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Abstract

Detecting data points deviating from the train-
ing distribution is pivotal for ensuring reliable
machine learning. Extensive research has been
dedicated to the challenge, spanning classical
anomaly detection techniques to contemporary
out-of-distribution (OOD) detection approaches.
While OOD detection commonly relies on super-
vised learning from a labeled in-distribution (ID)
dataset, anomaly detection may treat the entire
ID data as a single class and disregard ID labels.
This fundamental distinction raises a significant
question that has yet to be rigorously explored:
when and how does ID label help OOD detection?
This paper bridges this gap by offering a formal
understanding to theoretically delineate the im-
pact of ID labels on OOD detection. We employ
a graph-theoretic approach, rigorously analyzing
the separability of ID data from OOD data in a
closed-form manner. Key to our approach is the
characterization of data representations through
spectral decomposition on the graph. Leverag-
ing these representations, we establish a provable
error bound that compares the OOD detection per-
formance with and without ID labels, unveiling
conditions for achieving enhanced OOD detec-
tion. Lastly, we present empirical results on both
simulated and real datasets, validating theoretical
guarantees and reinforcing our insights. Code is
publicly available at https://github.com/
deeplearning-wisc/id_label.

1. Introduction

When deployed in the real world, machine learning models
often encounter unfamiliar data points that fall outside the
distribution of the observed data. This problem has been
studied extensively, dating from the classical anomaly detec-
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tion methods (Chandola et al., 2009; Ahmed & Courville,
2020; Han et al., 2022) to contemporary out-of-distribution
(OOD) approaches (Liu et al., 2020b; Yang et al., 2021b;
Fang et al., 2022).

While both anomaly detection and OOD detection share the
goal of identifying test-time input that deviates from the
training distribution, a crucial distinction lies in the usage
of in-distribution (ID) labels in training time. Specifically,
classical anomaly detection may disregard ID labels (Yang
et al., 2021b), treating the entire ID dataset as a single class.
In contrast, OOD detection commonly relies on supervised
learning from a labeled ID dataset. It is reasonable to hy-
pothesize that incorporating ID labels during training might
influence the resulting feature representations, potentially
leading to distinct capabilities in separating ID from OOD
samples during test time. This raises a significant question
that has yet to be rigorously explored in the field:

RQ: When and how does ID label help OOD detection?

Answering this question offers the fundamental key to under-
standing and bridging two highly related fields of anomaly
detection and OOD detection. In pursuit of this objective,
we provide a formal understanding to theoretically delin-
eate the influence of ID labels on OOD detection. We base
our analysis on a graph-theoretic approach by modeling
the ID data via a graph, where the vertices are all the data
points and edges encode the similarity among data. This
analytical framework is well-suited for our investigation, as
data points’ representation similarity can differ between the
self-supervised and supervised learning setting, contingent
upon the availability of ID labels. For instance, when ID
labels are present, the supervisory signal facilitates connect-
ing points belonging to the same class, resulting in each
class manifesting as a distinct connected sub-graph. In both
cases (with or without ID labels), the sub-structures can be
revealed by performing spectral decomposition on the graph
and can be expressed equivalently as a contrastive learning
objective on neural net representations (expounded further
in Section 3). Importantly, these learned feature representa-
tions allow us to rigorously analyze the separability of ID
data from OOD data in a closed-form manner.

Based on the analytical framework, we provide a formal
error bound in Theorem 1, comparing the OOD detection
performance with and without the inclusion of ID labels.
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(b) Far OOD scenario

Figure 1: Intuitive example on the ID labels’ impact on OOD detection. (a) In the near OOD scenario where the OOD data connects
densely with the ID data, without ID labels, the neural network produces indistinguishable embeddings for the ID (Ragdoll and

class) and OOD data (

class). By harnessing the power of the ID labeling information, the model learns more distinguishable
embeddings that help ID vs. OOD separation. (b) In the far OOD scenario (

class), ID labels can be less beneficial because the

representations learned in an unsupervised manner can already be separable between ID vs OOD.

This theorem reveals sufficient conditions for achieving
improved OOD detection performance by leveraging ID
labels. To establish the error bound, we first calculate the
closed-form solution of the ID and OOD representations
based on the graph factorization and then quantify the OOD
detection performance by linear probing error. As a result,
Theorem 1 demonstrates that the difference in the OOD
detection performance with and without ID labels can be
lower bounded by a function of the adjacency matrix of
ID data as well as the OOD-ID connectivity. Furthermore,
we offer intuitive interpretations in Theorem 2, and show
that the ID labels are the most beneficial when either: (i)
the OOD data is relatively close to the ID data, which is
also known as the near OOD scenario; (ii) the ID data are
connected sparsely without ID labels; and (iii) the semantic
connection between each ID data to the labeled ID data from
different ID classes is sufficiently large. To help readers
understand the key insights of our theory, we provide a
simple intuitive example in Figure 1, which demonstrates
how adding ID labels in the near OOD scenario can lead to
a greater benefit compared to the far OOD scenario.

