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A APPENDIX

A.1 PROOF OF THEOREM 1

Proof. Since cutting planes are generated and added to the polytope every k iteration, the polytope
P satisfies that P0 ⊇ Pk ⊇ · · · Pnk. Known that the feasible region of the problem in Eq.(5) is
Z , we denote the feasible region of Eq.(7) in kth iteration as Z ′k. Then we have Z ′0 ⊇ Z ′k ⊇
· · · Z ′nk ⊇ Z . Denoting the optimal value of the objective function in Eq.(7) at kth iteration as
F (xk∗,yk∗), we can obtain that:

F (x0∗,y0∗) ≤ F (xk∗,yk∗) ≤ · · · ≤ F (xn∗,yn∗). (18)

Subsequently, we have that

F ∗

F (x0∗,y0∗)
≥ F ∗

F (xk∗,yk∗)
≥ · · · ≥ F ∗

F (xnk∗,ynk∗)
≥ α, (19)

where F ∗ denotes the optimal objective value of the problem in Eq.(5), α ≥ 1. It can be observed
that F∗

F (xk∗,yk∗)
is a monotonically nonincreasing sequence. Therefore, when nk → ∞, the optimal

objective value of the problem in Eq.(7) will converge to α monotonically.

According to Eq.(12), in the ϵ → 0 limit, we have

∇̂xLp(x,y, {λl};B) =
1

Bd

∑
ξ∈B

∑
i∈[d]

ziz
⊤
i ∇xLp(x,y, {λl}; ξ), (20)

and E[∇̂xLp(x,y, {λl};B)] = ∇xLp(x,y, {λl}). That is, ∇̂xLp(x,y, {λl};B) is an unbiased
estimator of the gradient.

The second moment can be computed as

E[∇̂xLp(x,y, {λl};B)∇̂xLp(x,y, {λl};B)⊤]

=
1

B2d2

∑
ξ1,ξ2∈B

∑
i,j∈[d]

E[(ziz⊤i ∇xLp(x,y, {λl}; ξ1))(zjz⊤j ∇xLp(x,y, {λl}; ξ2))⊤]. (21)

Given two arbitrary vectors u and v, we can obtain

Ezi,zj
[ziz

⊤
i uv

⊤zjz
⊤
j ] = uv⊤, i ̸= j, (22)

and

Ezi
[ziz

⊤
i uv

⊤ziz
⊤
i ] = Ez[z

⊗4](u,v) =
3n

n+ 2
Sym(I⊗2)(u,v) =

n

n+ 2
u⊤vI+

2n

n+ 2
uv⊤.

(23)

It follows that

E[∇̂xLp(x,y, {λl};B)∇̂xLp(x,y, {λl};B)⊤]

=
1

B2

∑
ξ1,ξ2∈B

(
d− 1

d
+

2n

d(n+ 2)
)E[Lp(x,y, {λl}; ξ1)Lp(x,y, {λl}; ξ2)⊤]

+
n

d(n+ 1)
E[Lp(x,y, {λl}; ξ1)⊤Lp(x,y, {λl}; ξ2)]I

=(1 +
n− 2

d(n+ 2)
)(∇xLp(x,y, {λl})∇xLp(x,y, {λl})⊤ +

1

B
Σx(x,y, {λl}))

+
n

d(n+ 2)
I(||∇xLp(x,y, {λl})||2 +

1

B
tr(Σx(x,y, {λl}))).

(24)

According to Eq.(24), we can obtain that

E[||∇̂xLp(x,y, {λl};B)||2] =
n+ d− 1

d
E[∇xLp(x,y, {λl};B)]. (25)
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By Taylor’s theorem with remainder, we have

Lp(x
t+1,yt, {λt

l})
=Lp(x

t,yt, {λt
l}) +∇xLp(x

t,yt, {λt
l})⊤(xt+1 − xt)

+

∫ 1

0

β(xt+1 − xt)⊤∇2
xLp(βx

t+1 + (1− β)xt,yt, {λt
l})(xt+1 − xt)⊤dβ.

