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A Notations

Table 1: Summary of notations
Ab set of arms played during block b
At set of arms played during time step t
Au,t arm played by user u during time step t
A∗ set of top U arms
A− set of arms A\A∗
B number of blocks
Ba,b number of blocks arm a is played up till block b
K number of arms
Lb,i set of arms in A−

b where Ba,b−1 ≤ mb,i

Na number of sub-optimal sets played that includes a
pa probability density of reward for arm a
pπν probability density for the interaction between π and ν
Su,t cumulative reward for user u after t time step
Xt set of rewards obtained during time step t
Xa,t t-th reward obtained from playing arm a
Xu,t reward obtained by user u during time step t
RT regret after T time steps
Rπν regret of running π on instance ν for T time steps
T time horizon
Ta,t number of time steps arm a is played up till time step t
U number of users
Eb event that µa is close to µ̂a for all a ∈ [K]
Fb event that Ab is sub-optimal but “not too bad”
Gb,i sub-event of Fb used in the regret analysis
Gb,i,a arm-dependent variant of Gb,i

H sets in Γ are played for at most B/2 times
V set of all 1-subgaussian EgalMAB instances
Pa probability law of reward for arm a
Pπν probability law for the interaction between π and ν

∆A difference between µ∗ and µA

∆max difference between µU and µU+1
∆min difference between µ1 + · · · + µU and µK−U+1 + · · · + µK

Λ set of arms [K]\A∗

α technical constant used for the proof
β technical constant used for the proof
ϵb,b′ confidence radius of playing b′ blocks after block b
γ technical constant used for the proof
λ Lebesgue measure
µa expectation for distribution Pa

µA sum of the expected reward over the arms in A
µ∗ sum of the expected reward over the top U arms
µ̂a,b empirical estimate of µa after playing a for b blocks
ν EgalMAB instance
π policy for EgalMAB
ρ counting measure
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B Detailed Algorithm

Algorithm 2: EgalUCB with implementation details
1 initialize current block b = 0
2 initialize current time step t = 0
3 foreach a ∈ [K] do
4 let number of blocks Ba,b = 0
5 let cumulative reward Sa,t = 0
6 let upper confidence bound UCBa,b = ∞
7 end
8 while b ≤ T/U do
9 update b = b + 1

10 let Ab ⊆U [K] be a set of U arms with highest UCBa,b−1
11 let ind = (1, . . . , U)
12 foreach i ∈ [U ] do
13 update t = t + 1
14 foreach u ∈ [U ] do
15 let Au,t = Ab[ind[u]]
16 end
17 play (A1,t, . . . , AU,t) and receive (X1,t, . . . , XU,t)
18 foreach u ∈ [U ] do
19 let a = Ab[ind[u]]
20 let Sa,t = Sa,t−1 + Xu,t

21 end
22 circular shift ind by one to the right
23 end
24 foreach a ∈ Ab do
25 let Ba,b = Ba,b−1 + 1
26 end
27 foreach a ∈ [K] do

28 let UCBa,b = Sa,t

Ba,bU
+

√
6 ln(bU)
Ba,bU

29 end
30 end

17
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C Proofs of Upper Bounds

This section contains the proof for the upper bounds.
Lemma 1. Let (ν, T, U) be a 1-subgaussian EgalMAB. Then, for all blocks b ∈ [B],

P(Ec
b ) ≤ 2K

b2U3 .

Proof. Since the rewards are 1-subgaussian, we have

P
(
|µ̂a,b′ − µa| > ϵb,b′

)
≤ 2 exp

(
−1

2b′Uϵ2
b,b′

)
for any b′ ∈ [b] due to Chernoff’s bound. Then, by applying the union bound over all arms and all possible
values of Ba,b−1, we have

P(Ec
b ) ≤

K∑
a=1

b∑
b′=1

P
(
|µ̂a,b′ − µa| > ϵb,b′

)
≤

K∑
a=1

b∑
b′=1

2 exp
(

−1
2b′Uϵ2

b,b′

)

≤
K∑

a=1

b∑
b′=1

2
(bU)3

≤ 2K

b2U3 .

