
Accountable Batched Control with Decision Corpus

Appendix: Table of Contents586

A Missing Proofs 16587

A.1 Proof of the Estimation Error Bound for v(at) . 16588

A.2 Proof of the Existence and Uniqueness . 16589

B Extended Related Work 17590

B.1 Offline RL . 17591

B.2 Episodic Control and Nearest Neighbor Control 17592

B.3 Explainable RL . 18593

C The Strictly Batched Imitation Setting 18594

D Further Implementation and Experiment Details 19595

D.1 Reproduceability: Code . 19596

D.2 Learning the Belief Space . 19597

D.3 Addressing the Scalability Issue: Finding the Minimal Convex Hull Efficiently . . 19598

D.4 Data Generation Process: Heterogeneous Pendulum 20599

D.5 Hardware and Running Time . 20600

D.6 Baseline Implementations . 20601

D.7 The Model-Free RL Baseline and Its Stability Issue 20602

E Additional Qualitative and Quantitative Results 21603

E.1 Adaptivity: Visualizing the Decisions of ABC and Quantitative Performance 22604

E.2 More Visualization Results and Extended Discussion on the Healthcare Dataset . . 22605

F Additional Experiments 23606

F.1 Trade-Off between Accountability and Performance 23607

F.2 Visualizing Conservation of ABC . 24608

F.3 Additional Environment: LunarLanderContinuous 25609

F.4 Black-Box Policy as More Efficient Sampler . 25610

F.5 Identify Control Time OOD Examples with ABC 26611

G Limitations and Future Work 26612

H Broader Impact 27613

A Missing Proofs614

A.1 Proof of Proposition 3.8 (See page 4)615

Proposition 3.8 (Estimation Error Bound for v(at)). Consider the belief variable bt = b(ot, at, ht)616

and b̂ the optimizer of Equation (6), the estimated value residual between l(bt) and l(b̂) is controlled617

by the corpus residual:618

||l(b̂)� l(bt)||V  ||l||op · rC(bt) (7)
where || · ||V is a norm on V and ||l||op = inf {� 2 R+ : ||l(b)||V  �||b||B} is the operator norm619

for the linear mapping.620

Proof. Leveraging the linearity of operator l, the definition of the operator norm || · ||op, and621

Definition 3.7, we have:622

||l(b̂)� l(bt)||V = ||l(b̂� bt)||V
 ||l||op · ||b̂� bt||V
= ||l||op · rC(bt)

(12)

623

A.2 Proof of Proposition 3.10 (See page 4)624

Lemma A.1 (Affine Independence of C̃(bt)). The elements in the belief corpus built on top of C̃(bt),625

as the corpus subset: bc 2 b(C̃(bt)) ⇢ B must be affinely independent, that is626

CX

c=1

�cbc = 0 ^
CX

c=1

�c = 0 =) �c = 0, 8c 2 [C] (13)

Proof. The proof is based on contradiction. Note that by definition, there are db + 1 elements in the627

belief corpus set. If those elements are not affinely independent, it basically means that bt can be628

expressed in a lower dimensional space. In this case, the composition of the convex set is redundant.629

Without loss of generality, we use b1 to denote the redundant element630

b1 = �
CX

c=2

�c

�1
bc, (14)

indicating that without b1, we still have bt 2 CB(C0), where C0 = C̃(bt)\(o1, a1, h1). This contradicts631

that C̃(bt) is the minimal hull that contains bt.632

Proposition 3.10 (Existence and Uniqueness). Consider the belief variable bt = b(ot, at, ht), if633

rC(bt)  0 holds for C = D, then C̃(bt) exists and the decomposition on the corresponding minimal634

convex hull exists and is unique.635

Proof. Following the assumption, there is at least one trivial corpus subset that exists for bt — the636

offline dataset D as the corpus subset — such that a zero belief corpus residual can be achieved. 1637

The existence of C̃(bt) follows the fact the cardinality of the D is a finite number. The existence of638

decomposition on C̃(bt) is then a consequence of the definition of the minimal hull.639

Based on Lemma A.1, the elements in C̃(bt) construct the minimal hull and are affinely independent.640

The uniqueness of the decomposition can be shown by contradiction:641

Assume that there are two different decompositions for composing the belief state bt:642

bt =
CX

c=1

!cbc =
CX

c=1

!̃cbc, (15)

1otherwise, it falls into an out-of-distribution prediction problem and is beyond the scope of this work.
Nonetheless, we note that ABC is able to perform OOD detection. See section F.5

16

where !c, !̃c 2 [0, 1],
PC

c=1 !
c = 1,

PC
c=1 !̃

c = 1. In this case, we have643

0 =
CX

c=1

!cbc �
CX

c=1

!̃cbc

=
CX

c=1

(!c � !̃c)bc

=
CX

c=1

�cbc,where �c ⌘ !c � !̃c.