(26)

According to the update rules of x and properties of {z}, we have

||xt+1 − xt|| = η||∇̂xLp(x
t,yt, {λt

l};B)||

≤ η
√
n

Bd

∑
|z⊤i ∇xLp(x

t,yt, {λt
l}; ξ)|

≤ ηnG(xt,yt, {λt
l}).

(27)

According to assumptions on smoothness and r-effective rank of the Lp function and Eq.(27), we
can obtain that

Lp(x
t+1,yt, {λt

l})
≤Lp(x

t,yt, {λt
l}) +∇xLp(x

t,yt, {λt
l})⊤(xt+1 − xt) + (xt+1 − xt)⊤Hx(x

t,yt, {λt
l})(xt+1 − xt)

=Lp(x
t,yt, {λt

l})− η∇xLp(x
t,yt, {λt

l})⊤∇̂xLp(x
t,yt, {λt

l};B)

+
1

2
η2∇̂xLp(x

t,yt, {λt
l};B)⊤Hx(x

t,yt, {λt
l})∇̂xLp(x

t,yt, {λt
l};B).

(28)

Plugging Eq.(24) into Eq.(28) and taking the expectation to have

E[Lp(x
t+1,yt, {λt

l})]
≤Lp(x

t,yt, {λt
l})− η||∇xLp(x

t,yt, {λt
l})||2

+
η2

2
⟨Hx(x

t,yt, {λt
l}),E[∇̂xLp(x

t,yt, {λt
l};B)∇̂xLp(x

t,yt, {λt
l};B)⊤]⟩

=Lp(x
t,yt, {λt

l})− η||∇xLp(x
t,yt, {λt

l})||2

+
η2

2
· n

d(n+ 2)
(||∇xLp(x

t,yt, {λt
l})||2 +

1

B
tr(Σx(x

t,yt, {λt
l})))tr(Hx(x

t,yt, {λt
l}))

+
η2

2
(1 +

n− 2

d(n+ 2)
)(∇xLp(x

t,yt, {λt
l})⊤Hx(x

t,yt, {λt
l})∇xLp(x

t,yt, {λt
l})

+
1

B
⟨Σx(x

t,yt, {λt
l}),Hx(x

t,yt, {λt
l})⟩).

(29)

Assumptions on smoothness and r-effective rank of the Lp function indicate that
||Hx(x

t,yt, {λt
l})||op ≤ L and tr(Hx(x

t,yt, {λt
l})) ≤ Lr. Thus, according to Eq.(29), we

have

E[Lp(x
t+1,yt, {λt

l})]
≤Lp(x

t,yt, {λt
l})− η||∇xLp(x

t,yt, {λt
l})||2

+
η2L

2
(
nr + n− 2

d(n+ 2)
+ 1)(||∇xLp(x

t,yt, {λt
l})||2 +

1

B
tr(Σx(x

t,yt, {λt
l})))

=Lp(x
t,yt, {λt

l})− η||∇xLp(x
t,yt, {λt

l})||2 +
η2L

2
(
nr + n− 2

d(n+ 2)
+ 1)E[||∇xLp(x

t,yt, {λt
l};B)||2].

(30)

It follows that

E[Lp(x
t+1,yt, {λt

l})]− Lp(x
t,yt, {λt

l})

≤− η||∇xLp(x
t,yt, {λt

l})||2 +
η2Lγ

2
E[||∇xLp(x

t,yt, {λt
l};B)||2],

(31)
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where γ = Θ(r/d) > 1.