Lemma 2. Let b ∈ [B]. If the set of arms Ab played during block b is sub-optimal and Eb occurs, then Fb

also occurs.

Proof. Since Ab is assumed to be sub-optimal, we already have ∆Ab
> 0. Denote A−

∗ to be the set A∗\Ab.
Observe that

∆Ab
=
∑

a∈A∗

µa −
∑

a∈Ab

µa =
∑

a∈A−
∗

µa −
∑

a∈A−
b

µa.

since the terms that are associated to arms in Ab ∩ A∗ cancel out. Furthermore, since EgalUCB chooses Ab

instead of A∗, we have ∑
a∈A−

b

µ̂a,Ba,b−1 + ϵb−1,Ba,b−1 ≥
∑

a∈A−
∗

µ̂a,Ba,b−1 + ϵb−1,Ba,b−1 .

Using these observations, we have∑
a∈A−

b

µa + 2ϵb−1,Ba,b−1 ≥
∑

a∈A−
b

µ̂a,Ba,b−1 + ϵb−1,Ba,b−1

≥
∑

a∈A−
∗

µ̂a,Ba,b−1 + ϵb−1,Ba,b−1

≥
∑

a∈A−
∗

µa
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where the first and last inequality holds due to the assumption that Eb occurs. Rearranging this, we have

∆Ab
=
∑

a∈A−
∗

µa −
∑

a∈A−
b

µa ≤ 2
∑

a∈A−
b

ϵb−1,Ba,b−1

≤ 2
∑

a∈A−
b

ϵB,Ba,b−1

where the last inequality holds because b − 1 ≤ B.

Lemma 3. Let (ν, T, U) be a 1-subgaussian EgalMAB. Then, after T time steps, for all users u ∈ [U ], we
have

Ru,T ≤
B∑

b=1
E[∆Ab

I{Fb}] + π2K∆max

3U3 .

Proof. We begin by decomposing Ru,T into

Ru,T = Tµ∗

U
− E[Su,T ] =

B∑
b=1

µ∗ − E[µAb
] =

B∑
b=1

E[∆Ab
].

Since I{E} + I{Ec} = 1 almost surely for any event E , we can split

B∑
b=1

E[∆Ab
] =

B∑
b=1

E[∆Ab
I{Eb}]︸ ︷︷ ︸

(♠)

+
B∑

b=1
E[∆Ab

I{Ec
b}]︸ ︷︷ ︸

(♣)

.

To bound (♠), we use I{∆Ab
= 0} + I{∆Ab

> 0} = 1 to get

B∑
b=1

E[∆Ab
I{Eb}I{∆Ab

= 0}] +
B∑

b=1
E[∆Ab

I{Eb}I{∆Ab
> 0}].

Since ∆Ab
I{∆Ab

= 0} = 0 almost surely, the first term is 0. To deal with the second term, observe for any
events E , E ′, F , if E and E ′ implies F , then I{E1 ∩ E2} = I{E1}I{E2} ≤ I{F} almost surely. As such, we have

B∑
b=1

E[∆Ab
I{Eb}I{∆Ab

> 0}] ≤
B∑

b=1
E[∆Ab

I{Fb}]

by Lemma 2, thus concluding the proof for (♠). To bound (♣), observe that

B∑
b=1

E[∆Ab
I{Ec

b}] =
B∑

b=1
E[∆Ab

|Ec
b ]P(Ec

b ).

The expectation term can be bounded by

E[∆Ab
|Ec

b ] =
∑

A⊆U [K]

P(Ab = A|Ec
b ) ∆A

≤
∑

A⊆U [K]

P(Ab = A|Ec
b ) ∆max

= ∆max.
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Furthermore, we know that P(Ec
b ) ≤ 2K/b2U3 from Lemma 1. Substituting these results back, we have

B∑
b=1

E[∆Ab
|Ec

b ]P(Ec
b ) ≤

B∑
b=1

∆max · 2K

b2U3

≤ 2K∆max

U3

∞∑
b=1

1
b2

= π2K∆max

3U3 ,

thus concluding the proof for (♣).