(16)

However,
PC

c=1 �
c =

PC
c=1(!

c � !̃c) =
PC

c=1 !
c �

PC
c=1 !̃

c = 1 � 1 = 0 contradicts with the644

fact that the elements are affinely independent. Hence the proof is completed.645

B Extended Related Work646

B.1 Offline RL647

Offline RL [7–15] has gained increasing attention in recent years due to its potential for solving648

practical problems, such as robotics control and game playing, where collecting new data can be649

expensive or time-consuming. However, it also presents several challenges, such as distribution shift650

and overfitting, which can lead to poor performance when deploying the learned policy to the actual651

environment. There are several model-free approaches to addressing these challenges in Offline652

RL. Such as distributional matching [7, 28], regularization techniques to prevent overfitting [29],653

conservation [11] or adding noise [14] to the policy or using adversarial training [30]. A third654

approach is to incorporate uncertainty estimation to evaluate the performance of the learned policy655

on unseen data [12].656

On the other hand, model-based RL tackles the problem by first learning world models and then657

performing planning algorithms on the learned model [21, 22]. In either model-based or model-free658

approaches, black-box approximators are used; hence, the decision is not transparent.659

B.2 Episodic Control and Nearest Neighbor Control660

Episodic Memory and Episodic Control [16–18], inspired by biological learning mechanism, are661

studied as an alternative way of policy learning [31]. Follow-up works introduce various modifications662

and extend episodic control to the continuous domains. e.g., Hu et al. [32] introduces Generalized663

Episodic Memory (GEM) which effectively organizes the state-action values of episodic memory664

in a generalizable manner and supports implicit planning on memorized trajectories. Ma et al. [33]665

leverages episodic memory in offline RL setting with a pessimistically estimated value function.666

Li et al. [34] proposing a novel state-abstractor framework for episodic control and improving667

the learning efficiency in continuous control benchmarks. In all those works, a value function668

resembling the hippocampus episodic memorization mechanism is introduced as an alternative to Q-669

learning [35, 36] that updates the state-action values with temporal difference learning or Monte-Carlo670

estimation [37–39].671

In the continuous control domains, policy gradient methods [40, 41] or supervised learning-based672

methods [42, 9, 43] are then applied for the policy improvement. All of those approaches are limited673

to black-box value-based learning and require additional black-box policy networks in the continuous674

control domain, whereas our proposed method performs a transparent decision-making process675

without explicit policy learning.676

Explicit nearest neighbor methods that perform decision-making according to training-time similar677

trajectories have been studied theoretically [19] and empirically [20]. Although those methods also678

enjoy transparency, they suffer from the problem of the curse of dimensionality. Moreover, defining679

the nearest neighbor with a heuristically determined Euclidean metric also suffers the problem of680

aggressive extrapolation and thus is not suitable for the offline setting [7, 11].681

17

B.3 Explainable RL682

Understanding the decisions made by RL agents is a key issue in many high-stake real-world domains683

such as finance [44] and healthcare [45, 27]. Previous Explainable-RL (XRL) literature can be684

broadly classified with a taxonomy of three classes [46]: (1) Feature importance, that includes685

learning policy through an explainable policy class [47–49], converting black-box models into an686

interpretable format [50–54], and natural language [55–57] or saliency map based explanations [58–687

60]; (2) Transparent Learning Process that reveals the influences of MDP ingredients during the688

learning process, including methods that learn to predict the counterfactual outcomes for decision-689

making [61–63], decompose the learning objective [64–67], and identifying the crucial training690

datum [68, 69]; (3) Policy Level, which illustrates the long-term behavior of the agent [70–72]. For691

more extensive discussions on XRL literature, we refer the readers also to [73, 74]. Different from692

previous approaches, our work introduces the first example-based explanation for policy learning.693

Supported by training dataset examples, the execution of our control algorithm is accountable.694

