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A STEERING METHOD AND EMBEDDING METHOD IMPLEMENTATIONS

A.1 DETAILED IMPLEMENTATION OF STEERING METHODS

Let f be a decoder-only language model with L layers and hidden size d. Each triplet comparison is
denoted as t; = (@rer,i, ¥1,4, T2,4) for i = 1,..., n. Each prompt consists of a sequence of n triplets
[t1,...,ts], serialized into a token sequence = [z1,...,2r]. The model produces hidden states
hé € R? at each token position x; and layer [.

For all prompting, prompts are formatted as natural language strings of the form:

Choose the item that is most similar to the first item
in terms of <d>. Respond only with the name of the
item exactly as written.

<x_ref> + <x_1> OR <x_ref> + <x.2>7?

answer: <x_.ref> +

For steering methods, training examples consist of triplets without a natural language instruction
like so:

<x_ref> + <x_1> OR <x_ref> + <x_2>7
<x_ref> + <x_answer>

Where examples are concatenated by commas. Each training example consisting of n triplets has a
final incomplete training instance like so:

<x_.ref> + <x_1> OR <x_ref> + <x_2>7
<x_.ref> +

LLIMEL)

This ”+” token is used to extract and steer representations for a corresponding ”+” token in the
zero-shot test example, which is identical to the final training example:

<x_ref> + <x_1> OR <x_ref> + <x_2>7
<x_ref> +

Fields are interpolated for some d € {size, kind, neutral}, triplet t,, = (Zrf, 1, %2), and answer
tanswer given the dimension d. We extract activations, logits, and apply all steering methods at the
final input token x7 = + in the last triplet ¢,,, depending on each method.

ZERO-SHOT PROMPT

In the zero-shot condition, the model is given a single triplet ¢,, = (Zref, 21, 22) and is asked to make
a discrimination along a semantic dimension d € {size, kind, neutral}.

PROMPT WITH IN-CONTEXT EXAMPLES

In the in-context condition, the model is given a sequence of n = 15 complete triplets [t1, ..., t15]
and is asked to make a discrimination for the final triplet 15 = (Zf, 21, Z2) along semantic dimen-
sion d € {size, kind}.

TASK VECTOR

Following |Hendel et al.|(2023), we extract task vectors for the KIND and SIZE conditions by first
constructing two prompts organized along each condition: xy,i,, containing 14 complete triplet
examples and one final incomplete example (with "+"), and xy, containing a single zero-shot
incomplete triplet.

For each layer ¢ € {0,..., L}, we extract the hidden activation in the residual stream at the final
token position of g, (i.e., the "+") and patch it into the corresponding position in zg. The
language model f then autoregressively generates a sequence xg, . . ., £} until a complete output is
produced.
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We repeat this procedure over 200 randomly generated (& iain, Tiest) PAirs, selecting the layer £ that
yields the highest accuracy. Finally, using this optimal layer ¢%, we repeat the procedure across 2400
additional prompt pairs to generate task vector embeddings for both the SIZE and KIND conditions.

DIFFMEAN

DIFFMEAN constructs a steering vector by computing the average difference between latent repre-
sentations of positive and negative examples along a target output dimension. Specifically, the mean
latent representation of the positive examples is subtracted from that of the negative examples, pro-
ducing a steering vector. This vector is then added (as opposed to task vectors, where it is patched)
to the latent representation of a held-out prompt x in order to steer the model’s output generation.

For a target steering dimension d € {size, kind} and its contrast d’, we generate 15 triplet examples
organized along d, and 15 along d’, where the final triplet in each set is incomplete and ends with
the "+" token.

Then, for a given layer £ € {0, ..., L}, we extract the residual stream representation r4. at the final
token position 1" from both Zrain,q and Tirin,q-. The DIFFMEAN steering vector is then computed as
the difference:

Vaitt = T (Tuain.d) — T (Tirain,ar)

This resulting vector vgsr defines a direction in the residual stream corresponding to the contrast
between the dimensions d € {size, kind}.

Similar to the task vector condition, We repeat this procedure over 200 randomly generated
(Ztrain, Teest) Pars, selecting the layer £ that yields the highest accuracy. Finally, using this opti-
mal layer £};, we repeat the procedure across 2400 additional prompt pairs to generate DiffMean
embeddings for both the SIZE and KIND conditions.

SAES

We use sparse autoencoders (SAEs) from GEMMASCOPE (Lieberum et al.||2024) to steer the model
along interpretable directions in residual space. An SAE is a linear model that decomposes a residual
stream vector r € R% as a sparse linear combination of features, where W & RI*E i a learned
feature dictionary and z € R¥ is a sparse activation vector. Each column of W defines a directional
feature in residual space, and only a small number of features are active for any given input.

For each semantic dimension d € {size, kind}, we construct 20 prompts and identify the feature
f € R? with the highest average activation at layer £ = 20. We steer the model by injecting c - f
(with ¢ = 50) into the residual stream at layer 20 (the only available layer for gemma-2-9b-it
on GEMMASCOPE), and generate 2400 zero-shot completions from held-out prompts x. These
completions are used to construct semantic embeddings for each SAE-steered dimension.
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A.2 PROCRUSTES CORRELATIONS FOR ALL PROMPT AND STEERING METHODS

The comprehensive set of procrustes correlations for all steering methods, for gemma—-2-9b-it
and gemma-2-27b-1it.

Pairwise Procrustes Correlations
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Figure 4: Full procrustes correlations for all methods
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A.3 ICL PROMPT ANALYSIS

We systematically vary the number of example triplet pairs included in the KIND condition for
gemma-2-9b-1it to examine how changes to the input prompt affect model accuracy and human
alignment. We find that there is no significant impact of the number of ICL examples on accuracy
or alignment.
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(a) Procrustes correlations with varied ICL examples (b) Mean accuracy with varied ICL examples

Figure 5: Impact of varying the number of ICL examples on model performance

A.4 EMBEDDINGS DIMENSIONS ANALYSIS

Cumulative variance explained by the first k£ dimensions of the embeddings for gemma—-2-27b-1it,
size condition. The first two dimensions of all embeddings were used for comparisons of represen-
tations.

Cumulative Variance Explained by First 8 PCs (gemma-2-27b-it prompt condition (size))
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Figure 6: Cumulative variance explained by embedding dimensions

A.5 FULL EMBEDDING PLOTS
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Figure 7: Embedding Plots: DiffMean and Prompt Methods
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Figure 8: Embedding Plots: Prompt Method Variations
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Figure 9: Embedding Plots: Prompt ICL, SAE, and Task Vector Methods
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Figure 10: Embedding Plots: Task Vector Size Condition
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