Lemma 4. Assume that b > K/U . On the event Fb, exactly one of the events in {Gb,i}i occurs.

Proof. It is clear by definition that at most one of {Gb,i}i can happen. We are left to show that at least one
of {Gb,i}i must happen. Suppose that none of {Gb,i}i happens. Thus |Lb,i| < βiU for all i ∈ N. First, we
claim that all arms a ∈ A−

b are played at least once after block K/U . To see this, observe that the radius
ϵa,b = ∞ until a is played; and after which ϵa,b < ∞. This claim implies that there exist some sufficiently
large j ∈ N such that the set Lb,j = ∅. Moreover, since {Lb,i}i is a non-increasing sequence of sets, we have
that for all b > K/U , all arms a ∈ A−

b must lie in exactly one Lb,i−1\Lb,i. Thus, we have∑
a∈A−

b

1√
Ba,b−1

=
∞∑

i=1

∑
a∈Lb,i−1\Lb,i

1√
Ba,b−1

<

∞∑
i=1

∑
a∈Lb,i−1\Lb,i

1
√

mb,i

=
∞∑

i=1

|Lb,i−1| − |Lb,i|√
mb,i

= |Lb,0|
√

mb,1
+

∞∑
i=1

|Lb,i| ·

(
1

√
mb,i+1

− 1
√

mb,i

)

<
β0U

√
mb,1

+
∞∑

i=1
βiU ·

(
1

√
mb,i+1

− 1
√

mb,i

)

= U

∞∑
i=1

βi−1 − βi

√
mb,i

.

Substituting mb,i into the inequality, we have

U

∞∑
i=1

βi−1 − βi

√
mb,i

= U

∞∑
i=1

βi−1 − βi√
γαiU ln(BU)/∆2

Ab

Rearranging the terms and evaluating the constants, we have

U

∞∑
i=1

βi−1 − βi√
γαiU ln(BU)/∆2

Ab

= 1 − β

β

√
U

γ ln(BU)

∞∑
i=1

(
β√
α

)i

· ∆Ab

<

√
U

24 ln(BU) · ∆Ab
.

Since Fb happens, we have

∆Ab
≤
∑

a∈A−
b

√
24 ln(BU)
Ba,b−1U

< ∆Ab
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which is a contradiction. Hence, at least one of the events {Gb,i}i must happen.

Lemma 5. Let ν = (p1, . . . , pK). Suppose that pa is the density for a 1-subgaussian distribution for all
a ∈ [K]. Then, after T time steps,

B∑
b=1

E[∆Ab
I{Fb}] =

∞∑
i=1

B∑
b=b0

∆Ab
I{Gb,i} +

b0−1∑
b=1

∆Ab
I{Fb}

≤ 2136 ln(BU)
∑
a∈Λ

1
∆a,Na

+ K∆max

U

≤ 2136(K − U) ln(BU)
∆min

+ K∆max

U
.

for all users u ∈ [U ].

Proof. For each arm a ∈ [K], each index i ∈ N, and each block b ∈ [B], let

Gb,i,a = Gb,i ∩
{

a ∈ A−
b

}
∩
{

Ba,b−1 ≤ mb,i

}
be an arm-dependent variant of the event Gb,i. Since at least βiU arms satisfy Gb,i,a when Gb,i occurs, we
have

I{Gb,i} ≤ 1
βiU

∑
a∈Λ

I{Gb,i,a}

where Λ := [K]\A∗ is the set of arms that are not in A∗. For each arm a ∈ Λ, let

Na :=
∣∣{Ab : b ∈ [B] and a ∈ A−

b and ∆Ab
> 0}

∣∣
be the number of distinct sub-optimal sets played that includes a, and let Aa,1, . . . , Aa,Na

be these sets sorted
by non-ascending order of its sub-optimality gap. In other words, if we denote