C The Strictly Batched Imitation Setting695

The instant reward may not be contained in the offline dataset in strictly batched imitation (SBI)696

learning settings such as clinical treatment and healthcare scenarios. In such cases, the value of697

actions can not be estimated through Monte Carlo, and it is generally impossible to learn a belief698

state based on the value prediction. In such a case, we need to adapt Accountable Batched Controller699

accordingly.700

In such a setting, the dataset DSBI = {oit, ait, oit+1}
i=1,...,N
t=1,...,T contains only sequential observations701

oit, o
i
t+1, i 2 [N], t 2 [T], actions ait, i 2 [N], t 2 [T] performed by behavior policies, which is702

always an expert or near-expert controller, and transition histories hi
t, i 2 [N], t 2 [T] that can be703

composed of the former quantities.704

The Accountable Batched Controller should be adapted to handle this setting. Specifically, we can705

still define the corpus subset as706

Definition C.1 (SBI Corpus Subset). A SBI Corpus Subset CSBI is defined as a subset of an offline707

dataset DSBI, indexed by [C] := {1, 2, ..., C} — the natural numbers between 1 and C.708

CSBI =

⇢
(oc, ac, hc) 2 DSBI

����c 2 [C]

�
. (17)

Property C.2. (SBI Linear Restricted Belief) The policy function ⇡ : O ⇥ H 7! A can be709

decomposed as ⇡ = l � b, where b : O ⇥H 7! B ✓ Rdb maps the joint observation-history space710

to a db dimensional belief variable bt = b(ot, ht) and l : B 7! A is a linear function that maps the711

belief bt to an output l(bt) 2 A.712

Then any control time behavior generated by policy ⇡ is accountable in the sense that it can be713

decomposed by the belief corpus, defined as714

Definition C.3. (SBI Belief Corpus) A SBI Belief Corpus b(CSBI) is defined by applying the belief715

function b to the corpus subset CSBI,716

b(CSBI) =

⇢
bc = b(oc, hc)

����(o
c, ac, hc) 2 CSBI

�
⇢ B, (18)

on top of which we can define the Belief Corpus Hull in the SBI setting:717

Definition C.4. (SBI Belief Corpus Hull) The SBI Belief Corpus Convex Hull spanned by a corpus718

subset CSBI with the belief corpus b(CSBI) is the convex set719

CB(CSBI) =

(
CX

c=1

wcbc
����w

c 2 [0, 1], bc 2 b(CSBI), 8c 2 [C],
CX

c=1

wc = 1

)
, (19)

followed by the concept of Minimal Hull in the SBI setting defined as720

18

Definition C.5 (SBI Minimal Hull). Denoting the decision corpora whose belief convex hull contain
a belief variable bt by

CSBI(bt) =

⇢
CSBI ✓ DSBI

����bt 2 CB(CSBI)

�

Among those subsets, the one that contains db+1 decision corpora and has the smallest hyper-volume
forms the minimal hull, denoted by C̃SBI(bt):

C̃SBI(bt) := min
CSBI

Z

CB(CSBI)
dV

Similar to the property in ABC, in the SBI setting, the control time decisions can be decomposed
with examples in the offline dataset that constructs such an SBI Minimal Hull,

⇡(at|ot, ht) = l � b(ot, ht) = l �
CX

c=1

wc · b(oc, hc) =
CX

c=1

wc · l � b(oc, hc) =
CX

c=1

wc · ac,

where (oc, ac, hc) 2 C̃SBI(bt).721

D Further Implementation and Experiment Details722

D.1 Reproduceability: Code723

We elaborate on our implementation details in this section. Our code is available anonymously at724

https://anonymous.4open.science/r/AccountableBatchedController-9AC7.725

D.2 Learning the Belief Space726

To efficiently encode the information in historical transition, in our work, we employ the Gated727

Recurrent Units (GRU) [75] to map fixed-length transition histories into embedding vector variables,728

followed by 3 fully connected layers as the belief function b. In principle, any other recurrent networks729

should also be able to process such context information. Table 4 presents the hyper-parameters we730

use in the belief learning process.731

Table 4: Hyperparameters in learning the belief function.

