
Under review as a conference paper at ICLR 2022

LEARNING DISTRIBUTIONS GENERATED BY SINGLE-
LAYER RELU NETWORKS IN THE PRESENCE OF AR-
BITRARY OUTLIERS

Anonymous authors
Paper under double-blind review

ABSTRACT

We consider a set of data samples such that a constant fraction of the samples
are arbitrary outliers and the rest are the output samples of a single-layer neural
network (NN) with rectified linear unit (ReLU) activation. The goal of this paper
is to estimate the parameters (weight matrix and bias vector) of the NN assuming
the bias vector to be non-negative. Our proposed method is a two-step algorithm.
We first estimate the norms of the rows of the weight matrix and the bias vector
using the gradient descent algorithm. Here, we also incorporate either the median
or the trimmed mean based filters to mitigate the effect of the arbitrary outliers.
Next, we estimate the angles between any two row vectors of the weight matrix.
Combining the estimates of the norms and the angles, we obtain the final estimate
of the weight matrix. Our main contribution is the sample complexity for robust
estimation rather than the algorithm itself. Here, we prove that Ω( 1

εp4 log d
δ ) sam-

ples are sufficient for our algorithm to estimate the NN parameters within an error
of ε with probability 1− δ when the probability of a sample being uncorrupted is
p and the problem dimension is d. Our theoretical and simulation results provide
insights on how the estimation of the NN parameters depends on the probability of
a sample being uncorrupted, the number of samples, and the problem dimension.

1 INTRODUCTION

A fundamental challenge in machine learning and statistics is to estimate a high dimensional dis-
tribution given a set of observed data samples from the distribution. One solution technique is the
deep generative method that models the unknown distribution as the output distribution of a neural
network (NN) when the input of the NN is drawn from a known distribution like standard Gaussian
which is motivated from the case of image generation by generative adversarial networks (GANs)
(Goodfellow et al. (2014); Arjovsky et al. (2017); Radford et al. (2015); Kingma & Welling (2013);
Van Oord et al. (2016)). Then, the unknown distribution is estimated by learning the NN parameters
from the data samples. Several approaches like GANs (Goodfellow et al. (2014); Arjovsky et al.
(2017); Radford et al. (2015)), variational autoencoders (Kingma & Welling (2013)), and autore-
gressive models (Van Oord et al. (2016)) have been proposed to train the NN. However, they do not
provide theoretical guarantees for the parameter learning. So, we address the open problem of com-
puting the sample complexity for the parameter estimation of a single-layer NN with rectified linear
unit (ReLU) activation using a corrupted dataset in the unsupervised learning framework. Here, the
corrupted dataset refers to the model wherein the output samples consists of a fraction of arbitrary
outliers introduced by an adversary (Byzantine). Motivated by the deep generative models, we con-
sider the unsupervised learning framework, i.e., we assume the knowledge of the output samples
but, the corresponding inputs are unknown and drawn from the standard Gaussian distribution.

We start with a brief review of the related literature. The NN parameter estimation has been con-
sidered under both supervised and unsupervised learning frameworks. The estimation rely on the
stochastic gradient descent (SGD)-based algorithms (Goel et al. (2018); Allen-Zhu et al. (2019);
Chen et al. (2020); Oymak (2019); Mazumdar & Rawat (2018); Wu et al. (2019); Lei et al. (2020));
or the gradient descent (GD)-based approach (Cao & Gu (2019); Du et al. (2019)). A major short-
coming of these works is that they assume that the available samples are not corrupted by noise
or outliers. Several works in the literature have addressed the problem of corrupted samples in the
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context of supervised learning. The existing works have considered the learning of the parameters
of a NN with ReLU activation using both SGD-based (Bakshi et al. (2019); Goel et al. (2019);
Mukherjee & Muthukumar (2020)) and GD-based algorithms(Zhang et al. (2019); Frei et al. (2020);
Vempala & Wilmes (2019)). However, to the best of our knowledge, the estimation of a NN in the
presence of noise or outliers in the unsupervised learning framework has not been studied in the
literature.

Our setting of unsupervised parameter estimation is also related to the area of robust statistics as
described below. We recall that the goal of our paper is to estimate the parameters of a NN us-
ing corrupted output samples assuming that the input distribution is Gaussian. Mathematically, this
problem is equivalent to estimating the parameters of a truncated Gaussian distribution (see Sec-
tion 2 for details). The area of robust statistics also deals with the estimation of high dimensional
distributions like Gaussian, Gaussian product, and Gaussian mixture distributions where a constant
fraction of the samples were corrupted by noise (Huber (2004); Hampel et al. (2011); Lai et al.
(2016); Diakonikolas et al. (2019); Diakonikolas & Kane (2019); Kane (2021)). However, in this
paper, we consider parameter estimation from truncated Gaussian samples in the adversarial setting
which has not been studied in the literature.

We present our major contributions as the following.

• Parameter Estimation (Sections 2 and 3): We estimate the parameters (weight matrix and bias
vector) of a single-layer NN with ReLU in the unsupervised learning framework where each
output sample can potentially be an arbitrary outlier with a fixed probability. We propose an
estimation algorithm that has two steps: (i) we estimate the row norms of the weight matrix and
the bias vector using GD along with either the median or trimmed mean-based filters to mitigate
the effect of arbitrary outliers, and (ii) we estimate the angles between any two row vectors of
the weight matrix using a simple geometric result (Williamson & Shmoys, 2011, Lemma 6.7).

• Theoretical guarantees (Section 4): We show that the proposed algorithm requires Ω( 1
εp4 log d

δ )

samples to estimate the network parameters within an error of ε with probability 1− δ when the
probability of a sample being uncorrupted is p. Here, ε > 0 represents the estimation error.

• Empirical validation (Section 5): We evaluate the performance of our algorithm empirically in
terms of its relation to the probability of a sample being uncorrupted, number of samples, and
dimension (see Figs. 1 and 2). We see that our proposed filtering schemes ensure robustness
to the arbitrary outliers. Also, the performance of our algorithm improves with the increase in
the probability of a sample being uncorrupted and the number of samples, as expected. Further,
we note that the estimation error increases slowly as the dimension grows for a fixed number of
samples in the presence of arbitrary outliers. These observations from the empirical results are
consistent with our theoretical results.

To summarize, in this paper, we estimate the parameters of a single-layer NN with ReLU activation
in the presence of arbitrary outliers. The results obtained in this paper provide insights to generalize
to a multi-layer NN with various activation functions and obtain generalization bounds.

2 LEARNING A NEURAL NETWORK MODEL USING CORRUPTED OUTPUT
SAMPLES

We consider a single-layer ReLU NN. Let the weight matrix of the NN be denoted by W ∈ Rd×k
and the bias vector by b ∈ Rd. The input to the NN is denoted by the latent variable z ∈ Rk.
We assume that the variable z is drawn from the standard Gaussian distribution. The Gaussianity
assumption is for mathematical tractability, and it is motivated by a popular generative approach to
estimate a high-dimensional distribution from observed samples in the case of image generation by
GANs Goodfellow et al. (2014); Radford et al. (2015); Arjovsky et al. (2017). Thus, the output of
the network is the random vector x ∈ Rd given by

x = ReLU(Wz + b), where z ∼ N (0, Ik), (1)

where N (0, Ik) denotes the Gaussian distribution with mean 0 and covariance matrix Ik which is
the identity matrix of size k×k. Let the distribution of the random vector x be denoted byD(W,b).
Then, our goal is to estimate the unknown parameters W and b of the distribution D(W,b) using
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the knowledge of n output samples x1,x2, . . . ,xn. Here, we assume that a fraction of the samples
are arbitrary outliers. The distribution of the observed samples are modeled using the Huber’s p-
contamination model 1 defined as the following.
Definition 2.1 (Huber’s p-Contamination Model Huber (1964)). The observed samples are said to
be following Huber’s contamination model if any given sample is drawn from the true distribution
D and an arbitrary distribution G with probability p, and 1 − p, respectively. In other words, the
observed samples are drawn from the mixture distribution, Dp(W,b) given by

Dp(W,b) = pD(W,b) + (1− p)G. (2)

Note that if b has large negative values, then most of the output samples are zeros due to the ReLU
operation. Further, if W is a zero matrix, then any negative coordinate of b cannot be identified as
it is reset to zero after the ReLU operation. Further, in Wu et al. (2019), the authors have shown that
if b ∈ Rd then exponentially large number of samples are required to estimate the bias. This holds
true in our case as in the presence of arbitrary outliers if b has large negative values, then we would
require larger number of samples to estimate the bias vector b compared to that in Wu et al. (2019).
Hence, we also assume b to be non-negative.

