤

√
2

ρ

i−1∑
l=0

ητ+1,l

ητ+1,i

√
Gτ+1,l ≤

2
√
2

ρ

i−1∑
l=0

√
Gτ+1,ℓ,

the last inequality is because of Eq. equation 17. In all, when the measure Gτ+1,ℓ → 0, the gradient
mapping 1

ητ+1,i
∥xτ − x∗τ+1,i∥ converges to 0.

Corollary B.18. With the hyper-parameters chosen as in Theorem B.16. Suppose we set I =
O((T/K3.5)1/6) and use sample minibatch of size b1 = O(K0.5I2) in the first step, Then we have:

E[Gt] = O

(
f(x0)− f∗

K2/3T 2/3

)
+ Õ

(
σ2

K2/3T 2/3

)
+ Õ

(
ζ2

K2/3T 2/3

)
.

and to reach an ϵ-stationary point, we need to make Õ(K−1ϵ−1.5) number of steps and need
Õ(K−0.25ϵ−1.25) number of communication rounds.

Proof. It is straightforward to verify the expression for E[Gt] in the corollary by applying Theorem
B.16 and choosing I and b as corresponding values. As for the gradient and communication
complexity of the algorithm. We have the following results: The number of total steps T needed to
achieve an ϵ-stationary point, i.e. Õ(1

K2/3T 2/3) = ϵ, then the gradient complexity is O(K−1ϵ−3/2).
Total rounds of communication steps to achieve an ϵ-stationary point is E = T/I , as we have
I = O((T/K3.5)1/6), then T/I = Õ(K7/12T 5/6). By the fact that T = K−1ϵ−3/2, we have
E = O(K−1/4ϵ−5/4).

36

	Introduction
	Related Works
	Preliminaries
	Local Adaptive Gradients via Dual Averaging
	Theoretical Analysis
	Some Mild Assumptions
	Convergence Property of Fed-MVR

	Experiments
	Colorrectal Cancer Survival Prediction with Biomarker Identification
	Splice Site Detection with Biomarker Identification
	Image Classification Task with CIFAR10 and FEMNIST

	Conclusion
	Experimental Details and Results
	Experimental Results for More Variants of FedDA
	Colorrectal Cancer Survival Prediction with Biomarker Identification
	Splice Site Detection with Biomarker Identification
	Image Classification Task with CIFAR10 and FEMNIST

	More discussion of Experimental Results
	Image Classification Task with Heterogeneous CIFAR10

	 Proof of Theorems
	Preliminary Propositions
	Preliminary Lemmas in local updates
	State Consensus Error
	Descent Lemma
	Gradient Error Contraction
	Descent in Potential Function
	Accumulated Gradient Error
	Proof of the Main Convergence Theorem

