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A Notations

Table 1: Summary of notations

Ay set of arms played during block b

A set of arms played during time step ¢
Ayt arm played by user u during time step ¢
A, set of top U arms

A~ set of arms A\ A,

B number of blocks

Bay number of blocks arm a is played up till block b

K number of arms

Ly set of arms in A" where B, ;1 < my;

N, number of sub-optimal sets played that includes a

Da probability density of reward for arm a

Drw probability density for the interaction between 7 and v
St cumulative reward for user u after ¢ time step

Xy set of rewards obtained during time step ¢

Xat t-th reward obtained from playing arm «

Xyt  reward obtained by user w during time step ¢

Ry regret after T' time steps

R, regret of running 7 on instance v for T time steps

T time horizon

Tot number of time steps arm a is played up till time step ¢
U number of users

& event that u, is close to fi, for all a € [K]

Fb event that A, is sub-optimal but “not too bad”

Gb.i sub-event of F;, used in the regret analysis

Gvia arm-dependent variant of G ;
H sets in T" are played for at most B/2 times

1% set of all 1-subgaussian EgalMAB instances

P, probability law of reward for arm a

Py probability law for the interaction between 7 and v
Ay difference between u, and pa

Apax  difference between py and py41

Apin  difference between py + -+ py and pg—yy1 + - + pk
A set of arms [K]\A.

« technical constant used for the proof

B8 technical constant used for the proof

€b,b confidence radius of playing b’ blocks after block b
0 technical constant used for the proof

A Lebesgue measure

L expectation for distribution P,

A sum of the expected reward over the arms in A

s sum of the expected reward over the top U arms
fap empirical estimate of u, after playing a for b blocks
v EgalMAB instance

7r policy for EgalMAB

p counting measure
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B Detailed Algorithm

Algorithm 2: EgalUCB with implementation details

1 initialize current block b = 0
2 initialize current time step t =0
3 foreach a € [K] do
4 let number of blocks By =0
5 let cumulative reward S, =0
6 let upper confidence bound UCB, ; = 0o
7 end
8 while b <T/U do
9 update b=>b+1
10 let Ay Cy [K] be a set of U arms with highest UCB, 51
11 let ind = (1,...,U)
12 | foreach i € [U] do
13 update t =t+1
14 foreach u € [U] do
15 | let Ay, = Aplind[u]]
16 end
17 play (A1, ..., Ay,) and receive (X1 4,...,Xuy)
18 foreach v € [U] do
19 let @ = A[ind[u]]
20 let Sq ¢ = Sat—1+ Xyt
21 end
22 circular shift ind by one to the right
23 end
24 foreach a € A, do
25 ‘ let Bap = Bap—1+1
26 end
27 foreach a € [K] do
Sat 61n(bU)
28 let UCB,, = Basl Basl
29 end
30 end
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C Proofs of Upper Bounds

This section contains the proof for the upper bounds.

Lemma 1. Let (v, T,U) be a 1-subgaussian EqalMAB. Then, for all blocks b € [B],

2K

P(€5) < 175

Proof. Since the rewards are 1-subgaussian, we have

N 1
P(“La’b/ — /j,a‘ > Eb,b’) S 2exp <_2b/U€l2>,b/>

for any o’ € [b] due to Chernoff’s bound. Then, by applying the union bound over all arms and all possible
values of B, 1, we have

P(&;) < P(|flapr — tta] > €bpr)
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Lemma 2. Let b € [B]. If the set of arms Ay played during block b is sub-optimal and &, occurs, then Fy
also occurs.

Proof. Since Ay is assumed to be sub-optimal, we already have A4, > 0. Denote A, to be the set A.\Ay.
Observe that
Apy=> fla—= Y Ha= Y Ha— Y Ha-
a€A. a€Ayp a€A; a€A,

since the terms that are associated to arms in A, N A, cancel out. Furthermore, since EgalUCB chooses Ay
instead of A,, we have

E Pa,Bay 1t €-1,B,, 1 = E Pa,Boy 1+ €-1,B,, -
a€A,; a€A,

Using these observations, we have
E Ha + 261,7173&7;]_1 > E ﬂa,Ba,b_l + €-1,B,51
a€A,; acA,

> E Pa,Boy 1+ €-1,B,, .
a€A,

> Y

a€A,
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where the first and last inequality holds due to the assumption that &, occurs. Rearranging this, we have

Ay = Z Ha — Z Pa < 2 Z €b—1,B4 b1

acA, a€A,; a€A,;
<2 Z €B,B,p_1
a€A,;
where the last inequality holds because b — 1 < B. O