Our estimation problem is challenging due to two reasons: 1) ReLU operation is not invertible, and
therefore, estimation of W and b utilizing maximum likelihood of the probability density function
of the random vector x is intractable; 2) the distribution of the corrupted samples is unknown. We
tackle these issues using a new formulation combining the GD algorithm and a filtering technique.
Note that the GD algorithm is similar to that in Wu et al. (2019) wherein the authors use the SGD
algorithm. The proposed algorithm is presented in the next section.

3 ESTIMATION OF PARAMETERS OF SINGLE-LAYER NN

To design our estimation algorithm, we first note that the weight matrix W may not be identifiable
from the distribution D(W,b). This is because of the fact that for any matrices W1 and W2 if
W1W

T
1 = W2W

T
2 then there exists a unitary matrix Q such that W2 = W1Q. As z ∼ N (0, Ik),

we have Qz ∼ N (0, Ik). Hence, for any vector b, we have D(W1,b) = D(W2,b) (Wu et al.
(2019)). Since our goal is to learn the distribution, learning either W1 or W2 is sufficient. In
short, we focus on the learnability of the underlying distribution and not the learnability of the NN
parameters. Therefore, our proposed algorithm estimates WWT ∈ Rd×k and b ∈ Rd from the
observed samples from Dp(W,b).

Next, we note that (i, j)-th entry
(
WWT

)
(i, j) of the symmetric matrix WWT is ‖W(i, :

)‖2‖W(j, :)‖2 cos(θij), where θij = θji is the angle between vectors W(i, :) and W(j, :) which
are the i-th and j-th rows of matrix W, respectively. Also, note that the `p norm of a vector is
given by ‖x‖p = (

∑
i |x(i)|p)1/p. Thus, we can construct the matrix WWT using the row norms

{‖W(i, :)‖2}di=1 and angles {θij}di,j=1.

Our estimation algorithm consists of two steps: 1) estimation of row norms of W and bias vector b;
and 2) estimation of angles between the row vectors of W.

To estimate ‖W(i, :)‖2 ∈ R and b(i) ∈ R, for i ∈ [d] = {1, 2, . . . , d}, suppose x ∼ D(W,b). Its
i-th coordinate can be written as

x(i) = ReLU(W(i, :)Tz + b(i)), (3)

where W(i, :)Tz + b(i) ∼ N (b(i), ‖W(i, :)‖22). Thus, to compute b(i) and ‖W(i, :)‖22, it is
enough to consider the i-th entries of the observed samples. Also, in (3), the ReLU operator sets
x(i) to zero if W(i, :)Tz + b(i) is negative. Consequently, we estimate b(i) and ‖W(i, :)‖22 using
the positive entries of the observed samples. Hence, estimation of b(i) and ‖W(i, :)‖2 is equivalent
to estimating the parameters of a one-dimensional normal distribution using positive samples, i.e.,
the samples that belong to the set R>0 := {x(i) ∈ R : x(i) > 0}. We use µ∗ = b(i) and σ∗2 =
‖W(i, :)‖2 to denote the parameters of this one-dimensional normal distribution. The estimation of
µ∗ and σ∗2 using corrupted samples is discussed next.

1Our algorithm and its analysis follow even if the outliers are not sampled from the same arbitrary distribu-
tions G. However, we need to assume that all the true samples come from the same distribution D.

3



Under review as a conference paper at ICLR 2022

Algorithm 1: Learning one-layer ReLU
NN with outliers
Input: Samples x1, . . . ,xn ∈ Rd

1 for i ∈ [d] do
2 X>0 ← {xm,m ∈ [n] : xm(i) > 0}
3 v̂ = ProjGD(X>0)

4 Σ̂i,i ← 1/v̂(1)

5 b̂(i)← max{0, v̂(2)/v̂(1)}
6 for i < j ∈ [d] do
7 Compute θ̂ij using (11)

8 Σ̂(i, j)←
√

Σ̂(i, i)Σ̂(j, j) cos(θ̂ij)

9 Σ̂(j, i)← Σ̂(i, j)

Output: Σ̂ ∈ Rd×d, b̂ ∈ Rd

Algorithm 2: ProjGD
Input: Samples X>0, Parameters T ,γt, and nb

1 Compute {xj(i)}nbj=1 from X>0 using (7)

2 g̃x ← filter
(
{xj(i)}nbj=1

)
3 v0 ← [0 0]
4 for t = 1, 2, . . . , T do
5 µ← vt−1(2)/vt−1(1)
6 σ2 ← 1/vt−1(1)

7 g̃z←
[
−(σ̆2 + µ̆2)/2 µ̆

]T
using (5) and (6)

8 g̃t ← g̃x + g̃z

9 ṽt ← vt−1 − γt−1g̃t−1

10 vt ← P (ṽt) using (10)

Output: vT ∈ R2

We determine the parameters of the univariate normal distribution using maximum likelihood es-
timation (Daskalakis et al. (2018)) given by arg minv `(v) where `(v) is the expected negative
log-likelihood with respect to x(i) and v = [1/σ2;µ/σ2] ∈ R2. This optimization problem can
be solved using a learning algorithm like GD or SGD. SGD utilizes only one sample for the gradi-
ent computation which introduces large variance due to the stochasticity and low reliability in the
presence of arbitrary outliers. Thus, we use GD that utilizes all the samples for the gradient.

To derive our algorithm based on GD, we compute the gradient (Daskalakis et al. (2018)),∇`(v) =
Ex,z[g(i)] where

g(i) = gx(i) + gz(i) =
[
x2(i)/2 −x(i)

]T
+
[
−z2(i)/2 z(i)

]T
. (4)

Here, x(i) ∼ N (µ∗, σ∗2;R>0) and z(i) ∼ N (µ, σ2;R>0). Also, µ∗ and σ∗2 are the parameters
of the true distribution, and µ and σ2 are functions of v. In (4), Ez[gz(i)] admits a closed form
expression (Johnson et al. (1995)), g̃z = Ez[gz(i)] =

[
−(σ̆2 + µ̆2)/2 µ̆

]T
. Here, we define

µ̆ = E[z(i)|0 < z(i) <∞] = µ+
φ(−µ/σ)

1− Φ(−µ/σ)
σ, (5)

σ̆2 = Var(z(i)|0 < z(i) <∞) = σ2

(
1− µ

σ

φ(−µ/σ)

1− Φ(−µ/σ)
−
(

φ(−µ/σ)

1− Φ(−µ/σ)

)2
)
, (6)

where φ(·) and Φ(·) denote the probability density function and the cumulative distribution function
of the standard normal distribution, respectively. We also need Ex[gx(i)] to compute Ex,z[g(i)].
Since the value of Ex[gx(i)] is not known, we use the sample mean to estimate Ex[gx(i)]. For this,
all the positive samples are partitioned into nb batches. Let Sj be the j-th batch. We then compute
the vector xj(i) ∈ R2 as follows:

xj(i) =
1

|Sj |
[∑

x(i)∈Sj x(i)2/2 −
∑

x(i)∈Sj x(i)
]T
. (7)

We then combine the nb vectors {xj(i)}nbj=1 to estimate Ex,z[g(i)]. Recall that the observed samples
are from the mixture distribution Dp(W,b). Therefore, to compute the expectation with respect to
the true distribution D(W,b), a filter is applied on this set of nb vectors to mitigate the effect of the
arbitrary outliers which is a common tool in the robust statistics literature and obtain Ex[gx(i)]. We
consider two filters: median and trimmed mean.