Similar to Eq.(31), according to the descent lemma for stochastic gradient descent (Malladi et al.,
2023), we can obtain that

E[Lp(x
t+1,yt+1, {λt

l})]− Lp(x
t+1,yt, {λt

l})

≤− η||∇yLp(x
t+1,yt, {λt

l})||2 +
η2L

2
E[||∇yLp(x

t+1,yt, {λt
l};B)||2]

≤− η||∇yLp(x
t+1,yt, {λt

l})||2 +
η2Lγ

2
E[||∇yLp(x

t+1,yt, {λt
l};B)||2],

(32)

and
E[Lp(x

t+1,yt+1, {λt+1
1 , λt

2, · · · , λt
l−1, λ

t
l})]− Lp(x

t+1,yt+1, {λt
1, λ

t
2, · · · , λt

l−1, λ
t
l})

≤− η||∇λ1
Lp(x

t+1,yt+1, {λt
1, λ

t
2, · · · , λt

l−1, λ
t
l})||2

+
η2Lγ

2
E[||∇λ1

Lp(x
t+1,yt+1, {λt

1, λ
t
2, · · · , λt

l−1, λ
t
l};B)||2],

(33)

E[Lp(x
t+1,yt+1, {λt+1

1 , λt+1
2 , · · · , λt

l−1, λ
t
l})]− Lp(x

t+1,yt+1, {λt+1
1 , λt

2, · · · , λt
l−1, λ

t
l})

≤− η||∇λ2
Lp(x

t+1,yt+1, {λt+1
1 , λt

2, · · · , λt
l−1, λ

t
l})||2

+
η2Lγ

2
E[||∇λ2

Lp(x
t+1,yt+1, {λt+1

1 , λt
2, · · · , λt

l−1, λ
t
l};B)||2],

(34)
· · · · · ·

E[Lp(x
t+1,yt+1, {λt+1

1 , λt+1
2 , · · · , λt+1

l−1 , λ
t
l})]− Lp(x

t+1,yt+1, {λt+1
1 , λt+1

2 , · · · , λt
l−1, λ

t
l})

≤− η||∇λl−1
Lp(x

t+1,yt+1, {λt+1
1 , λt+1

2 , · · · , λt
l−1, λ

t
l})||2

+
η2Lγ

2
E[||∇λl−1

Lp(x
t+1,yt+1, {λt+1

1 , λt+1
2 , · · · , λt

l−1, λ
t
l};B)||2],

(35)
E[Lp(x

t+1,yt+1, {λt+1
1 , λt+1

2 , · · · , λt+1
l−1 , λ

t+1
l })]− Lp(x

t+1,yt+1, {λt+1
1 , λt+1

2 , · · · , λt+1
l−1 , λ

t
l})

≤− η||∇λl
Lp(x

t+1,yt+1, {λt+1
1 , λt+1

2 , · · · , λt+1
l−1 , λ

t
l})||2

+
η2Lγ

2
E[||∇λl

Lp(x
t+1,yt+1, {λt+1

1 , λt+1
2 , · · · , λt+1

l−1 , λ
t
l};B)||2].

(36)

For x variable, according to Eq.(31), denote the step size of the stochastic gradient descent version
of our algorithm as η′, and set η = η′

γ , it follows that

E[Lp(x
t+1,yt, {λt

l})]− Lp(x
t,yt, {λt

l})

≤ 1

γ
[−η′||∇xLp(x

t,yt, {λt
l})||2 +

η′
2
L

2
E[||∇xLp(x

t,yt, {λt
l};B)||2]].

(37)

Then, set η′ ≤ 1
L to have

E[Lp(x
t+1,yt, {λt

l})]− Lp(x
t,yt, {λt

l})

≤ 1

γ
[−η′

2
||∇xLp(x

t,yt, {λt
l})||2 +

η′
2
L

2B
tr(Σx(x

t,yt, {λt
l}))].

(38)

For any w in (x,y, {λl}), following (Malladi et al., 2023), we assume that there exist α such that
tr(Σw(x,y, {λl})) ≤ α(Lp(x,y, {λl})− L∗

p). Then we have

E[Lp(x
t+1,yt, {λt

l})]− Lp(x
t,yt, {λt

l})

≤ 1

γ
(−η′µ+

η′
2
Lα

2B
)(E[Lp(x

t,yt, {λt
l})]− L∗

p)

⇒E[Lp(x
t+1,yt, {λt

l})]− L∗
p ≤ (1− 1

γ
(η′µ− η′

2
Lα

2B
))(E[Lp(x

t,yt, {λt
l})]− L∗

p).