∆a,j := ∆Aa,j
,

then ∆a,1 ≥ · · · ≥ ∆a,Na
. Let b0 = K/U + 1. Almost surely we have

B∑
b=b0

∆Ab
I{Gb,i} ≤

∑
a∈Λ

B∑
b=b0

∆Ab

βiU
I{Gb,i,a}

=
∑
a∈Λ

B∑
b=b0

Na∑
j=1

∆a,j

βiU
I{Gb,i,a}I{Ab = Aa,j}

=
∑
a∈Λ

Na∑
j=1

∆a,j

βiU

B∑
b=b0

I{Gb,i,a}I{Ab = Aa,j}

We can upper bound this expression by considering the worst-case realization of the number of blocks each
set Aa,j is played. Let us start with j = 1. Since Aa,1 has the largest gap ∆a,1, the worst case realization is
when Aa,1 is played as many times as the event Gb,i,a allows. Recall that Gb,i,a implies that Ba,b−1 ≤ mb,i.
It follows that we can play Aa,1 for at most γαiU ln(BU)/∆2

a,1 blocks. We can use this argument to find
the worst-case realization on the number of blocks Aa,2 is played. This works out to be

γαiU ln(BU)
∆2

a,2
− γαiU ln(BU)

∆2
a,1

= γαiU ln(BU) ·

(
1

∆2
a,2

− 1
∆2

a,1

)
.

Repeating this argument, we have∑
a∈Λ

Na∑
j=1

∆a,j

βiU

B∑
b=b0

I{Gb,i,a}I{Ab = Aa,j}

≤
∑
a∈Λ

γαi ln(BU)
βi

·

(
1

∆a,1
+

Na∑
j=2

∆a,j

(
1

∆2
a,j

− 1
∆2

a,j−1

))
.
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The terms within the bracket can be further bounded by

1
∆a,1

+
Na∑
j=2

∆a,j

(
1

∆2
a,j

− 1
∆2

a,j−1

)

= 1
∆a,Na

+
Na−1∑
j=1

∆a,j − ∆a,j+1

∆2
a,j

≤ 1
∆a,Na

+
Na−1∑
j=1

∆a,j − ∆a,j+1

∆a,j · ∆a,j+1

= 1
∆a,Na

+
Na−1∑
j=1

(
1

∆a,j+1
− 1

∆a,j

)

<
2

∆a,Na

.

By combining these results, we have, almost surely, that

B∑
b=1

∆Ab
I{Fb} =

b0−1∑
b=1

∆Ab
I{Fb} +

B∑
b=b0

∆Ab
I{Fb}

≤ K∆max

U
+

∞∑
i=1

B∑
b=b0

∆Ab
I{Gb,i}

≤ K∆max

U
+

∞∑
i=1

∑
a∈Λ

2γαi ln(BU)
βi∆a,Na

≤ K∆max

U
+ 2γ ln(BU)

∑
a∈Λ

1
∆a,Na

∞∑
i=1

(α

β

)i

<
K∆max

U
+ 2136 ln(BU)

∑
a∈Λ

1
∆a,Na

≤ K∆max

U
+ 2136(K − U) ln(BU)

∆min

where the last inequality holds because for all arms a ∈ Λ, we have ∆a,Na
≥ µU − µa ≥ ∆min. As such,∑

a∈Λ

1
∆a,Na

≤ K − U

∆min
.

Note. Observe that when U = 1, we have ∆a,Na
= ∆a. As such, we can replace the last inequality using

ln(BU)
∑
a∈Λ

1
∆a,Na

=
∑

a:∆a>0

ln(T )
∆a

to obtain the bound for the classic UCB1 algorithm.