Median: The median based filter possesses the following robustness property. Typically, a median
is the value separating the higher half from the lower half of a given set of points. If more than half
of a given set of points are in [−M,M ] for some M > 0, then their median must be in [−M,M ].
Thus, the median of {xj(i)}nbj=1 is the vector computed either from all the true samples or outliers
whose magnitudes are comparable to the true samples.

Trimmed Mean: The trimmed mean removes the vectors among the set of nb vectors with relatively
large and small values and computes the estimate of Ex[gx(i)] as the mean of the remaining vectors.
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Here, we use the parameter β to indicate the number of vectors to be discarded. This technique
prunes the vectors xj(i), j ∈ [nb] that are computed from the batches with outliers having relatively
high or low magnitudes. Therefore, we obtain the gradient estimate as

g̃(i) = g̃x(i) + g̃z(i) = filter
({

xj(i)
}nb
j=1

)
+
[
(σ̆2 + µ̆2)/2 µ̆

]T
, (8)

where filter is either median or trimmed mean, and µ̆ and σ̆2 are given in (5) and (6), respectively.

Having computed the gradient estimate, we next present the proposed GD algorithm. In the t-th
iteration, the algorithm performs the following three steps: The first step is Gradient Computation
Step where the gradient g̃t ∈ R2 is computed from the observed positive samples using (8). The
second step is Update Step where the gradient computed in the previous step is used to perform the
GD update:

ṽt = vt−1 − γt−1g̃t−1, (9)
where γt−1 > 0 is the diminishing step size. The last step is Projection Step where the objective
function l(v) is a strongly convex function of v, if v belongs to a bounded region. To control the
strong-convexity of the objective function, we project the update vector v into the domain Dr ={
v ∈ R2 : 1/r ≤ v(1) ≤ r, |v(2)| ≤ r

}
. Thus, the projection is

P (v) = [min{max{v(1), 1/r}, r} min{max{v(2),−r}, r}] . (10)

The GD algorithm is run for T iterations where T is the algorithm parameter. The overall algorithm
is summarized in Algorithm 2. This completes the first step of our algorithm that uses the GD
algorithm to obtain the estimate of the bias vector and the row norms of the weight matrix.

Finally, using the estimates b̂ and Σ̂ obtained using the GD algorithm, we estimate θ̂ij similar to Wu
et al. (2019) using (Williamson & Shmoys, 2011, Lemma 6.7). Specifically, we have

θ̂ij = π − 2π

(
1

n

n∑
m=1

1(xm(i) > b̂(i))1(xm(j) > b̂(j))

)
, (11)

where 1(·) denotes the indicator function and b̂ is the estimate of the bias vector computed in the
previous step using the projected GD algorithm.

The overall algorithm is given in Algorithm 1 where Σ̂ is the estimate of WWT. Here, Steps 1-5
estimate the row norms of W and b, and Steps 6-9 estimate the angles between any two rows of W.

Our algorithm is similar to that in Wu et al. (2019) except for the filter which is also a standard
technique in robust statistics. However, our algorithm is different from the algorithm in Wu et al.
(2019) in the following aspects. We do not rescale the unknown parameters (see Step 1 of Algorithm
2 in Wu et al. (2019)). We employ median or trimmed mean based filter to compute the full gradient
and utilize the GD algorithm instead of SGD used in Wu et al. (2019). We note that our main
contribution is the analysis rather than the algorithm which is presented in the next section.

4 THEORETICAL GUARANTEES FOR PARAMETER ESTIMATION

In this section, we provide our main result which characterizes the sample complexity for robust
estimation of NN parameters. We address the general problem of learning the distribution generated
by a NN in the presence of arbitrary outliers (p ≤ 1). Hence, the proof techniques which have been
devised for only the special case of p = 1 in Wu et al. (2019), are not applicable to our setup due
to the presence of corrupted samples. Therefore, we develop novel proof techniques for performing
the parameter estimation in the presence of arbitrary outliers. To arrive at the main result, we first
present the error bounds for the two steps of Algorithm 1, which are described in Sec. 3.

The following proposition provides the estimation error bounds for the first step, i.e., the estimation
of the bias vector b and the norms of the row vectors of WWT. The proof relies on the fact that
the objective function is η-strongly-convex and L-smooth, and we show that the parameters η, L are
functions of r. Using the properties of the objective function, we the bound on the error between the
true gradient ∇l(v) and the estimated gradient g̃t computed from the output samples with arbitrary
outliers, obtained in terms of parameter ε. This bound leads to the following result that shows that
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we can estimate b(i) within an additive error of Ξ‖W(i, :)‖ and Σ(i, i) within an additive error of
Ξ‖W(i, :)‖2 where Ξ is a function of the above parameters.
Proposition 4.1. Suppose we initialize the projected gradient step (Algorithm 2) such that ‖v0 −
v∗‖ = V and choose the step size γt = γ and the number of iterations as T . Then, there exists
γ > 0 such that for any δ, ε ∈ (0, 1), the output (Σ̂(i, i), b̂(i)) of the projected GD step of our
algorithm with median-based filter for any i ∈ [d] satisfies

|Σ̂(i, i)− ‖W(i, :)‖2| ≤ Ξ‖W(i, :)‖2 and |b̂(i)− b(i)| ≤ Ξ‖W(i, :)‖, (12)

with probability at least 1 − δ if the number of data samples n ≥ 1
p2(pΨε−1/2)2 log 1

δ . Here, the

error bound is Ξ = V
(

1− L
η+L

)T
+ 2ε(L+η)

Lη with η, L > 0 being constants that depend only on

the parameter r. Also, p is the probability of a sample being uncorrupted and Ψε ∈ [1/2p, 1] is such
that O(ε3) ≤ Ψε ≤ O(

√
ε) with ε > O

(
p−1/3

)
where the order constants depend only on r.

Proof. See Appendix A.1.

The two terms in the error bound Ξ in Proposition 4.1 can be interpreted as the following. The

first term V
(

1− L
η+L

)T
captures the convergence error due to the GD algorithm. For any upper

bound on the convergence error Ω > 0, Algorithm 1 runs in time (log Ω− log V )/ log
(

η
η+L

)
. This

relation shows that smaller convergence errors require more iterations. The second term 2ε(L+η)
Lη

captures the error due to the gradient computed using the observed samples. Two factors contribute
to this error: 1) difference between the (true) sample mean and the true mean, and 2) the arbitrary
outliers. Also, the difference between the sample mean and true mean decreases with the number of
samples. We notice that the sample complexity depends on Ψε which is the probability of a sample
being uncorrupted deviating from its mean and variance by ε and as Ψε ≤ O(

√
ε). Consequently,

for smaller error ε, we need a large number of samples n = Ω( 1
εp4 log d

δ ). We also note that the
lower bound on ε decreases with p.