(39)
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Set η′ = min{ 1
L ,

µB
Lα} to have

E[Lp(x
t+1,yt, {λt

l})]− L∗
p ≤ ρ(E[Lp(x

t,yt, {λt
l})]− L∗

p), (40)

where ρ = (1− 1
γ (min{ µ

2L ,
µ2B
2Lα})).

Similar to x variable, by analyzing y and {λl} variables in the same way as Eq.(37), Eq.(38),
Eq.(39), and Eq.(40), we can obtain that

E[Lp(x
t+1,yt+1, {λt

l})]− L∗
p ≤ ρ(E[Lp(x

t+1,yt, {λt
l})]− L∗

p),

E[Lp(x
t+1,yt+1, {λt+1

1 , λt
2, · · · , λt

l−1, λ
t
l})]− L∗

p ≤ ρ(E[Lp(x
t+1,yt+1, {λt

1, λ
t
2, · · · , λt

l−1, λ
t
l})]− L∗

p),

E[Lp(x
t+1,yt+1, {λt+1

1 , λt+1
2 , · · · , λt

l−1, λ
t
l})]− L∗

p ≤ ρ(E[Lp(x
t+1,yt+1, {λt+1

1 , λt
2, · · · , λt

l−1, λ
t
l})]− L∗

p),

· · · · · ·
E[Lp(x

t+1,yt+1, {λt+1
1 , λt+1

2 , · · · , λt+1
l−1 , λ

t
l})]− L∗

p ≤ ρ(E[Lp(x
t+1,yt+1, {λt+1

1 , λt+1
2 , · · · , λt

l−1, λ
t
l})]− L∗

p),

E[Lp(x
t+1,yt+1, {λt+1

1 , λt+1
2 , · · · , λt+1

l−1 , λ
t+1
l })]− L∗

p ≤ ρ(E[Lp(x
t+1,yt+1, {λt+1

1 , λt+1
2 , · · · , λt+1

l−1 , λ
t
l})]− L∗

p).
(41)

Combining Eq.(40) and Eq.(41), in the t+ 1 iteration we have

E[Lp(x
t+1,yt+1, {λt+1

l })]− L∗
p ≤ ρp+2(E[Lp(x

t,yt, {λt
l})]− L∗

p). (42)

Denoting ρp+2 as ρ′ and according to Eq.(42), we can obtain that

E[Lp(x
t,yt, {λt

l})]− L∗
p ≤ ρ′

t
(E[Lp(x

0,y0, {λ0
l })]− L∗

p). (43)

W can therefor obtain a solution with E[Lp(x
t,yt, {λt

l})]− L∗
p ≤ ϵ after

t =
γ

p+ 2
max(

2L

µ
,
2Lα

µ2B
) log(

Lp(x
0,y0, {λ0

l })− L∗
p

ϵ
)

=O((
r

d
+ 1)(

1

p
)(
L

µ
+

Lα

µ2B
) log

Lp(x
0,y0, {λ0

l })− L∗
p

ϵ
).

(44)

A.2 DETAILED EXPERIMENTAL SETTINGS

A.2.1 NATURAL LANGUAGE UNDERSTANDING TASKS

Datasets. For the text classification task, we use the following datasets: 1) SST-2 (The Stanford
Sentiment Treebank) (Socher et al., 2013) is used to predict the sentiment of a given sentence in the
movie reviews domain. 2) MRPC (The Microsoft Research Paraphrase Corpus) (Dolan & Brockett,
2005) contains pairs of SENTENCE with manual annotations indicating whether the SENTENCE in
each pair are semantically equivalent. 3) Tweets Hate speech detection (Lhoest et al., 2021) aims to
detect hate speech in tweets. We will abbreviate this dataset as “Tweets Hate”. 4) Wiki Toxic dataset
comprises comments gathered from Wikipedia forums, categorized into two groups: toxic and non-
toxic. 5) FELM (Factuality Evaluation of large Language Models) (Chen et al., 2023b) aims to check
whether the answer is correct for a question. 6) BoolQ (Wang et al., 2019)is a question answering
dataset for yes/no questions. 7) WiC (Wang et al., 2019) is a dataset for word sense disambiguation.
Note that the Tweets Hate and Wiki Toxic datasets may contain potentially harmful text.