Theorem 1 (Problem-Dependent Upper Bound). Let (ν, T, U) a 1-subgaussian EgalMAB. After running
EgalUCB for T time steps, we have

RT ≤ 2136(K − U) ln(T )
∆min

+ 4K∆max

U
.
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Proof. We can bound the regret by

Ru,T ≤
B∑

b=1
E[∆Ab

I{Fb}] + π2K∆max

3U3

≤ 2136(K − U) ln(BU)
∆min

+ K∆max

U
+ π2K∆max

3U3

≤ 2136(K − U) ln(T )
∆min

+ 4K∆max

U

where the first inequality holds due to Lemma 3 and the second inequality holds due to Lemma 5.

Theorem 2 (Problem-Independent Upper Bound). Let (ν, T, U) be a 1-subgaussian EgalMAB with µa ∈ [0, 1]
for all arms a ∈ [K]. After running EgalUCB for T time steps, we have

RT ≤
√

8544(K − U) T ln(T )
U

+ 4K min{U, K − U}
U

.

Proof. Set

δ =
√

2136(K − U) ln(BU)
B

.

Since I{∆Ab
< δ} + I{∆Ab

≥ δ} = 1, we have

B∑
b=b0

E[∆Ab
I{Fb}] =

B∑
b=b0

E[∆Ab
I{Fb}I{∆Ab

< δ}]

+
B∑

b=b0

E[∆Ab
I{Fb}I{∆Ab

≥ δ}].

We can trivially bound E[∆Ab
I{Fb}I{∆Ab

< δ}] by δ. The second term can be bounded similarly as in
Theorem 5 by using ∆Ab

≥ δ instead of ∆Ab
≥ ∆min. Then, we have

B∑
b=b0

E[∆Ab
I{Fb}] ≤ Bδ + 2136(K − U) ln(BU)

δ

=
√

8544(K − U) · B ln(BU).

Furthermore, since µa ∈ [0, 1] for all a ∈ [K], we have

∆max ≤ min{U, K − U}.

To understand this bound, note that ∆max ≤ U generally, but when K < 2U , this can be tightened because
there are overlaps between the top U arms and the bottom U arms. This works out to ∆max ≤ K − U . By
considering the remaining terms in the regret, we have

RT ≤
√

8544(K − U) · B ln(BU) + 4K∆max

U

≤
√

8544(K − U) · T ln(T )
U

+ 4K min{U, K − U}
U

.
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D Proofs of Lower Bound

Lemma 6. Let ν and ν′ be the EgalMAB instances defined by equation 1 and equation 2. Under the assump-
tions of Theorem 3, we have

Rπν + Rπν′ >
∆T

4
(
Pπν(H) + Pπν′(Hc)

)
≥ ∆T

8 exp
(
−DKL(Pπν∥Pπν′)

)
.

Proof. Note that whenever we play some A /∈ Γ under ν, there will be at least U/2 users who will incur an
instantaneous regret of at least ∆. Under H, the total number of sub-optimal arms played across all users
and all time steps is at least TU/4. By the pigeonhole principle, we know that at least one user played
sub-optimal arms for at least T/4 times. As such, the regret is at least ∆T/4. A similar argument can be
used to show that under ν′ and Hc, the regret is at least ∆T/4. Thus

RT,π,ν + RT,π,ν′ >
∆T

4
(
Pπν(H) + Pπν′(Hc)

)
≥ ∆T

8 exp
(
−DKL(Pπν∥Pπν′)

)
where the last inequality holds due to the Bretagnolle–Huber inequality.

Lemma 7. Let ν and ν′ be the EgalMAB instances defined by equation 1 and equation 2. Under the assump-
tions of Theorem 3, we have

DKL(Pπν∥Pπν′) ≤ 4∆2
∑

a′∈A′

Eπν [Ta′,T ].