The following proposition bounds the estimation error in the second step, i.e., the estimation of the
angle between any two row vectors W(i, :) and W(j, :) (where i 6= j ∈ [d]). The result shows that
we can estimate θij within an additive error of Ξ.
Proposition 4.2. Assume that (12) holds. Then, for a fixed pair of i 6= j ∈ [d] and δ, ε ∈ (0, 1), the
estimate θ̂ij of Algorithm 1 that uses a median-based filter satisfies

| cos θ̂ij − cos θij | <
√

2πp(pΨε − 1/2) + 3π(1− p) + 2π(2− p)Ξ, (13)

with probability at least 1 − δ if the number of data samples n ≥ 1
p2(pΨε−1/2)2 log 1

δ . Here, the

error bound is Ξ = V
(

1− L
η+L

)T
+ 2ε(L+η)

Lη with η, L > 0 being constants that depend only on

the parameter r. Also, p is the probability of a sample being uncorrupted and Ψε ∈ [1/2p, 1] is such
that O(ε3) ≤ Ψε ≤ O(

√
ε) with ε > O

(
p−1/3

)
where the order constants depend only on r.

Proof. See Appendix A.2.

Combining Propositions 4.1 and 4.2, we next present the sample complexity needed to achieve a
small parameter estimation error. Specifically, the diagonal entries, Σ(i, i), for i ∈ [d] are obtained
from Proposition 4.1. Further, the off-diagonal entries of Σ are obtained by combining the Proposi-
tions 4.1 and 4.2 to obtain the final result as follows:
Theorem 4.3. Suppose we initialize the projected gradient step (Algorithm 2 with median-based
filter) such that ‖v0 − v∗‖ = V and choose the step size γt = γ and the number of iterations as T .
Then, there exists γ > 0 such that for δ, ε ∈ (0, 1), the output of Algorithm 1, (Σ̂, b̂) satisfies

‖Σ̂−WWT‖F ≤
(√

2πp(pΨε − 1/2) + π(2− p)(3 + 2Ξ)
)
‖W‖2F (14)

‖b̂− b‖ ≤ Ξ‖W‖F , (15)
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with probability at least 1 − δ if the number of data samples n = Ω( 1
εp4 log d

δ ). Here, p is the
probability of a sample being uncorrupted and Ψε ∈ [1/2p, 1] is such that O(ε3) ≤ Ψε ≤ O(

√
ε)

with ε > O
(
p−1/3

)
where the order constants depend only on r.

Proof. See Appendix A.3.

We note that in Propositions 4.1 and 4.2, and Theorem 4.3, η, L and the other order constants depend
on the parameter r > 0. Recall that the parameter r is required for the convexity region Dr and we
can choose r to be a large constant. Thus, r is a relatively insensitive parameter which does not
require any hand-tuning.

As the probability of a sample being uncorrupted p reduces, we observe that the error bound in (14)
becomes larger as expected. Also, as the probability of a sample being uncorrupted decreases, the
number of samples n required for the error bound increases. Moreover, the obtained error bounds
increase with the problem dimension for a fixed number of samples.

Our results are also comparable with the existing error bounds for ReLU parameter estimation
without outliers from (Wu et al., 2019, Theorem 1). Specifically, if there are no outliers, for any
ζ, δ ∈ (0, 1), the number of samples n = O( 1

ζ2 log d
δ ) are sufficient for the SGD algorithm in Wu

et al. (2019) to achieve the following error bounds with probability at least 1− 2δ,

‖Σ̂−WWT‖F ≤ ζ‖W‖2F and ‖b̂− b‖ ≤ ζ‖W‖F , (16)

where ζ indicates the parameter estimation error. Comparing the above bounds with (14) and (15),
we observe that our bounds are larger due to the presence of arbitrary outliers. In particular, Ξ

consists of two error terms. The first term V
(

1− L
η+L

)T
< 1 in our error bounds results from the

convergence of the GD algorithm and is similar to ζ < 1 in (16). However, the second error term
2ε(L+η)
Lη quantifies the error due to the gradient estimated from the output samples with arbitrary

outliers and is not present in (16). Additionally, in (14), the extra term 3π(2 − p) further increases
the bound compared to the error bound in (16). Therefore, the error ζ in (16) can not be directly
compared to the error in (14) and (15). Further, our sample complexity depends on the probability
of a sample being uncorrupted p and the second error term ε whereas the complexity in (Wu et al.,
2019, Theorem 1) depends on the square of the convergence error term ζ in their sample complexity.
Also, when there is no outlier (p = 1), the two sample complexities do not match.

5 SIMULATION RESULTS

In this section, we provide numerical results to verify the performance of our algorithm. In our
setup, the columns of W are chosen as the left singular vectors of random matrices from the standard
Gaussian distribution. For b, we use a random vector from the standard normal distribution whose
negative values are replaced with zeros. The mixture of samples are generated such that a sample
comes from D(W,b) with probability p and from G = N (5, 1) with probability 1− p. The hyper-
parameters in our proposed algorithm are set as r = 3 and γt = 1

0.1t . We use the batch-splitting
approach to compute the gradient. This approach induces randomization. As the output samples
consist of a fraction of arbitrary outliers, the standard gradient descent algorithm without any filter
would perform poorly as shown in our results. Also, we choose the total number of GD and SGD
iterations T to be |X>0|/100 where |X>0| is the number of positive output samples. From our
experiments, we observe that the errors first decrease with the number of iterations and then after a
certain number of iterations, the errors flatten. Based on this observation, we chose the number of
iterations (see Appendix A.4). Note that we discard the zero entries and only consider only the set
of positive samples X>0 for the number of iterations as they do not convey any information about
the row norms of W and bias vector b.

We compute two error metrics from the estimated parameters and the ground truth, ‖Σ̂ −
WWT‖F /‖W‖2F and ‖b̂−b‖2/‖W‖F . Also, we compare our algorithm with two other schemes:
oracle scheme (estimation using the true samples only), and scheme without filter.

The results are shown in Figs. 1 and 2, and Table 1, and the observations from them are as follows.
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Figure 1: Comparison of the different GD schemes as a function of p (first column), n (second column), and
d (third column). The figures indicate that utilizing the filters improves the performance of GD algorithm for
mixture of samples.

0.8 0.85 0.9 0.95 1

Probability of true samples (p)

0

0.5

1

1.5

2

2.5

3

E
rr

o
r 

in
 b

ia
s
 v

e
c
to

r

0.8 0.85 0.9 0.95 1

Probability of true samples (p)

0

0.5

1

1.5

2

2.5

3

3.5

E
rr

o
r 

in
 w

e
ig

h
ts

(a) d = 5 and n = 20000.

0 0.5 1 1.5 2

No.of samples (n) 10
5

0

0.1

0.2

0.3

0.4

E
rr

o
r 

in
 b

ia
s
 v

e
c
to

r

0 0.5 1 1.5 2

No.of samples (n) 10
5

10
-1

10
0

E
rr

o
r 

in
 w

e
ig

h
t 

m
a
tr

ix

(b) p = 0.95 and d = 5.

5 10 15 20

Dimension (d)

0

0.2

0.4

0.6

E
rr

o
r 

in
 b

ia
s
 v

e
c
to

r

5 10 15 20

Dimension (d)

0

0.2

0.4

0.6

0.8

1

E
rr

o
r 

in
 w

e
ig

h
t 

m
a
tr

ix

(c) p = 0.95 and n = 20000.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5
1

SGD with Median GD with Median Oracle SGD Oracle GD

Figure 2: Comparison of GD and SGD schemes as a function of p (first column), n (second column), and d
(third column). We infer that SGD is more sensitive to corrupted samples compared to GD.

Effect of filters: From Fig. 2, we observe that the GD schemes perform better than the corresponding
SGD schemes. Further, the performance is improved when we use median based filter along with
GD or SGD (for instance, as seen by comparing the performances of GD without Filter and GD with
Median in Fig. 1). Thus, the filter ensures that the effect of the outliers is reduced, and the curves are
closer to the Oracle GD scheme. Finally, from Fig. 1, we also infer that the median-based approach
performs slightly better than the trimmed mean-based approach.