Lastly, we provide empirical verifications to support our
theory. In particular, we compare the OOD detection perfor-
mance with and without ID labels using both simulated data
and real-world datasets (Section 5). The result aligns with
our theoretical guarantee, showcasing the benefits of the ID
label information under proper conditions. For example, the
OOD detection result can be improved by 12.3% (AUROC)
in the near OOD scenario compared to 6.06% in the far
OOD scenario on CIFAR100, validating our theory.

Our main contributions are summarized as follows:

* We study an important but underexplored problem:
when and how in-distribution labels can help OOD
detection. Our exposition has fundamental value in un-
derstanding and bridging the two highly related fields
of anomaly detection and OOD detection.

* We provide an analytical framework based on graph
formulation to characterize the ID and OOD represen-
tations. Based on that, we analyze the error bound for
ID vs. OOD separation with and without ID labels
and investigate the necessary conditions for which the
labeling information can bring the most benefits.

* We present empirical analysis on both simulated and
real-world datasets to verify and support our theory.
The observation in practice echoes and reinforces our
theoretical insights.

2. Problem Setup

Let X be the input space, and ) = {1,...,c} be the la-
bel space for ID data. Given an unknown ID joint dis-
tribution Pyy defined over X x ), the labeled ID data
Si(é) = {(x1,%1), .., (xn,yn)} are drawn independently
and identically from Pxy. Alternatively, the unlabeled 1D
data Si(;) = {X1,...,xn} is drawn from Py4, which is the
marginal distribution of P xy, on X. Furthermore, we denote
IP;, the distribution of labeled data with label ¢ € Y.

Definition 1 (Out-of-Distribution Detection w/ ID Labels).
Given labeled ID data Si(oll), the aim is to learn a predictor
g : X — Y U{ood} such that for any test data x: 1) if x
is drawn from Py, then the model classifies x into one of
ID classes Y, and 2) if x is drawn from another distribution
Pooaq with unknown OOD class, then g can detect x as OOD
data (Fang et al., 2022).

Definition 2 (Out-of-Distribution Detection w/o ID Labels).
The definition is similar to above, except that we are us-
ing unlabeled ID data Si(:) = {x1,...,Xn} to learn the
binary predictor g. This is in accordance with the classical
anomaly detection problem (Chandola et al., 2009).
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3. Analysis Framework

Overview of rationale. In this section, we introduce our
analytical framework, which allows us to formalize and
understand the OOD detection performance in two cases:
(1) learning without ID labels, and (2) learning with ID
labels, respectively. Our analytical framework models the
ID data via a graph, where the vertices are all the data points,
and edges encode the similarity among data (Section 3.1).
The similarity can be defined in either a self-supervised
or supervised manner, contingent on the availability of the
ID labels. For example, when ID labels are present, the
supervision signal can help connect points belonging to the
same class, so that each class emerges clearly as a connected
sub-graph. In both cases, the sub-structures can be revealed
by performing spectral decomposition on the graph and can
be expressed equivalently as a contrastive learning objective
on neural net representations (Section 3.2). Importantly,
these learned feature representations allow us to rigorously
analyze the separability of ID data from OOD data in a
closed form. Since the features learned can be directly
impacted by the presence or absence of ID labels, the OOD
detection performance can vary accordingly.

3.1. Graph Formulation

We start by formally defining the graph and adjacency ma-
trix. For notation clarity, we use X to indicate the natural
sample (raw inputs without augmentation). Given an X, we
use 7 (x|X) to denote the probability of x being augmented
from x. For instance, when X represents an image, 7 (-|X)
can be the distribution of common augmentations (Chen
et al., 2020) such as Gaussian blur, color distortion, and
random cropping. The augmentation allows us to define a
general population space Xiy, which contains all the original
ID data points along with their augmentations. We denote
the cardinality of the population space with |X4| = N.

We define the graph G(Xiq, ¢) over the finite vertex set Xy
with edge weights (. To define edge weights (, we consider
two cases: (1) self-supervised connectivity ¢(*) by treating
all points in &jq as entirely unlabeled, and (2) supervised
connectivity ¢V by utilizing labeling information of ID
data.

Definition 3 (Unlabeled case (u)). When all ID points
are unlabeled, two samples (X, x1) are considered a posi-
tive pair if x and x+ are augmented from the same image

X ~ Pyg. For any two augmented data x,x’ € X, the
u

edge weight C,(c ) is defined as the marginal probability of

X

generating the pair (HaoChen et al., 2021 ):
Coo 2 Bxnr T(IR)T (x'[5). (M)

The magnitude of (,(:;), indicates the “positiveness” or simi-
larity between x and x’.

Alternatively, when having access to the labeling informa-
tion for ID data, we can define the edge weight by adding
additional supervised connectivity to the graph.

Definition 4 (Labeled case (1)). When all ID points are
labeled, two samples (x, xT) are considered a positive pair
if x and x* are augmented from two labeled samples %
and x) with the same ID class i. The overall edge weight
for any pair of data (x,x) is given by:

G = du- ¢+ 61 Y By, Exgop, T(XIR)T (x151).
i€y

where ¢, ¢; are the weight coefficients. Compared to the

unlabeled case, the second term strengthens the connectivity

for points belonging to the same class.