Lemma 3. Let (v,T,U) be a 1-subgaussian EgalMAB. Then, after T time steps, for all users u € [U], we
have

B 2
KA«

<Y ElAL KRN + T

b=1

Proof. We begin by decomposing R, r into

B
T s
Ruyr = i —E[Su7] = Z . —Eua,] = Z]E Ayl
b=1 b=1
Since I{€} + I{€°} = 1 almost surely for any event £, we can split

> E[As] =) EA4HEN+ ) E[ALI{E).
b=1 b=1

b=1

(#) (%)

To bound (&), we use [{A 4, =0} + I{A 4, > 0} =1 to get

> E[A4HEI AL, =01+ ) E[A4,H{EH{A4, > 0}].
b=1 b=1

Since Ay, I{A4, =0} = 0 almost surely, the first term is 0. To deal with the second term, observe for any
events £, &' F, if £ and &’ implies F, then I{& N&} = I{& H{E} < I{F} almost surely. As such, we have

B B
> E[AAHEN{AL, > 0}] <D E[AAI{F}]
b=1 b=1
by Lemma [2| thus concluding the proof for (#). To bound (&), observe that

B B
> EAAIEN =D E[A4, EIPE).
b=1 b=1

The expectation term can be bounded by

E[AalE] = D P(A = AlE) Aa
ACy[K]
< ) P(A = AEF) Anax
ACy[K]
- Amax
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Furthermore, we know that P(&f) < 2K /b2U 3 from Lemma |1} Substituting these results back, we have
B B
2K
S E[A,EP(ES) < Z B o
b=1

<He=S

71-QI(Amax
U3
thus concluding the proof for (). O

Lemma 4. Assume that b > K/U. On the event Fy, exactly one of the events in {Gy;}; occurs.

Proof. 1t is clear by definition that at most one of {G; ;}; can happen. We are left to show that at least one
of {Gp.i}; must happen. Suppose that none of {G;}; happens. Thus |L, ;| < U for all i € N. First, we
claim that all arms ¢ € A, are played at least once after block K/U. To see this, observe that the radius
€q,b = 00 until a is played; and after which €, < oo. This claim implies that there exist some sufficiently
large j € N such that the set Ly ; = (). Moreover, since {Ly;}; is a non-increasing sequence of sets, we have
that for all b > K /U, all arms a € A, must lie in exactly one L ;1\ L ;. Thus, we have

Yy ol-y ¥t
5 B,y
acA, ab L =1 a€Ly ;—1\Lp; 2,b—1
> 1
<> >

o

i—1acLy; \Ly; ¥ O
‘Lbz

oy il = ]
7=1 mb ?

1 1
SIS Vs — - ——
\/ b,1 P VI i+1 AVALLI XY

<

> 1 1
+;6 v <\/mb,i+1 a \/mb,i>
_ 62_1 _ 61
= U; Y

Substituting my ; into the inequality, we have

x 61;—1_572 - > Bi—l_ﬁi
U; \/WM _UZ )

= \/fyoﬂUln(BU) /a2

Rearranging the terms and evaluating the constants, we have

S 1—6\/T°°<6)i
U = A A .
;\/wUm(BU)/Agb B vln(BU); va 4

U
<\ 2am(Bry) A4

Since Fp happens, we have

241n(BU)
P VAR el
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which is a contradiction. Hence, at least one of the events {G; ;}; must happen. O

Lemma 5. Let v = (p1,...,pK). Suppose that p, is the density for a 1-subgaussian distribution for all
a € [K]. Then, after T time steps,

B o B bo—1
S TEAAHFEN =D AsGi}+ > AaI{F}
b=1 i=1 b=bg b=1
1 KAmax
< 21361In(B
< 21361n(BU) ;\ . +—
2136(K — U)In(BU) K Apax
< —+ .
B Amin U

for all users u € [U].