Hyper-Param Choice

Context Model GRU
Hidden Unit Number 128

Hidden Recurrent Layer 1
Batch Size 500

Epochs 4000
Optimizer Adam

Learning Rate 0.001
Memory Length 4

Embedding Dimension 20

D.3 Addressing the Scalability Issue: Finding the Minimal Convex Hull Efficiently732

Rigorously searching for the minimal convex hull in the belief space is a combinatorial optimization733

problem. In our implementation, we leverage a heuristic search method that first reduces the search734

space by looking for k-nearest neighbors in the belief space, and then build the approximate minimal735

convex hull on top of those k-nearest neighbors of the control time belief bt. With db-dimensional736

belief space, the minimal convex hull will contain at most db + 1 examples, hence we can set737

k = 2(db + 1), and conduct the combinatorial optimization on those k examples, which is much738

easier than the original problem (reduce combinatorial problem Select db + 1 out of N into Select739

db + 1 out of k).740

19

https://anonymous.4open.science/r/AccountableBatchedController-9AC7

D.4 Data Generation Process: Heterogeneous Pendulum741

The classical control task of Pendulum has the goal to swing up and balance a pendulum using a742

control input. In the control task, a policy can apply torque to the joint in order to swing the pendulum743

up and then maintain its upright position. The state of the system is defined by the pendulum’s angle744

and angular velocity, and the action is the torque applied to the joint. The reward function typically745

provides a positive reward for keeping the pendulum upright and a negative reward for large torques746

or deviations from the upright position.747

To manifest the potential heterogeneous outcome in healthcare and generalize the study into POMDP,748

we consider a heterogeneous variant of the original task. There are two contradictory Pendulum749

systems: the normal one and the converse one. While in the first system, adding torque will lead to a750

dynamical change according to the original physical design, in the converse system, the torque inputs751

will be sent to the system with a negation.752

We train TD3 policies in each system and merge the collected dataset together as the offline dataset. In753

the Low-Data settings, 50000 transitions of each environment are collected, hence the dataset contains754

in total of 100000 transitions; in the Mid-Data regime, 150000 transitions of each environment are755

collected, hence the dataset contains in total of 300000 transitions; in the Rich-Data regime, 300000756

transitions of each environment are collected, hence the dataset contains in total of 600000 transitions.757

In order to achieve high performance, the agent must be able to identify the decision corpora that are758

collected from the same system dynamics as in the control time.759

D.5 Hardware and Running Time760

We experiment on a machine with 2 TITAN X GPUs and 32 Intel(R) E5-2640 CPUs. In general,761

the computational expense of model training in ABC is cheap, as the neural networks used in ABC762

are in general shallow and of small scale. Learning the belief space requires half the calculation763

of building a world model. However, we acknowledge the exact calculation of the minimal convex764

hull in a large-data regime can be computationally expensive. And we have discussed our practical765

solution (Appendix D.3). With our proposed solution, the convex hull decomposition takes less than766

10 seconds with a uniform sampler that samples 100 actions randomly for every time step. Increasing767

the batch size will lead to a sub-linear increase in the computational time with parallelization.768

D.6 Baseline Implementations769

Benchmark Algorithms Except for standardized components that we will introduce below, we use770

the publicly available source code when constructing the benchmark algorithms; references are in the771

following:772

• kNN and 1NN: https://scikit-learn.org/.../neighbors, Reference: [19].773

• BC: Implementation is straightforward using supervised learning.774

• MFRL: https://github.com/sfujim/TD3, Reference: [26].775

• MPC: https://github.com/UM-ARM-Lab/pytorch-mppi/.../mppi.py, Reference: [76].776

Neural Network Backbones In all baseline methods and our implementation for ABC, we use the777

same network structure: 3-layer MLP with a recurrent model that encodes the historical trajectory778

information, which is called as the Context Variable in the literature [77, 78]. Our implementation of779

the recurrent model is based on the open-sourced code of https://github.com/amazon-science/meta-780

q-learning. In all experiments, we use the same neural network architecture and match the hyper-781

parameters for a fair comparison, except stated otherwise (e.g., the Q-learning baseline requires782

a larger batch size to guarantee convergence and boost stability, which will be elaborated in the783

following section.).784

D.7 The Model-Free RL Baseline and Its Stability Issue785

Our implementation of the Q-learning baseline leverages the twin-delayed techniques [26] to stabilize786

training. We find that Q-learning requires a large batch size (i.e., 10240) and many optimization787

epochs to converge. In the experiment settings with more offline data, the convergence becomes even788