Dependence on probability of a sample being uncorrupted p: The variation in the error estimation as
a function of p is shown in Figs. 1a and 2a. The performance of the proposed schemes improve with
p, as expected. This trend is because as p increases, the fraction of outliers in the observed samples
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Table 1: Runtime of various schemes when p = 0.95, n = 20000, and d = 5. The table indicates that SGD
schemes are faster than their GD counterparts.

Scheme Oracle Without Filter With Median With Trimmed Mean
GD 16.95 s 17.73 s 34.44 s 60.78 s

SGD 1.24 s 1.60 s 2.11 s 3.62 s

decreases, which leads to better performance. Note that the oracle schemes assume the knowledge
of true samples. Thus, their performance does not change with p. On the contrary, the performance
of the schemes without filters and SGD schemes with filter do not have a monotonic behavior with
p. This observation shows that these schemes are not able to handle the outliers effectively. Further,
all the schemes converge to the corresponding oracle schemes when p = 1.

Dependence on number of samples n: Figs. 1b and 2b show how the estimation error of different
schemes varies with n. We observe that the parameter estimation errors computed using Oracle
SGD and Oracle GD schemes decrease as the number of samples increases. This trend is because
the oracle schemes consider only the true samples. Also, the Oracle GD scheme performs better
than the Oracle SGD scheme. Further, the estimation errors computed using our proposed schemes
with median and trimmed mean based filters perform better than GD without filter. Hence, the filters
mitigate the effect of arbitrary outliers and having more samples reduces the estimation errors.

Dependence on dimension d: In Figs. 1c and 2c, we plot the error in different schemes as a function
of the dimension d. We note that due to the presence of arbitrary outliers, the errors increase as
the dimension increases for GD without filter. Further, we observe a performance improvement
using our proposed schemes with median and trimmed mean-based filters compared to the other
benchmarking schemes, supporting our previous conclusions that the filters mitigate the effect of
outliers. However, we observe a slow increase in the parameter estimation errors using our proposed
schemes with median and trimmed mean based filters as we increase the dimension for fixed number
of samples. We observe that the errors when using the oracle schemes also increase slowly as the
dimension is increased (Wu et al. (2019)).

Comparison of runtimes: From Table 1, we observe that the SGD schemes run faster than their GD
counterparts. This is because the SGD utilizes only one sample for the gradient whereas GD utilizes
all the samples for the gradient. Further, the usage of median and trimmed mean based filters along
with SGD or GD increases their computation times. However, we reiterate that using the GD scheme
with filters offers the best performance in terms of error (see Fig. 2). Further, the runtimes of the
trimmed mean-based schemes are significantly higher than those of the median-based schemes.

To summarize, from our results, we conclude that GD schemes offer better performance than the
SGD schemes. Also, we deduce that compared to the trimmed mean-based scheme, the median-
based filter is computationally more efficient while offering similar or lower estimation error. More-
over, the median-based scheme is parameter free (the trimmed mean depends on the parameter β)
and enjoys strong theoretical guarantees (see Theorem 4.3). Overall, the median-based GD algo-
rithm is the most effective approach to estimate the NN parameters in the presence of the outliers
and performs slightly better than trimmed mean-based GD algorithm. Further, we observe that GD
schemes with filters perform better than Oracle SGD scheme.

6 CONCLUSION

In this paper, we proposed an algorithm for estimation of the parameters of a single-layer ReLU
neural network from the truncated Gaussian samples where each sample was assumed to be an
arbitrary outlier with a fixed probability. Our only assumption was that the bias vector was non-
negative. We derived a GD-based algorithm for parameter estimation and incorporated filters to
handle the outliers. We analyzed the sample complexity of the proposed algorithm in terms of the
parameter estimation error. The efficacy of our approach was also demonstrated using numerical
experiments. Removing the non-negativity assumption on the bias vector is a promising direction
for future work. Also, extending our results to multi-layer neural networks is also an interesting
problem to consider in the future.
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A APPENDIX

A.1 PROOF OF PROPOSITION 4.1

We first list a set of results that are useful to prove Proposition 4.1.
Lemma A.1 (Daskalakis et al. (2018), Lemma 4). Consider the truncated normal distribution
N (µ,Σ,S) whose support is S ⊂ Rd. Suppose that the following holds for some υ > 0,∫

S

1√
2π|Σ|

exp

(
−1

2
(u− µ)TΣ−1(u− µ)

)
du ≥ υ. (17)

Then, the Hessian matrix H(Σ−1µ,Σ−1) of the negative log-likelihood function computed with
respect to (Σ−1µ,Σ−1) satisfies H � Cυ4λI. Here, C > 0 is a universal constant and λ is the
fourth moment of tensor of N (0,Σ) defined as

λ = min

{
min

1≤i≤j≤d
λiλj , min

1≤i≤d
λi

}
, (18)

where λ1, λ2, . . . , λd are the eigenvalues of Σ.
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Lemma A.2 (Bubeck (2014), Lemma 3.11). Let l be L-smooth and η-strongly convex in Rd. Then,
for all u1,u2 ∈ Rd, the following holds:

(∇l(u1)−∇l(u2))T(u1 − u2) ≥ ηL

η + L
‖u1 − u2‖2 +

1

η + L
‖∇l(u1)−∇l(u2)‖2. (19)

Lemma A.3 (Hoeffding’s inequality (Vershynin (2018), Theorem 2.2.2)). Let the RVs {xi ∈
{0, 1}}ni=1 be iid Bernoulli RVs with mean p. Then, for any ε ∈ (0, 1), we have

P

(
n∑
i=1

xi ≤ (p− ε)n

)
≤ e−2ε2n. (20)

Lemma A.4 ((Abramowitz & Stegun, 1965, Formula 7.1.13)). For any y ∈ R, we have√
2

π

e−y
2

y +
√
y2 + 4

< 1− Φ(y) <

√
2

π

e−y
2

y +
√
y2 + 8

π

. (21)

We next prove the desired result using the above lemmas. For this, we recall that the data samples
are processed coordinate-wise, and therefore, without loss of generality, we assume that d = 1.

The proof constitutes the following four main steps.

Step A We first prove some properties of the function `(x; v). We show that there exist con-
stants L, η > 0 that depends only on r such that `(v) is an η−strongly convex, and
L−smooth function of v.

Step B Using Step A, we next bound the error in the estimate of v in the t-th iteration of the
algorithm as follows:

‖vt+1 − v∗‖ ≤
(

1− η

η + L

)
‖vt − v∗‖+

1

L

∥∥g̃t −∇`(vt)∥∥ , (22)

where r and L are as defined in Step A above.

Step C Next, we use Step B to establish that with probability exceeding 1 − δ, the estimates
satisfy

(1− Ξ) ‖W‖2 ≤ Σ̂ ≤ (1 + Ξ) ‖W‖2 and |b̂− b| ≤ Ξ‖W‖, (23)

if n ≥ 1
p2(pΨε−1/2)2 log 1

δ where Ψε ∈ [0, 1] is an increasing function of ε.

Step D Finally, we characterize Ψε by proving that

O
(
ε3
)
≤ Ψε ≤ O(

√
ε). (24)

In the remainder of this section, we provide the details of each of these steps.

A.1.1 STEP A: STRONG-CONVEXITY AND SMOOTHNESS

We first prove the strong convexity. For this, we note that v ∈ Dr, and therefore, v(2)√
v(1)

≤ r3/2.

Consequently, with µ = v(2)/v(1) and Σ = 1/v(1) in Lemma A.1, we deduce∫
R>0

1√
2π/v(1)

exp

(
− (x− v(2)/v(1))

2
v(1)

2

)
dx = 1−Φ

(
− v(2)√

v(1)

)
≥ 1−Φ

(
−r3/2

)
.