Proof. Using the definition of the KL-divergence and applying the chain rule, we have

DKL(Pπν∥Pπν′) = Eπν

[
ln
(

dPπν

dPπν′

)]

= Eπν

[
ln
(

dPπν/d(ρU × λU )T

dPπν′/d(ρU × λU )T

)]
.
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We then substitute the Radon-Nikodym derivatives and simplify the terms to get

Eπν

[
ln
(

dPπν/d(ρU × λU )T

dPπν′/d(ρU × λU )T

)]

= Eπν

[
ln

T∏
t=1

π(At|A1, X1, . . . , At−1, Xt−1)
π(At|A1, X1, . . . , At−1, Xt−1)

U∏
u=1

pAu,t
(Xu,t)

p′
Au,t

(Xu,t)

]

= Eπν

[
T∑

t=1

U∑
u=1

ln
pAu,t(Xu,t)
p′

Au,t
(Xu,t)

]

=
T∑

t=1

U∑
u=1

Eπν

[
Eπν

[
ln

pAu,t
(Xu,t)

p′
Au,t

(Xu,t)

∣∣∣∣Au,t

]]

=
T∑

t=1

U∑
u=1

Eπν

[
DKL(PAu,t

∥P′
Au,t

)
]

=
T∑

t=1
Eπν

[∑
a∈At

DKL(Pa∥P′
a)
]

=
T∑

t=1
Eπν

[ ∑
A⊆U [K]

∑
a∈A

DKL(Pa∥P′
a) · I[At = A]

]

=
∑

A⊆U [K]

∑
a∈A

DKL(Pa∥P′
a)

T∑
t=1

Eπν

[
I[At = A]

]
=

∑
A⊆U [K]

∑
a∈A

DKL(Pa∥P′
a) · Eπν [TA,T ]

Note that the KL-divergence between two Gaussian measures with mean µ1 and µ2 and variance 1 is (µ1 −
µ2)2. Thus, we have ∑

A⊆U [K]

∑
a∈A

DKL(Pa∥P′
a) · Eπν [TA,T ]

=
∑

A⊆U [K]

Eπν [TA,T ]
∑
a∈A

DKL(Pa∥P′
a)

=
∑

A⊆U [K]

Eπν [TA,T ] · 4∆2|{a′ ∈ A′|a′ ∈ A}|

= 4∆2
∑

a′∈A′

∑
A:a′∈A

Eπν [TA,T ]

= 4∆2
∑

a′∈A′

Eπν [Ta′,T ].

Lemma 8. Let ν and ν′ be the EgalMAB instances defined in equation 1 and equation 2. Under the assump-
tions of Theorem 3, we have ∑

a∈A′

Ta,T ≤ TU2

K − U

almost surely.
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Proof. Suppose, for sake of contradiction, that∑
a∈A′

Ta,T >
TU2

K − U
.

Note that since A′ is the set of least played arms, we have∑
A⊆U [K]\[U ]

∑
a∈A

Ta,T >
∑

A⊆U [K]\[U ]

TU2

K − U

=
(

K − U

U

)
TU2

K − U
.

Furthermore, the same quantity can be upper bounded by∑
A⊆U [K]\[U ]

∑
a∈A

Ta,T =
∑

a∈[K]\[U ]

∑
A:a∈A

Ta,T

=
∑

a∈[K]\[U ]

(
K − U

U

)
U

K − U
Ta,T

=
(

K − U

U

)
U

K − U

∑
a∈[K]\[U ]

Ta,T

≤
(

K − U

U

)
U

K − U

∑
a∈[K]

Ta,T

=
(

K − U

U

)
TU2

K − U
,

which is a contradiction.

Theorem 3 (Policy-Independent Lower Bound). Suppose K ≥ 2U . For any policy π, there exist an EgalMAB
instance ν ∈ V with regret

Rπν ≥
√

(K − U) T

76U
.

Proof. We have

RT,π,ν + RT,π,ν′ ≥ ∆T

8 exp
(

−4∆2
∑

a′∈A′

Eπν [Ta′,T ]
)

≥ ∆T

8 exp
(

−4∆2TU2

K − U

)

= ∆T

8 exp(−1/2)

>

√
T (K − U)

38U
.

Since 2 max{RT,π,ν , RT,π,ν′} ≥ RT,π,ν + RT,π,ν′ , dividing by 2 concludes the proof.
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