20

https://scikit-learn.org/stable/modules/neighbors.html
https://github.com/sfujim/TD3
https://github.com/UM-ARM-Lab/pytorch_mppi/blob/master/src/pytorch_mppi/mppi.py
https://github.com/amazon-science/meta-q-learning
https://github.com/amazon-science/meta-q-learning
https://github.com/amazon-science/meta-q-learning

harder: the rich-data regime containing 6⇥ more data takes 6⇥ more training epochs to converge.789

And the converged performance is always with high vibration, leading to worse performance.790

Learning curves are shown in Figure 6, experiments are done with 8 seeds and both averaged learning791

curves and individual curves are plotted.792

Figure 6: Q-Learning learning curves. When the size of offline data increases, more training epochs
are needed for the convergence, and the stability of performance at convergence is reduced, leading
to a larger variance and poorer performance in the rich-data regime.

E Additional Qualitative and Quantitative Results793

Figure 7: Visualization of control behaviors. The first two plots show the task and collected trajectories
in the offline dataset. This is the same environment we have used in Section 5.3. The control time
preferences can be controlled by changing the sub-sampling or re-sampling rate.

21

E.1 Adaptivity: Visualizing the Decisions of ABC and Quantitative Performance794

We plot the control time trajectories in experiments of Section 5.4 in Figure 7. It is clearly shown that795

with a decreasing sampling rate of ⇡1’s trajectories (passing through the upper gate) in the offline796

dataset, the control time behaviors tend to choose more actions following the behaviors of ⇡3 (passing797

through the lower gate).798

Quantitatively, Table 5 shows that while changing the sampling rate of trajectories from ⇡1, the799

success rate does not change much while the proportions of strategies chosen by the control policy800

vary accordingly.801

Table 5: Quantitative results in the re-sampling and sub-sampling experiments. In all settings, 100
trajectories in total are generated using the proposed method. The success rate of reaching the goal
and choices of solutions are presented in the table.

Re/Sub-Sample ⇥4 ⇥3 ⇥2 ⇥1 ⇥0.75 ⇥0.5 ⇥0.25

Success Rate 0.91 0.97 0.90 0.92 0.92 0.93 0.92
Passing Upper Gate 76 69 61 42 31 24 17
Passing Lower Gate 15 28 29 50 61 69 75

E.2 More Visualization Results and Extended Discussion on the Healthcare Dataset802

Figure 8: Visualization of the control time decision supports in the healthcare dataset. The two colors
of the scatter plots denote different training time decisions. Test data is denoted by red cross marks,
and the identified belief corpus subsets are marked with black circles.

We provide more qualitative results in Figure 8. In those figures, the colors yellow and blue indicate803

different treatments in the training data, separately.804

22

In the realm of healthcare, treatment decisions involving atypical patients — those with rare or805

non-standard characteristics that do not closely resemble the majority of training examples — present806

a significant challenge. These outliers often reside on the boundaries of existing treatment records of807

patients, rendering the optimal course of action ambiguous even for domain experts.808

Our proposed method ABC provides a critical advantage in these complex scenarios. ABC constructs809

a minimal convex hull around such patients, unearthing potential risks associated with incorrect810

treatment approaches. In cases where the decision corpus spans disparate treatment groups, ABC811

reveals the impossibility of establishing a more representative convex hull that both contains the812

patient and exclusively includes members of the same treatment class.813

Conversely, the k-nearest neighbors (kNN) approach fails to identify these high-risk patients. The814

nearest neighbors for such boundary cases can all belong to the same treatment group, thus offering815

no warning signals that the patient might be atypical and warrant special attention.816

Therefore, ABC outperforms the kNN method not merely in terms of higher accuracy in suggesting817

treatments, but also in its ability to flag patients whose decision basis exhibits heterogeneity at the818

test time. In these instances, doctors or other human experts can give particular consideration, thereby819

enhancing the trustworthiness of the decision system.820

F Additional Experiments821

F.1 Trade-Off between Accountability and Performance822

Experiment Setting In principle, the minimal convex hull in the d-dimensional belief space823

contains d + 1 examples. However, searching for such a minimal convex hull is a combinatorial824

optimization problem and can be extremely hard in high-dimensional space with many samples. In825

our implementation, we leverage a heuristic search method that constrains the combinatorial search826

inside the k-nearest neighbors of a given control time belief state.827

We change such a hyper-parameter — the maximal number of examples in the corpus subsets can828

be used in building the minimal belief space convex hull. We experiment with k = 1, 10, 20, 100829

separately.830

Table 6: The cardinality of the corpus subset is a hyper-parameter that trades off between accountabil-
ity and performance. While in general using a larger number of corpus examples can better support
the control decisions, it also has a risk of increasing the corpus residual in synthesizing the control
time decision, hence hindering the performance of the control policy.