(25)
Invoking Lemma A.1, we arrive at

∇2`(v) � C min
{

1/v(1), 1/v(1)2
}

I � C min
{

1/r, 1/r2
}

I, (26)

where C > 0 is a constant that depends only on r. Hence, `(v) is η-strongly convex where η
depends only on r.
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We next prove the smoothness of `(v) to complete the proof. We start by considering the Hessian
of `. The negative log-likelihood function is given by

l(v; x(i)) = − log φ(x(i); v) =
1

2
x2(i)v(1)− x(i)v(2)

+ log

[∫
R>0

exp

(
−1

2
z2v(1)− zv(2)

)
dz

]
. (27)

Computing the Hessian, given by∇2`(v), using the above equation, we have

∇2`(v)=E
z∼N( v(2)

v(1)
, 1
v(1)

,R>0)

[
1
4

(
z2 − E[z2]

)2 − 1
2

(
z2 − E[z2]

)
(z − E[z])

− 1
2

(
z2 − E[z2]

)
(z − E[z]) (z − E[z])

2

]
. (28)

However, from (26), the matrix∇2`(v) is a positive semi-definite matrix, and thus, its largest eigen-
value is upper bounded by the sum of its eigenvalues. As a result, we derive

∇2`(v) �
[
E
z∼N( v(2)

v(1)
, 1
v(1)

,R>0)

[(
z2 − E[z2]

)2
/4 + (z − E[z])

2
]]

I (29)

�
[
E
z∼N( v(2)

v(1)
, 1
v(1)

,R>0)

[
z4/4 + z2

]]
I. (30)

We further upper bound E
z∼N( v(2)

v(1)
, 1
v(1)

,R>0)

[
z4/4 + z2

]
as follows:

E
z∼N( v(2)

v(1)
, 1
v(1)

,R>0)[z4/4 + z2] ≤ 1

1− Φ

(
− v(2)√

v(1)

)E
x∼N( v(2)

v(1)
, 1
v(1) )

[z4/4 + z2] (31)

=
1

1− Φ

(
− v(2)√

v(1)

) [1

4

(
v(2)4

v(1)4
+ 6

v(2)2

v(1)3
+

3

v(1)2

)

+

(
1

v(1)
+

v(2)2

v(1)2

)]
, (32)

where we use the fact that the non-central second and forth moments of x ∼ N
(
µ, σ2

)
are µ2 + σ2

and µ4 + 6µ2σ2

+ 3σ4, respectively. Further, since v ∈ Dr, we arrive at

E
z∼N( v(2)

v(1)
, 1
v(1)

,R>0)[z4/4 + z2] ≤ 1

1− Φ
(
−r3/2

) (r8

4
+

3r5

2
+ r4 +

3r2

4
+ r

)
. (33)

Combining (30), (32), and (33), we conclude that ` is an L−smooth function where L > 0 depends
only on r. Hence, Step A of the proof outline is completed.

A.1.2 STEP B: BOUNDING ERROR USING THE GRADIENT

In the t-th iteration of the algorithm with γt = γ, the projection step satisfies

‖vt+1 − v∗‖ = ‖P (vt − γg̃t)− P (v∗)‖ (34)
≤ ‖vt − γg̃t − v∗‖ (35)

≤ ‖vt − γ∇`(vt)− v∗‖+ γ‖g̃t −∇`(vt)‖, (36)

where (35) follows from the non-expansiveness of projection, i.e., ‖P (x)−P (z)‖ ≤ ‖x−z‖. Here,
we note that

‖vt − γ∇l(vt)− v∗‖2 = ‖vt − v∗‖2 + γ2‖∇l(vt)‖2 − 2γ〈vt − v∗,∇l(vt)〉. (37)

Next, we use Lemma A.2 and Step A to simplify the third term as follows:

− 2γ (vt − v∗)
T∇`(vt) ≤ −2γ

[
ηL

η + L
‖vt − v∗‖2 +

1

η + L
‖∇`(vt)−∇`(v∗)‖2

]
, (38)

13



Under review as a conference paper at ICLR 2022

where L and η > 0 are as defined in Step A of the proof outline. Further, we notice that

∇`(v∗) = Ex∼N (b,‖W‖2,R>0)

[
1

f(x; v∗)
∇f(x; v∗)

]
=

∫
R>0

1

f(x; v∗)
∇f(x; v∗)f(x; v∗)dx

= ∇
∫
R>0

f(x; v∗)dx = 0, (39)

where we recall that f(x; v∗) denotes the probability density function of x ∼ N
(

v(2)
v(1) ,

1
v(1) ,R>0

)
.

Therefore, (38) simplifies as follows:

− 2γ (vt − v∗)
T∇`(vt) ≤ −2γ

ηL

η + L
‖vt − v∗‖2 − 2γ

1

η + L
‖∇`(vt)‖2. (40)

Substituting the above inequality into (37) with γ = 1
L , we get

‖vt − γ∇`(vt)− v∗‖2 ≤
(

1− 2η

η + L

)
‖vt − v∗‖2 +

(
1

L2
− 2

L(η + L)

)
‖∇`(vt)‖2. (41)

Combining the above inequality and (36), we obtain

‖vt+1−v∗‖ ≤
√

1− 2η

η + L
‖vt−v∗‖+

√
1

L2
− 2

L(η + L)
‖∇`(vt)‖+

1

L
‖g̃t−∇`(vt)‖. (42)

Further, from the definition of strong-convexity and smoothness, we have η ≤ L, and as a result, we
get

‖vt+1 − v∗‖ ≤
√

1− 2η

η + L
‖vt − v∗‖+

1

L
‖g̃t −∇`(vt)‖ (43)

≤
(

1− η

η + L

)
‖vt − v∗‖+

1

L
‖g̃t −∇`(vt)‖, (44)

where the last inequality follows from the fact that
√

1− x ≤ 1− x
2 for x < 1/2. Thus, we complete

Step B of the proof outline.

A.1.3 STEP C: BOUNDING ERROR IN THE GRADIENT ESTIMATE

To obtain the results, we derive a novel bound for the error between the true gradient and the es-
timated gradient from the output samples, which is a crucial step in obtaining the estimation error
bounds and could be of independent interest. Let X>0 = {x ∈ X : x > 0} be the set of posi-
tive data samples. We note that for any iteration index t, the error in the gradient is independent
of t. Also, recall that from Algorithm 2, the gradient estimated from the samples with arbitrary
outliers is gt = med

{[
x2(i)/2 −x(i)

]T}
. Further, as the uncorrupted samples are from the

truncated Gaussian distribution, the gradient estimated from the uncorrupted samples is given by
∇`(vt) =

[
σ∗2 −µ∗

]T
. Here, µ∗ and σ∗2 are the moments of the truncated Gaussian distribu-

tion N
(

v(2)
v(1) ,

1
v(1) ,R>0

)
. Therefore, substituting these in ‖gt − ∇`(vt)‖ and applying triangular

inequality yields

‖g̃t −∇`(vt)‖ ≤ |med {x : x ∈ X>0} − µ∗|+ |med
{
x2 : x ∈ X>0

}
− σ∗2|. (45)

By substituting v(2)
v(1) and 1

v(1) in the standard expressions of mean and variance of the truncated
Gaussian distribution, we get

µ∗ = E
x∼N( v(2)

v(1)
, 1
v(1)

,R>0)[x] =
v(2)

v(1)
+

1√
v(1)

 φ

(
− v(2)√

v(1)

)
1− Φ

(
− v(2)√

v(1)

)
 (46)

σ∗2 = E
x∼N( v(2)

v(1)
, 1
v(1)

,R>0)[x2] = E
x∼N( v(2)

v(1)
, 1
v(1) )

[x2] =
1

v(1)
+

(
v(2)

v(1)