For the multiple choice task, we use COPA (Wang et al., 2019) and SWAG (Zellers et al., 2018)
dataset. COPA (The Choice Of Plausible Alternatives) is designed to evaluate open-domain com-
monsense causal reasoning questions. SWAG (Situations With Adversarial Generations) is a large
scale dataset for natural language inference and commonsense reasoning. Finally, for the single-
turn question answering task, SQuAD (Rajpurkar et al., 2016) and DROP (Dua et al., 2019) are
used. SQuAD (Stanford Question Answering Dataset) (Rajpurkar et al., 2016) is a reading com-
prehension dataset with questions based on Wikipedia articles. DROP (Discrete Reasoning Over
Paragraphs) is a comprehension benchmark requiring discrete reasoning over paragraphs.
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Table 7: Prompt Templates for The Cloud-hosted LLM on NLU Tasks.

Dataset Templates for the cloud-hosted LLM

SST-2
How is the sentiment of sentence: [OPTIMIZED INFO]? First re-
spond ONLY with “Great” or “Terrible”, then give some explanation.

MRPC
Whether [SENTENCE1] and [SENTENCE2] in the pair are semanti-
cally equivalent? Note: [OPTIMIZED INFO]. First respond ONLY
with “Yes” or “No”, then give some explanation.

Tweets Hate
Whether [OPTIMIZED INFO] has a racist or sexist sentiment associ-
ated with it? First respond ONLY with “Yes” or “No”, then give some
explanation.

Wiki Toxic
Whether the comment gathered from Wikipedia forums [OPTI-
MIZED INFO] is toxic. First respond ONLY with “Yes” or “No”,
then give some explanation.

FELM
For [QUESTION], whether [ANSWER] is a correct answer? Note:
[OPTIMIZED INFO]. First respond ONLY with “Yes” or “No”, then
give some explanation.

BoolQ
Please answer the [QUESTION] based on the [PASSAGE]. Note:
[OPTIMIZED INFO]. First respond ONLY with “Yes” or “No”, then
give some explanation.

WiC
Determine whether the intended sense of the [TEXT] is the same in
[SENTENCE1] and [SENTENCE2]. Note: [OPTIMIZED INFO].
First respond ONLY with “Yes” or “No”, then give some explana-
tion.

COPA
Choose one from the following two SENTENCE and deduce
which sentence is the [QUESTION] of [PREMISE]. Option one:
[SENTENCE1]; Option two: [SENTENCE2]. Note: [OPTI-
MIZED INFO]. First respond ONLY with “One” or “Two”, then give
some explanation.

SWAG
Choose one from the following four SENTENCE to deduce
which sentence might be the end of [SENTENCE0]. Op-
tion one: [SENTENCE1]; Option two:[SENTENCE2]; Option
three:[SENTENCE3]; Option four: [SENTENCE4]. Note: [OPTI-
MIZED INFO]. First respond ONLY with “One” or “Two”, “Three”,
or “Four”, then give some explanation.

SQuAD/DROP
Please answer the QUESTION and give some explanation. Context
Info: [OPTIMIZED INFO]. Your response should follow the follow-
ing format: “Answer: ...; Explanation: ...”.

Prompt Templates. The prompt templates for the cloud-hosted LLM are summarized in Table 7,
where “OPTIMIZED INFO” denotes the prompts optimized by the edge agent.

Baselines. We compare the proposed framework, sandwiched tuning, with the following baselines.
1) Manual Prompt uses the manual designed prompt templates similar to Table 7, but without the
OPTIMIZED INFO. 2) Zero-shot CoT (Kojima et al., 2022) adds a hint, “Let’s think step-by-step”,
on the basis of manual prompt. 3) Random In-Context Learning (ICL) provides a few randomly
selected example inputs and their corresponding outputs to guide the model in understanding the
context and the type of response. 4) OPRO (Yang et al., 2023) uses an LLM to generate and evaluate
new solutions based on the prompt step-by-step.