K Performance

1 �670.51± 321.09
10 �510.39± 311.24
20 �1.25± 0.4
100 �2.06± 0.55

Results Table 6 shows the results. To make ABC work, the choice of k should at least roughly831

match the dimension of the latent space. Otherwise, the aggressive extrapolation will hinder the832

performance of ABC, including using only the nearest neighbor as an approximation. While such a833

choice naturally trades off between explainability and decision quality, our empirical study shows834

using a redundant set of the corpus will hinder the performance — this demonstrates the necessity of835

using the minimal convex hull in ABC.836

Take-Away: The minimal convex hull design in ABC is crucial for performance. We recommend837

the choice of size in constructing a minimal convex hull should match the dimension of the belief838

space.839

23

F.2 Visualizing Conservation of ABC840

Experiment Setting To better illustrate the conservative behaviors introduced by the hyper-841

parameter ✏, we conduct experiments on a Two Gates Maze environment to visualize the differences842

of using different choices of ✏’s.843

In the Two Gates Maze task, an agent needs to navigate to a goal located at (16, 8), the middle point844

of the right side wall, starting from (0, 8), the middle point of the left side wall. Two gates open in a845

middle wall located at x = 8, hence the agent needs to pass one of those gates to reach the goal.846

We generate an offline dataset from two behavior policies, each of which selects one of the two847

gates to pass the middle wall. The first two plots in Figure 9 show the map as well as the behavior848

trajectories as the dataset.849

We then experiment with different choices of ✏ = [0.1, 0.3, 0.5, 0.7] in ABC to perform offline850

control.851

Results Results are shown in the last 4 plots in Figure 9 (Purple lines denote the control time852

trajectories, ideal conservative policies’ behaviors should be bounded by the behavior trajectories). In853

each setting, we roll out with 100 trajectories by ABC and visualize the behaviors, and report the854

averaged performance in Table 7. When a small ✏ is used, the control time behaviors show little855

extrapolation: trajectories are in general surrounded by the dataset behaviors. When ✏ becomes larger,856

more aggressive extrapolations emerge in control time behaviors, leading to poorer performances.857

Figure 9: Visualizing the conservative behaviors controlled by the threshold controlled by a quantile
number ✏. Using a smaller ✏ leads to more conservative behaviors hence benefiting the offline control
problems where aggressive extrapolations can be dangerous.

Table 7: The ✏ in Equation (11) contributes to the conservative behaviors of ABC.

✏ Performance

0.1 6.97± 2.57
0.3 2.58± 5.13
0.5 �3.10± 1.00
0.7 �3.20± 0.00

24

Take-Away: Using a small ✏ leads to more conservative behaviors in ABC. ABC performs offline858

control avoiding aggressive extrapolations by constructing the Minimal Hull and performing control859

with the decision corpora that have minimized residuals.860

F.3 Additional Environment: LunarLanderContinuous861

Experiment Setting We additionally experiment on the LunarLanderContinuous-v2 environ-862

ment [79] for the general interests of the RL community. The LunarLanderContinuous-v2 en-863

vironment is a physics-based simulation game in which the agent must control a lunar lander to864

successfully land on a designated landing pad. It has a 2-dim action space and a 8-dim state space,865

both of which are continuous.866

We compare ABC with the nearest-neighbor controller (1NN) [19] and its variant that using k867

neighbors (kNN), model-based RL with Mode Predictive Control (MPC) [23], model-free RL868

(MFRL) [26], and behavior clone (BC) [24]. We change the size of the dataset to showcase the869

performance difference of various methods under different settings. We experiment with different870

offline data availability, varying from 0.1M to 1M.871

Table 8: Performance comparison on the LunarLanderContinuous-v2 environment under different
settings (availability of offline data). The episodic cumulative reward of each method is reported. The
last row (Data) reports the performance of trajectories in the offline dataset. Higher is better.