)2

. (47)
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To bound the error in the gradient, ‖g̃t − ∇`(vt)‖, we first compute the probability of a sample
being uncorrupted deviating from its mean and variance, and then apply Lemma A.3 to handle the
outliers. For any error ε > 0, this probability is defined as

Ψε = P
x∼N( v(2)

v(1)
, 1
v(1)

,R>0)

{
|x− µ∗| ≤ ε, |x2 − σ∗2| ≤ ε

}
. (48)

Further, let E(x) be the event that ‖g̃t −∇`(vt)‖ ≤ ε. Then, a nonzero data sample x ∈ X satisfies
P{E(x)|x > 0} = pP{E(x)|x > 0, x ∼ D(W,b)}+ (1− p)P{E(x)|x > 0, x ∼ G} ≥ pΨε. (49)

Hence, using Lemma A.3, we arrive at

P

{
n∑
i=1

1{E(x(i))|x(i) > 0} ≥ (pΨε − δ)|X>0|

}
≥ 1− e−2δ2|X>0|, (50)

for any δ > 0. However, we have

P{|X>0| ≥ pn/4} ≥ P{|x ∈ X>0 : x ∼ D(W,b)| ≥ pn/4} ≥ 1− e−2(p/4)2n. (51)
Therefore, we obtain

P

{
n∑
i=1

1{E(x(i)), x(i) > 0} ≥ |X>0|/2

}
≥ (1− e−δ

2pn)(1− e−
p2n
2 ) ≥ 1− 2e−δ

2p2n/2, (52)

where we apply Lemma A.3 to bound the probability. Therefore, under the assumptions of Proposi-
tion 4.1, with δ = pΨε − 1/2 > 0, we get

P
{
‖g̃t −∇`(vt)‖ ≤ 2ε

}
≥ 1− 2e−(pΨε−1/2)2p2n. (53)

Hence, when n ≥ 1
p2(pΨε−1/2)2 log 1

δ , we obtain ‖g̃t −∇`(vt)‖ ≤ 2ε with probability 1− δ.

Combining the above relation with Step B, we have

‖vt+1 − v∗‖ ≤
(

1− η

η + L

)
‖vt − v∗‖+

2ε

L
. (54)

Using the recursive relation, we obtain

‖vT − v∗‖ ≤
(

1− η

η + L

)T
‖v0 − v∗‖+

2ε

L

T−1∑
i=0

(
1− η

η + L

)i
(55)

=

(
1− L

η + L

)T
V +

2ε(L+ η)

Lη
= Ξ, (56)

where we use the assumption that ‖v0−v∗‖ = V . From the above relation and using the definition
of v, we have

‖vT − v∗‖ = |‖Ŵ‖−2b̂− ‖W‖−2b|+ |‖Σ̂‖−1 − ‖W‖−2| ≤ Ξ, (57)
which holds with probability at least 1 − δ if n ≥ 1

p2(pΨε−1/2)2 log 1
δ . The above inequality imme-

diately leads to the desired result of Step C.

A.1.4 STEP D: CHARACTERIZING Ψε

For any error ε > 0, let Ψε be defined as in (48). We obtain the upper bound for Ψε as follows:

Ψε = P
x∼N( v(2)

v(1)
, 1
v(1)

,R>0)

{
(µ∗ − ε) ≤ x ≤ (µ∗ + ε),

√
σ∗2 − ε ≤ x ≤

√
σ∗2 + ε

}
(58)

=

[
1− Φ

(
− v(2)√

v(1)

)]−1

P
x∼N( v(2)

v(1)
, 1
v(1) )

{
max

{
µ∗ − ε,

√
σ∗2 − ε

}
≤ x

≤ min
{
µ∗ + ε,

√
σ∗2 + ε

}}
(59)

≤

[
1− Φ

(
− v(2)√

v(1)

)]−1

√
2π

(
min

{
µ∗ + ε,

√
σ∗2 + ε

}
−max

{
µ∗ − ε,

√
σ∗2 − ε

})
≤ O

(√
ε
)
, (60)
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where we use the fact that the probability density of the standard Gaussian distribution is no larger
than 1

2π .

Next, we complete Step D by proving the lower bound on Ψε. We note that v ∈ Dr is bounded and
thus, we arrive at

1 +
φ(−r3/2)√
r(1− Φ(

√
r))
≤ µ∗ ≤ r2 +

√
rφ(
√
r)

1− Φ(−r3/2)
(61)

1 + 1/r ≤ σ∗2 ≤ r + r4, (62)

where µ∗ and σ∗2 are defined in (46) and (47), respectively. Thus, we obtain the follow-
ing lower bound for Ψε by defining r1 = v(1) max

{
µ∗ − ε,

√
σ∗2 − ε

}
− v(2) and r2 =

v(1) min
{
µ∗ + ε,

√
σ∗2 + ε

}
− v(2).

Ψε =

[
1− Φ

(
− v(2)√

v(1)

)]−1

P
x∼N( v(2)

v(1)
, 1
v(1) )

{
max

{
µ∗ − ε,

√
σ∗2 − ε

}
≤ x

≤ min
{
µ∗ + ε,

√
σ∗2 + ε

}}
(63)

=

[
1− Φ

(
− v(2)√

v(1)

)]−1

Px∼N (0,1) {r1 ≤ x ≤ r2} (64)

≥
[
1− Φ

(
−
√
r
)]−1

[Φ (r2)− Φ (r1)] (65)

>

√
2

π

[
1− Φ

(
−
√
r
)]−1

 e−r
2
1/2

r1 +
√
r2
1 + 4

− e−r
2
2/2

r2 +
√
r2
2 + 8

π

 (66)

≥
√

2

π

[
1− Φ

(
−
√
r
)]−1

 1− r2
1/2

r1 +
√
r2
1 + 4

− 1− r2
2/2 + r4

2/8

r2 +
√
r2
2 + 8

π

 . (67)

Here, we use the fact that v ∈ Dr, Lemma A.4 and inequality 1 − y ≤ e−y ≤ 1 − y + y2

2 to get
(65), (66) and (67), respectively. Further, we obtain the upper bound for r1 and the lower bound for
r2 as the following using the relation v ∈ Dr.

r1 = v(1) max
{
µ∗ − ε,

√
σ∗2 − ε

}
− v(2) (68)

≤ v(1)

2
(µ∗ − ε+

√
σ∗2 − ε+ |µ∗ − ε−

√
σ∗2 − ε|)− v(2) (69)

≤ r

2

(
µ1 − ε+

√
σ1

2 − ε+ |µ1 − ε|+ |
√
σ1

2 − ε|
)

+ r ≤ O(r2 + rε). (70)

Similarly, we also have

r2 = v(1) min
{
µ∗ + ε,

√
σ∗2 + ε

}
− v(2) (71)

≥ v(1)

2
(µ∗ + ε+

√
σ∗2 + ε− |µ∗ + ε−

√
σ∗2 + ε|)− v(2) (72)

≥ 1

2r

(
µ2 + ε+

√
σ2

2 + ε− |µ2 + ε| − |
√
σ2

2 + ε|
)
− r ≥ O

(
r +

ε

r

)
. (73)

Combining (67), (70) and (73) the lower bound for Ψε is established and the Step D is complete.

A.2 PROOF OF PROPOSITION 4.2

We use the following lemmas to prove the result.
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Lemma A.5 (Wu et al. (2019), Lemma 2). Suppose that x ∼ D(W,b) and that b ∈ Rd is non-
negative, for all i 6= j ∈ [d],

Px∼D(W,b)[x(i) > b(i) and x(j) > b(j)] ≤ π − θij
2π

, (74)

where θij is the angle between vectors W(i, :) and W(j, :).