Implementation details. For the edge agent, we employ the low-rank adaptation (LoRA) method
for the parameter-efficient fine-tuning of the edge LLM while performing a full-parameter fine-
tuning of the adapter model. We use AdamW as the optimizer and set η = 0.0001. For each dataset,
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we use 500 training samples and 50 testing samples. We repeat the experiment on each dataset 5
times and record the average performance.

A.2.2 MULTI-TURNS DIALOGUE GENERATION

Datasets. For datasets, we utilize six customer support datasets, each derived from Twitter interac-
tions, including Hulu Support, Sainsburys, Comcastcares, Sprintcare, UPSHelp and XboxSupport.
Each dataset contains multi-turn dialogues where customers reach out to companies with issues or
questions, and support agents respond with resolutions or further queries. These datasets provide
a comprehensive view of typical customer support scenarios, covering a range of industries such
as entertainment, retail, telecommunications, logistics, and gaming. This variety allows for an in-
depth analysis of conversational patterns and the effectiveness of support responses across different
sectors.

Baselines. For baselines, we compare 2 different strategies for selecting in-context examples:

• Random: Randomly selects dialogue samples without specific optimization.

• ICL: Retrieves 5 dialogues and randomly selects 2 from them for generation.

Metrics. For evaluation metrics, we use the “Win Rate” metric, as described by Dubois et al.
(2024). The “Win Rate” metric measures how often a dialogue generation method outperforms
another in producing higher-quality conversations. In the evaluation process, qwen-max compares
two generated dialogues and determines which one is closer to the ground truth. Essentially, it
reflects the percentage of times one method’s output is judged to be superior to another’s in terms of
dialogue quality. In our experiments, we use qwen-max’s output without any context samples as the
competitor.

A.2.3 TOOL USE TASKS

Datesets. For datasets, We use a publicly available mathematical word problem dataset for the
mathematical reasoning task(Zhao et al., 2020). Additionally, we created three specialized datasets
for floating-point arithmetic, floating-point comparison, and character counting, as shown in Table
8.

To assess the model’s performance in floating-point calculation scenarios, we developed the “Float-
Arithmetic” dataset, which features real-world problems such as shopping, weighing, and financial
calculations. This dataset consists of 500 entries generated by GPT-4o, which were manually verified
for accuracy and further calibrated using ChatGLM4 to ensure the reliability of results.

For the floating point comparison task, we built a dataset named Float-Comparison , addressing
discrepancies observed in LLM’s calculations compared to calculator ground truths. Using LLM
(qwen-max), we generated a set of comparison questions based on these results. In the Character
Counting task, we created the “Character-Counting” dataset, where the goal is to count occurrences
of a specific character in a string, using LLM-generated templates.

Prompt Templates. The prompt templates for the cloud-hosted LLM are summarized in Table 10,
where “OPTIMIZED INFO” denotes the prompts optimized by the edge agent. The origin INFO is
shown in Table 9.

Implementation Details. For the edge agent, we utilize the low-rank adaptation (LoRA) method
to perform parameter-efficient fine-tuning on the edge LLM, while applying full-parameter fine-
tuning on the adapter model. We use AdamW as the optimizer with a learning rate of η = 0.0001.
For APE-210K dataset, we random select 1000 training samples and 200 testing samples.For an-
other three datasets, each contains 400 training samples and 100 testing samples. We conduct the
experiments five times for each dataset and report the average performance results.

Experiment on tradeoffs among cloud-edge load distribution, inference latency, and inference
accuracy. To demonstrate the system’s flexibility in balancing real-time performance and accu-
racy, we include an additional experiment that dynamically distributes loads between the cloud and
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Table 8: Dataset Examples.

Dataset Question Example Answer Example

Float-Arithmetic A car rental company charges a daily fee of
45.50 and an additional charge of 0.25 per
mile driven. If a customer rents a car for 3
days and drives 150 miles, how much will
the total cost be?