Proof. For each arm a € [K], each index i € N, and each block b € [B], let
Ghia=GpiN{ac Ay } N{Bap-1 <mu;}

be an arm-dependent variant of the event G ;. Since at least B'U arms satisfy Gb.i,o when Gy ; occurs, we
have

1
G} < U Z {Gpia}

ac
where A := [K]\A. is the set of arms that are not in A,. For each arm a € A, let

Ny =|{Ay: b€ [B]land a € A, and Ay, > 0}

be the number of distinct sub-optimal sets played that includes a, and let A, 1,. .., Aq N, be these sets sorted
by non-ascending order of its sub-optimality gap. In other words, if we denote
Aa,j = AALL,Ja

then Ag1 > -+ > Ay n,. Let b = K/U + 1. Almost surely we have

B B
STALHGF <Y Y

b=bg a€A b=bg

B No o
- Z Z Z Bia[’} {Gb,ia}I{A, = A j}

a€A b=bg j=1

No p =B
=22 iy 2 HGniaH{As = Auj}

a€A j=1 b=bg

Ay, _
ﬂiU ]I{gb,z,a}

We can upper bound this expression by considering the worst-case realization of the number of blocks each
set A, ; is played. Let us start with j = 1. Since A, 1 has the largest gap A, 1, the worst case realization is
when A, is played as many times as the event G ; , allows. Recall that G ; , implies that B, p—1 < mp ;.
It follows that we can play Aq 1 for at most yo'UIn(BU)/AZ ; blocks. We can use this argument to find
the worst-case realization on the number of blocks A, 2 is played. This works out to be

va'UIn(BU)  ~va'U In(BU) , 1 1
— =v2'Uln(BU) - | —/— — ——
a2 A7 Az, AZ
Repeating this argument, we have
Na A ) B
a,j _
DD G D MGl Ay = Aoy}
a€A j=1 b=bo
; N
yetln(BU) (1 - 1 1
S ; : YA [ —-——1)
g\ A Aa,1 ; ! Ai,j Ai,j—1
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The terms within the bracket can be further bounded by

_ 1 1
“ A?z, Ai J—1

N,—1
1 el PR G
_ + Z »J > »J
Aa,Na j—l a,j
S + 7.7 — >.7+1
Z Agj Aoyt
N,—1
1 c 1 1
= —|— —
Aa,Na ; (Aa,jJrl Aa,j)
< 2
Aa,NG ’

By combining these results, we have, almost surely, that

bo—1

ZAAbI[{]-"b} = Z Aa{Fp} + Z Ax,{Fp}

bbo

Amax
< Blm S 3 AnI{Gn)

i=1 b=bg

< KAmaX Z Z 2’yoz ln BU)

i=1 acA

KAmax 1 > N’
- +27ln(BU)ZAaN Z<3>

a€A e =1

KA. 1
X 4+ 2136 In(BU
T + n( )ZAa,NQ

a€A
KAma | 2136(K — U) In(BU)
U Amin

IN

where the last inequality holds because for all arms a € A, we have A, n, > i — ftg > Amin. As such,

1 K U
A o mm

ac€A

Note. Observe that when U = 1, we have A, n, = A4. As such, we can replace the last inequality using

ln(BU)ZAl = > IHA(T)

aEA a;Na a:Ag>0 @

to obtain the bound for the classic UCB1 algorithm.

Theorem 1 (Problem-Dependent Upper Bound). Let (v,T,U) a 1-subgaussian EgalMAB. After running
EgalUCB for T time steps, we have

2136(K - U) IH(T) + 4KAmax

<
RT - AInin U
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Proof. We can bound the regret by

B

KA,
Rur <Y E[ALI{F}N+ ——
,T_bz:; [Aa PN + 53
2136(K — U)In(BU)  KApax 7K Apax
< + +
Anin U 3U3
< 2136(K — U) In(T) n 4K Aoy
Amin U
where the first inequality holds due to Lemma [3| and the second inequality holds due to Lemma O

Theorem 2 (Problem-Independent Upper Bound). Let (v, T,U) be a 1-subgaussian EqalMAB with u, € [0,1]
for all arms a € [K]. After running EqalUCB for T time steps, we have

B < \/8544(K —UU) Tin(T) 4K mm{g, K-U}

Proof. Set

_ [2136(K — U)In(BU)
0= \/ B

Since I{A 4, < §} +I{A 4, > d} = 1, we have

B B
Z E[Aa,{Fp}] = Z E[A A, I{Fp}{A 4, < 5}
b=bo b=bo
B
+ 3 E[A4,H{F{A4, > 6}].
b=b

We can trivially bound E[A 4, I{F,}I{A4, < 0}] by 6. The second term can be bounded similarly as in
Theorem [5| by using A4, > 0 instead of A4, > Apin. Then, we have

B
ZZ;OE[AA’)H{E}] < pg . 236K —5U) In(BU)

= \/8544(K — U) - BIn(BU).
Furthermore, since p, € [0,1] for all a € [K], we have
Apmax < min{U, K — U}