Lemma A.6 (Wu et al. (2019), Lemma 3). Let x ∼ D(W,b), where b is non-negative. Suppose
that b̂ ∈ Rd is non-negative and satisfies (12). Then, for all i 6= j ∈ [d],∣∣∣Ex∼D(W,b)[h(x; b̂)]− Ex∼D(W,b)[h(x; b)]

∣∣∣ ≤ Ξ. (75)

Using the above results, we next prove Proposition 4.2 as follows. Recall that given samples
{xm}nm=1 and an estimated bias vector b̂, for a fixed pair i 6= j ∈ [d], we have

θ̂ij = π − 2π

n

n∑
m=1

1[xm(i) > b̂(i) and xm(j) > b̂(j)]. (76)

To bound the error in the estimate θ̂ij , we define h(x; b̂) = 1(x(i) > b̂(i) and x(j) > b̂(j)). Then,
we deduce

1

2π

∣∣∣θ̂ij − θij∣∣∣
=

∣∣∣∣∣ 1n
n∑

m=1

h(xm; b̂)− Ex∼D(W,b)[h(x; b)]

∣∣∣∣∣ (77)

≤

∣∣∣∣∣ 1n
n∑

m=1

h(xm; b)− Ex∼D(W,b)[h(x; b̂)]

∣∣∣∣∣+
∣∣∣Ex∼D(W,b)[h(x; b̂)]− Ex∼D(W,b)[h(x; b)]

∣∣∣
(78)

≤Ξ+

∣∣∣∣∣ 1n
n∑

m=1

h(xm; b̂)−Ex∼Dp(W,b)[h(x; b̂)]

∣∣∣∣∣+∣∣∣Ex∼D(W,b)[h(x; b̂)]−Ex∼Dp(W,b)[h(x; b̂)]
∣∣∣ ,

(79)

where we use Lemma A.6 and the assumption that (12) holds to obtain the last inequality. Further,
from Hoeffding’s inequality (Lemma A.3), for any ω > 0, with probability at least 1− 2e−2ω2n, we
have

1

2π

∣∣∣θ̂ij − θij∣∣∣ ≤ Ξ + ω + (1− p)
∣∣∣Ex∼G [h(x; b̂)]

∣∣∣+ (1− p)
∣∣∣Ex∼D(W,b)[h(x; b̂)]

∣∣∣ (80)

≤ Ξ + ω + (1− p) + (1− p)
∣∣∣Ex∼D(W,b)[h(x; b̂)]

∣∣∣ . (81)

Here, we use the following relation to get (80),

Ex∼Dp(W,b)[h(x; b̂)] = pEx∼D(W,b)[h(x; b̂)] + (1− p)Ex∼G [h(x; b̂)]. (82)

Also,we use the inequality h(x; b̂) ≤ 1 to arrive at (81). We further simplify
∣∣∣Ex∼D(W,b)[h(x; b̂)]

∣∣∣
as follows. By assumption, b̂ satisfies

max (0,b(i)− Ξ‖W(i, :)‖) ≤ b̂(i) ≤ b(i) + Ξ‖W(i, :)‖, (83)

for all i ∈ [d]. We also assume that ‖W(i, :)‖ 6= 0, for all i ∈ [d] (the proof is straightforward if
‖W(i, :)‖ = 0). Therefore,

Ex∼D(W,b)[h(x; b̂)] ≤ P [x(i) > max (0,b(i)− Ξ‖W(i, :)‖)
and x(j) > max (0,b(j)− Ξ‖W(j, :)‖) |x ∼ D(W,b)] . (84)
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When x ∼ D(W,b), we can write x(i) = max(0,W(i, :)Tz + b(i)) with z ∼ N (0, 1). Since b is
non-negative, we arrive at

Ex∼D(W,b)[h(x; b̂)] ≤ P
[
W(i, :)Tz > −Ξ‖W(i, :)‖ and W(j, :)Tz > −Ξ‖W(j, :)‖

]
(85)

= P
[
−Ξ <

W(i, :)Tz

‖W(i, :)‖
≤ 0

]
+ P

[
−Ξ <

W(j, :)Tz

‖W(j, :)‖
≤ 0

]
+ P

[
W(i, :)Tz

‖W(i, :)‖
> 0 and

W(j, :)Tz

‖W(j, :)‖
> 0

]
(86)

≤ 2√
2π

Ξ +
1

2
≤ Ξ +

1

2
, (87)

where we use the fact that the probability density function of the normal distribution is bounded by
1√
2

.

Substituting the above relation in (81), we deduce that with probability exceeding 1− 2e−2ω2n∣∣∣θ̂ij − θij∣∣∣ ≤ 2πω + 3π(1− p) + 2π(2− p)Ξ. (88)

Since cos (·) has Lipschitz constant 1, substituting w = p(pΨε−1/2)√
2

, we derive the final result.

A.3 PROOF OF THEOREM 4.3

With of loss of generality, suppose that cos(θij) ≥ 0. Then, from Propositions 4.1 and 4.1, we have

Σ̂(i, j) =

√
Σ̂(i, i)Σ̂(j, j) cos(θ̂ij) (89)

≤ (1 + Ξ) ‖W(i, :)‖2‖W(j, :)‖2
(

cos(θij) + 2π
p(pΨε − 1/2)√

2
+ 3π(1− p)

+2π(2− p)Ξ) (90)

= (1 + Ξ) W(i, :)TW(j, :) + (1 + Ξ)

(
2π
p(pΨε − 1/2)√

2
+ 3π(1− p) + 2π(2− p)Ξ

)
× ‖W(i, :)‖2‖W(j, :)‖2 (91)

≤W(i, :)TW(j, :)+

[
(1 + Ξ)+(1 + Ξ)

(
2π
p(pΨε − 1/2)√

2
+3π(1− p)+2π(2− p)Ξ

)]
× ‖W(i, :)‖2‖W(j, :)‖2 (92)

≤W(i, :)TW(j, :) + (1 + Ξ)
(√

2πp(pΨε − 1/2) + 3π(2− p) + 2π(2− p)Ξ
)

× ‖W(i, :)‖2‖W(j, :)‖2, (93)

where (92) follows from the Cauchy–Schwarz inequality. Next, we have the following

|Σ̂(i, j)−W(i, :)TW(j, :)|

≤
(√

2πp(pΨε − 1/2) + 3π(2− p) + 2π(2− p)Ξ
)
‖W(i, :)‖2‖W(j, :)‖2, (94)

with probability at least 1− δ. Using the bound in (94), we get the following bound,

‖Σ̂−WWT‖2F =
∑
i,j∈[d]

(Σ̂(i, j)− 〈W(i, :),W(j, :)〉)2 (95)

≤
(√

2πp(pΨε − 1/2) + 3π(2− p) + 2π(2− p)Ξ
)2

‖W‖4F , (96)

which holds with probability at least 1 − δ if the number of data samples n ≥ 1
p2(pΨε−1/2)2 log d

δ .
We note that we obtain the probability using the union bound over all the d coordinates and rescaling
δ. Finally, we use that fact that Ψε ≤ O(

√
ε) from Proposition 4.1 to obtain the sample complexity.

This completes the proof.
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Figure 3: Comparison of the different GD schemes as a function of T for p = 0.95, d = 5, and n = 20000.
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Figure 4: Comparison of GD and SGD schemes as a function of T for p = 0.95, d = 5, and n = 20000.

A.4 ADDITIONAL SIMULATION RESULTS: ERRORS VS NUMBER OF ITERATIONS

Figs. 3 and 4 show how the estimation error of different schemes varies with T . We observe that
the parameter estimation errors computed using Oracle SGD and Oracle GD schemes decrease as
the number of samples increases. Also, the estimation errors computed using our proposed schemes
with median and trimmed mean based filters perform better than GD without filter. Hence, the
filters mitigate the effect of arbitrary outliers and having more samples reduces the estimation errors.
Further, we observe that the errors first decrease with the number of iterations and then after a certain
number of iterations, the errors flatten.
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