174.0

Float-Arithmetic A car rental company charges a base fee of
35 per day, with an additional cost of 0.15
per mile driven. If a customer rents a car for
3 days and drives it for 120 miles, how much
does the total cost for the rental come to?

123.0

Float-Arithmetic You are planning a road trip across three
states, and you need to calculate the total cost
of fuel. You know the following informa-
tion: - Your car’s average fuel efficiency is
25.7 miles per gallon. - The total distance of
the trip is 1,345.6 miles. - Fuel prices vary
by state: $3.89 per gallon in the first state
for 400 miles, $4.15 per gallon in the sec-
ond state for 600 miles, and $3.95 per gallon
in the third state for the remaining distance.
What is the total cost of fuel for your trip?

210.55

Float-Comparison Does 58.4 or 58.10 have the upper hand in
value?

58.4

Float-Comparison Between 49.7 and 49.30, which value is
greater?

49.7

Character-Counting how many ‘i’ in word ‘kiwifruit’? 3
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Table 9: Prompt Templates for the Edge Agent on Tool Use.

Dataset Templates for the Edge Agent

APE-210K Note: In a conversational context, when calculations are required,
express the entire calculation using a single formula: ‘Calcu-
late(expression)’. For example, for 9.10 * 2.5 + 1.23 - 9.8, out-
put: ’Calculate(9.10 * 2.5 + 1.23 - 9.8)’. The ‘Calculate(expression)’
should encompass the entire calculation process.

Float-Arithmetic Note: In a conversational context, when calculations are required,
express the entire calculation using a single formula: ‘Calcu-
late(expression)’. For example, for 9.10 * 2.5 + 1.23 - 9.8, out-
put: ‘Calculate(9.10 * 2.5 + 1.23 - 9.8)’. The ‘Calculate(expression)’
should encompass the entire calculation process.

Float-Comparison Rephrase the task as a direct comparison.For example,convert into a
sentence like “You need to compare A and B”, where A and B are the
two numbers to be compared.

Character-Counting Let us think step by step.

0.0
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1.0
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0.40.50.60.70.8
Accuracy
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Figure 2: Impact of Cloud-Edge Load Distribution on System Latency and Accuracy.

edge based on query complexity. Specifically, we simulate the cloud-hosted LLM’s load using a
dataset comprising both complex and simple queries. The complex queries are routed to the cloud-
hosted LLM, while the simpler ones are handled by the edge LLM agent. The cloud load in this
experiment refers to the proportion of queries assigned to the cloud-hosted LLM.
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Table 10: Prompt Templates for the Cloud-hosted LLM on Tool Use.

Dataset Templates for the Cloud-Hosted LLM

APE-210K Given the math problem:[QUESTION], Note:[OPTIMIZED INFO].
For all other content, respond normally.

Float-Arithmetic Given the math problem:[QUESTION], Note:[OPTIMIZED INFO].
For all other content, respond normally.

Float-Comparison Given the question:[QUESTION]. Info: [OPTIMIZED INFO]. Re-
sponse should follow the format: “Answer[sentence]”.

Character-Counting Given the question:[QUESTION]. Info: [OPTIMIZED INFO]. Re-
sponse should follow the format: “Answer[sentence]”.

We analyze the system’s overall latency and accuracy under different load distributions. As shown
in Figure 2, there is a positive correlation between the load assigned to the cloud-hosted LLM
and both latency and accuracy. Notably, reducing the cloud-side load significantly decreases the
latency, while the accuracy remains relatively unaffected. This suggests that the edge LLM agent
can effectively handle less complex queries, allowing for efficient load balancing between the cloud
and edge components.

A.2.4 LLM TASK DECOMPOSITION

Datasets. For the LLM task decomposition task, we use the following datasets: 1) Orca-Math
200K contains approximately 200K grade school math word problems.(Mitra et al., 2024) 2)
TaskLAMA (Task Language Model Analysis) is used for testing various task decomposition and
measuring the performance (Yuan et al., 2024).

Prompt Templates. The prompt templates for the cloud-hosted LLM and edge agents are sum-
marized in Table 12, 13 where “OPTIMIZED INFO” denotes the prompts optimized by the edge
agent.