To understand this bound, note that Ay .x < U generally, but when K < 2U, this can be tightened because

there are overlaps between the top U arms and the bottom U arms. This works out to Ap.x < K —U. By
considering the remaining terms in the regret, we have

4K A
Ry < /8544(K —U) - BIn(BU) + %
- \/8544([( _ g) -Tn(T) N 4K min{g, K — U}_ .
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D Proofs of Lower Bound

Lemma 6. Let v and V' be the EgalMAB instances defined by equation and equation @ Under the assump-
tions of Theorem[3, we have

AT
Ryy + Ry > 4 (PWV(H) + PWV’(,HC))

AT
> 3 eXp(_DKL (Pr HPTW')) :

Proof. Note that whenever we play some A ¢ I' under v, there will be at least U/2 users who will incur an
instantaneous regret of at least A. Under H, the total number of sub-optimal arms played across all users
and all time steps is at least TU/4. By the pigeonhole principle, we know that at least one user played
sub-optimal arms for at least 7'/4 times. As such, the regret is at least AT /4. A similar argument can be
used to show that under v and H€, the regret is at least AT/4. Thus

AT
Bty + Rrxp > T (Pwu(H) + Pwu’(Hc))

AT
z = exp(—DxL(Pry [Pr))

where the last inequality holds due to the Bretagnolle-Huber inequality. O

Lemma 7. Let v and V' be the EgalMAB instances defined by equation and equation @ Under the assump-
tions of Theorem[3, we have

DKLOP)T(VH]PTFV/) S 4A2 Z }ETI'V[TG/7T}'
a’ €A’

Proof. Using the definition of the KL-divergence and applying the chain rule, we have

dIP)T(V
DKL (H:DTrVH]PTrV’) = Eﬂ'u lln (d]P)ﬂ-l,/>

g [ [ dr/d(p” x AT
™ AR, Jd(pU x AO)T ) |
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We then substitute the Radon-Nikodym derivatives and simplify the terms to get

Ery _ln (dpm/d(PU x AT )1

AP, /d(pU x AU)T

U

nﬁ ’/T(At|AlaX1a .. ';Atflathl)
7T<At|A13X17 .. ')At—laXt—l)

\
&=
3
N
—

PAL . (X%t)
P, (Xut)

t=1 u=1

|
2

> Dku(Pa|P)

a€A;

> > Dxu(Pa|P,) - T[4, = A

ACy[K]acA

= D > Dxu(PallP,) Y En [I[A = A

ACy[K]acA t=1

= > > Dkn(Pul[P,) - Eny[Tar]

ACy[K]a€cA

v

I
Pgﬂ

v

Note that the KL-divergence between two Gaussian measures with mean p; and po and variance 1 is (u; —
p2)?. Thus, we have

> Y Dku(PulP) - By [Ta 7]

ACy[K]a€A

> EwlTar] ) Diw(Pal|P,)
ACy|[K] acA
> En[Tax]-48%|{d’ € A'la’ € A}|
ACy K]
= 4A2 Z Z ]ETI'V[TA,T]
a’€A’ A:a’€A
= AN* Y By [T 7). O

a’€A’

Lemma 8. Let v and v’ be the EqalMAB instances defined in equation and equation . Under the assump-
tions of Theorem[3, we have

almost surely.
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Proof. Suppose, for sake of contradiction, that

TU?
Z Ta,T > .
a€A’ K-U

Note that since A’ is the set of least played arms, we have

TU?
Z ZT‘IT> Z K_U

ACy[K\[U] a€A ACy[K\[U]
_(K-U TU?
o U K-U’

Furthermore, the same quantity can be upper bounded by

2, 2 Tur= D> > Tur

ACy[K\[U] acA a€[K]\[U] A:acA
K-U\ U

Ty

2 ((I)K—U -

a€[K\[U]

< ) Z TaT
HG[K]\

K-U U

()l g

aG[K]
<K U

which is a contradiction. O

TU?
K-U’

S

Theorem 3 (Policy-Independent Lower Bound). Suppose K > 2U. For any policy w, there exist an EqalMAB

instance v € V with regret
(K-U)T

>
Fry 2 76U

Proof. We have

RTWV+RTWU’>AeXp< 4A2 ZEWV )

a’ €A’

>.éZﬁ 74A2TU2
8 “P\ T kU

= S (172

T(K —U)
38U
Since 2max{Ry » ., Rrx '} > Rz + Rr ., dividing by 2 concludes the proof. O
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