0.1M 0.2M 0.3M 0.5M 1M

ABC 100.77± 174.5 184.83± 88.28 240.81± 44.47 252.38± 45.66 253.71± 25.11

kNN �86.07± 172.57 �43.87± 69.1 �3.04± 116.76 �59.63± 143.33 �31.47± 152.72

1NN �42.2± 31.36 �98.27± 89.35 �14.93± 115.75 �57.37± 59.1 �64.41± 69.71

BC �130.23± 33.23 �118.61± 42.18 �36.91± 57.32 18.08± 35.4 54.46± 69.16

MFRL 92.0± 82.05 165.11± 54.48 221.3± 19.63 219.55± 38.97 254.55± 24.42

MPC �31.42± 32.09 �35.52± 43.09 �50.96± 22.96 �67.88± 55.49 �96.22± 85.01

Data 149.99± 133.45 207.92± 58.34 171.19± 100.43 169.42± 96.02 184.92± 69.59

Results We present the results in Table 8. In all settings, we find ABC is able to achieve an on-par872

performance of black-box decision-making algorithms, and outperforms the accountable baselines.873

In this environment, we find the model-based approach is not able to learn a well-performing874

reward function approximator. On the other hand, different from the Pendulum-Het settings where875

the stability of the balanced state is essential in achieving high performance, the stability of the876

model-free method in this environment is not an issue.877

Take-Away: The results on the LunarLanderContinuous environment again demonstrate the desired878

properties of ABC: while being accountable, it achieves similar performance as the black-box learning879

algorithms and is robust under different data availability.880

F.4 Black-Box Policy as More Efficient Sampler881

Experiment Setting In the main text, we introduce the uniform sampling approach for control time882

execution. While such an approach is simple and effective in our accountability-sensitive control883

benchmark tasks, it can be inefficient in high-dimensional continuous control tasks. For the interest884

of the general continuous control community, we experiment with a higher dimensional task in this885

section to stress test the capability of ABC in more challenging tasks.886

We experiment on the BipedalWalker-v3 environment that has 24-dim observational space and 4-887

dimensional action space. Different from previous experiments where a uniform sampler is applied,888

in this section, we use black-box models as the more efficient sampler and leverage ABC as a post-889

hoc interpreter for decision accountability. Specifically, we compare ABC with a uniform sampler890

(ABC-Uniform) and ABC with Behavior Clone policy as a black-box sampler (ABC-BC) against891

25

the same baselines as previously, i.e., the nearest-neighbor controller (1NN) [19] and its variant that892

using k neighbors (kNN), model-based RL with Mode Predictive Control (MPC) [23], model-free893

RL (MFRL) [26], and behavior clone (BC) [24]. To improve the black-box controller’s performance894

and hence isolate the source of gain, we use the offline dataset of size 1M.895

Results Results are reported in Table 9. In this high-dimensional control task, the uniform sampler896

is inefficient and fails to converge to a well-performing policy in control time. Among all black-box897

methods, BC achieves the best performance. And ABC with BC as its sampler achieves improved898

performance, while at the same time being accountable.899

Table 9: Performance on the BipedalWalker-v3 environment. The episodic cumulative reward of each
method is reported. Higher is better.

Method Performance

kNN �109.72± 5.85
1NN �111.95± 8.25

ABC-Uniform �90.44± 14.06
ABC-BC 276.98± 82.78

BC 208.72± 95.72
MFRL 18.51± 111.53
MPC �96.82± 24.7

Data-Avg-Return 202.25± 102.61

Take-Away: ABC can work both in isolation or combined with black-box policies. ABC can be used900

as a plug-in to add accountability to black-box controllers in a post-hoc manner. In high-dimensional901

control tasks, uniform sampling can be inefficient and black-box samplers can alleviate such a902

difficulty.903

F.5 Identify Control Time OOD Examples with ABC904

Experiment Setting In this section, we show that ABC can be applied to OOD example iden-905

tification during control time. Specifically, we conduct the experiment with the BipedalWalker906

environment. During control time, a black-box controller described in the last section is used, and we907

start to inject Gaussian noise into the control actions as disturbance after the 500-th timestep to create908

an OOD scenario.909

Results We repeat the above process for 10 times and report the averaged step-wise instant reward910

curve and corpus residual curve during rollouts in Figure 10. We note that in the figure in the911

beginning steps, the walker starts from a static state to walk, thus leading to an increase in the instant912

reward curve. We then label the control steps between the 100-th and the 500-th step as the stable913