Baselines. We used three large language models with different parameter sizes, namely GPT2,
qwen2-7B, and llama3-8B, and compared the task performance before and after optimization.

Implementation details. For evaluation metrics, we use F1 score and cosine similarity, as de-
scribed by (Yuan et al., 2024). F1 score reflects the likelihood that the model can correctly perform
task decomposition and cosine similarity assesses the similarity between the task decomposition re-
sults of the edge agent and those of the cloud-hosted LLM. In the evaluation process, for the same
complex task, both the cloud-hosted LLM and the edge agent perform a task decomposition. The
performance of the edge agent’s task decomposition is then evaluated based on the results from the
cloud-hosted LLM, generating result of cosine similarity and F1 score. Based on these evaluation
results, the edge agent is optimized.
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Table 11: Prompt Templates for Edge Agent on Tool Use.

Dataset Templates for Edge Agent

APE-210K and Float-Arithmetic Your task is to extract a text call to the calculator API, with
the output format being ’Calculate(expression)’, where “ex-
pression” is used for expressions involving +, -, *, and / op-
erators. Only return calls for the specified methods Here are
some examples of API calls: Input: To find the area of the
tabletop with a cutout, subtract the cutout’s area (length x
width) from the full tabletop area (length x width). Calcu-
late(2.75 * 1.5 - 0.5 * 0.3) Output: Calculate(2.75 * 1.5 -
0.5 * 0.3) Input: To determine the total cost of the rental,
we need to calculate the cost of the miles driven and add
it to the base fee. The formula for the total cost is: Total
Cost=120+(0.25×150.5), Now, let’s express this calculation
using the requested format: Calculate(120 + (0.25 * 150.5))
Output: Calculate(120 + (0.25 * 150.5)) Input: [QUES-
TION] Output:.

Float-Comparison Your task is to add calls to a API named “Compare” to
a piece of text. The calls should help you compare two
numbers to determine which one is larger. You can call
the API by writing “[Compare(number1,number2)]” where
number1 and number2 are two numbers needed to be com-
pared.
Examples: - Input: Which is larger, 56.1 or 56.13? Output:
Answer:[Compare(56.1, 56.13)]
- Input: Between 993.32 and 993.9, which has the numerical
advantage?. Output: Answer:[Compare(999.32, 993.9)]
- Input: Determine the larger number between 78.9 and
78.91. Output: Answer:[Compare(78.9, 78.91)]
- Input: You need to compare 88.11 and 88.3 to deter-
mine which one is larger. Output: Answer:[Compare(88.11,
88.3)]
Task: Given the following question, add the ‘Compare‘
calling text and format the output as specified like An-
swer:[Compare(A,B)].
Input: question Output:

Character-Counting Your task is to add calls to a API named “Count” to
a piece of text. The calls should help you count how
many chars in a word. You can call the API by writing
“[Count(word,char)]”,.
Examples: - Input: how many ’r’ in word ’kiwifruit’? Out-
put: Answer:[Count(kiwifruit,r)]
- Input: how many ’a’ in word ’apricot’? Output: An-
swer:[Count(apricot,a)]
- Input: how many ’b’ in word ’broccoli’? Output: An-
swer:[Count(broccoli,b)]
Task: Given the following question, add the ’Count’
calling text and format the output as specified like An-
swer:[Count(A,B)].
Input: question Output:
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Table 12: Prompt Templates for the Cloud-hosted LLM on LLM Task Decomposition.

Dataset Templates for the cloud-hosted LLM

Orca-Math 200K given the math problem:[QUESTION]. Decompose the problem.

TaskLAMA given the problem:[QUESTION]. Decompose the problem.

Table 13: Prompt Templates for Edge Agent on LLM Task Decomposition.

Dataset Templates for edge agent

Orca-Math 200K
given the math problem:[QUESTION], Note:[OPTIMIZED INFO].
Decompose the problem.

TaskLAMA
given the problem:[QUESTION], Note:[OPTIMIZED INFO]. De-
compose the problem.
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