walking phase, during which the walker receives a nearly constant instant reward (around 0.4 per914

step), and the corpus residual during this period is stable and close to 0. The Gaussian noise is915

injected after the 500-th timestep, leading to a clear increase in the corpus residual curve and a sudden916

decrease in the instant reward curve. According to the corpus residual values’ sudden increase, the917

control time OOD examples can be identified according to the 3-sigma rule of thumb. (The 3-sigma918

intervals are marked with shaded areas in the figure).919

Take-Away: Control time OOD examples can be identified by ABC according to the sudden920

increases in the corpus residual value.921

G Limitations and Future Work922

In this study, our exploration of accountable batch control primarily targets low-dimensional con-923

trol tasks, drawing inspiration from healthcare applications where treatments are typically of low924

dimension. However, the uniform sampling approach we propose may not perform as well in high-925

dimensional control systems, which can be of interest in the field of robotics study. We do offer an926

26

Figure 10: ABC can be used for OOD detection in control time. The corpus residual values can be
used to detect large epistemic uncertainty on OOD examples. Shaded areas in the figure denote the
3-sigma interval.

initial exploration of using black-box samplers in ABC within our appendix, but there remains ample927

room for further work in enhancing the efficiency of the sampling process. Additionally, there’s928

potential for expanding ABC into online control settings by combining it with optimism in the face929

of uncertainty (OFU) explorers, to pursue accountable online control. This, however, lies beyond the930

scope of our current paper.931

H Broader Impact932

In this study, we examine the batch control problem, which holds significant potential for applications933

in costly, safety-sensitive, and critical domains such as healthcare and finance. While previous works934

have primarily focused on efficient learning in batch settings, the accountability of offline decisions935

remains largely unexplored despite its importance.936

In critical domains like healthcare, it’s vital that decisions are based on supportive evidence. For937

instance, when a patient is treated in a certain manner, it should be based on the successful outcomes938

of previous patients with comparable conditions who received the same treatment. The ability to trace939

the supportive basis of decisions enhances the process of policy reasoning and debugging, thereby940

improving the trustworthiness of decision-making systems.941

However, we bring to light the potential risk associated with applying ABC to critical real-world942

decision-making systems. This risk stems from potential heterogeneous outcomes, i.e., the aleatoric943

uncertainty associated with decision outcomes. For example, similar patients undergoing the same944

treatment may experience different results. Therefore, when the variance of outcomes in the corpus945

subset is high, users should exercise caution regarding the potential heterogeneous outcomes of946

decisions.947

27

	Introduction
	Preliminaries
	Accountable Control with Decision Corpus
	Understanding Decision-Making with a Subset of Offline Data
	Linear Belief Learning for Accountable Batched Control
	Selection of Corpus Subset
	Accountable Batched Control with Belief Corpus
	Optimization Procedure

	Related Work
	Experiments
	(P1-P3): Accountable Batched Control in the Low-Data Regime
	(P1): Avoid Aggressive Extrapolation with the Minimal Hull and Minimized Residual
	(P2): Accountable Batched Control by Tracking Reference Examples
	(P4): Flexible Batched Control under User Specification
	(P1-P5): Real-World Dataset: The Strictly Batched Imitation Setting in Healthcare
	Additional Empirical Studies

	Conclusion
	Missing Proofs
	Proof of the Estimation Error Bound for v(at)
	Proof of the Existence and Uniqueness

	Extended Related Work
	Offline RL
	Episodic Control and Nearest Neighbor Control
	Explainable RL

	The Strictly Batched Imitation Setting
	Further Implementation and Experiment Details
	Reproduceability: Code
	Learning the Belief Space
	Addressing the Scalability Issue: Finding the Minimal Convex Hull Efficiently
	Data Generation Process: Heterogeneous Pendulum
	Hardware and Running Time
	Baseline Implementations
	The Model-Free RL Baseline and Its Stability Issue

	Additional Qualitative and Quantitative Results
	Adaptivity: Visualizing the Decisions of ABC and Quantitative Performance
	More Visualization Results and Extended Discussion on the Healthcare Dataset

	Additional Experiments
	Trade-Off between Accountability and Performance
	Visualizing Conservation of ABC
	Additional Environment: LunarLanderContinuous
	Black-Box Policy as More Efficient Sampler
	Identify Control Time OOD Examples with ABC

	Limitations and Future Work
	Broader Impact