Definition 5 (Adjacency matrix for unlabeled ID data). We
define the adjacency matrix A with entry value ¢ () for

xx/

each (x,x') pair . Further, ¢ = Y orex C,(;), denotes the
total edge weights connected to a vertex X.

Definition 6 (Adjacency matrix for labeled ID data). Sim-
ilarly, we define the adjacency matrix for labeled ID data
AW with entry value C,({Q/ for each (x,x') pair and C,((l) =

@
ZX’EX xx’*

As a standard technique in graph theory (Chung, 1997), we
use the normalized adjacency matrix of G(X.q, ¢):

A2D 2AD 2, 2)

where A can be instantiated by either A(*) or A() defined
above. D € RV*¥ is the corresponding diagonal matrix

with D, = (,((“) for unlabeled case and D, = O for
labeled case. The normalization balances the degree of each
node, reducing the influence of vertices with very large
degrees. The normalized adjacency matrix allows us to
perform spectral decomposition as we show next.

3.2. Learning Representations Based on Graph Spectral

In this section, we perform spectral decomposition or spec-
tral clustering (Ng et al., 2001)—a classical approach to
graph partitioning—to the adjacency matrices defined above.
This process forms a matrix where the top-k eigenvectors
are the columns and each row of the matrix can be viewed as
a k-dimensional representation of an example. The result-
ing feature representations enable us to rigorously analyze
the separability of ID data from OOD data in a closed form,
and formally compare the OOD detection error under two
scenarios either with and without ID labels (in Section 4).

Specifically, taking the labeled case as an example, we con-
sider the following optimization, which performs low-rank
matrix approximation on the adjacency matrix A (®):

~ 2
A<z>_F<Z>F<Z>TH e

L(F(l) A(l)) 2
’ F

min
FO) RN Xk
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where || - || 7 denotes the matrix Frobenious norm. According
to the Eckart—Young-Mirsky theorem (Eckart & Young,

1936), the minimizer of this loss function is F,(Cl) e RNVxk

such that Fg)F,(f)T contains the top-k£ components of ADg
eigen decomposition.

A surrogate objective. In practice, directly solving objec-
tive 3 can be computationally expensive for an extremely
large matrix. To circumvent this, the feature representations
can be equivalently recovered by minimizing the following
contrastive learning objective (Sun et al., 2023a;b) as shown
in Lemma 1, which can be efficiently trained end-to-end
using a neural net parameterized by w:

E]abeled(hw) £ _2¢l£1(hw) - 2¢u£2(hw)+

¢7L3(hw) + 2010, La(hy) + ¢2L5(hy),
)

where hy, : Xiq — R* denotes the feature representation,

ﬁl(hW) = Z

T +
ey ilNPLi’RZNPZi, [hW(X) hw (x )]’

X~ T (-[%0) % ~T(-]%])
Lo(hy) = E [hy(x) "hy (x1)],

Xy ~Pid,

x~7’(-|>’cu),x+~7’(-\i“,)
ﬁg(hw) - Z % ~P IE;(/NP
ijey 1~y 3 s
X~ T (-|%0) X~ ~T (-1%])
£4(hw> - Z;] ilNPliEuNPidv
Y T (5) X T (R
_ 2
Libw)=  E (0 () Ty (x7))7].
Xu~Pia,X,, ~Fia,

X~ T (%), x ™ ~T(]%,)

(0 (0w (x7))]

Interpretation. At a high level, £, Lo push embeddings
of positive pairs to be closer while L3, L4 and L5 pull away
embeddings of negative pairs. Particularly, £; samples two
random augmentation views of two images from labeled
data with the same label. Lo samples two views from the
same image in Xiq. For negative pairs, £3 uses two augmen-
tation views from two labeled samples in X; with any label.
L4 uses two views of one sample in A} and another one in
Xiq. L5 uses two views from two random samples in Xiq.

Importantly, the contrastive loss allows drawing a theoret-
ical equivalence between learned representations and the
top-k singular vectors of A® | and facilitates theoretical
understanding of the OOD detection on the data represented
by A D We formalize the equivalence below.

Lemma 1 (Theoretical equivalence between two objectives).
We define each row £| of FO as a scaled version of learned
feature representation hy, with fy = /(chy(x). Then
minimizing the loss function L(F) | A1) in Equation 3 is

[ (B30 Thae (7))

equivalent to minimizing the surrogate loss in Equation 4.
Full proof is in Appendix Section D. 1.

Remark 1. We can extend the contrastive learning objective
in Equation 4 to the unlabeled case by setting the coefficient
¢ to 0 and keeping the remaining parts:

Lunlabeled(hw) £ 72¢u£2 (hw) + ¢?L£5 (hw) (5)
The loss has been employed in prior works on spectral
contrastive learning (Sun et al., 2023a;b), which analyzed
problems such as novel category discovery and open-world
semi-supervised learning. However, our paper focuses on
the problem of OOD detection, which has fundamentally
different learning goals. Accordingly, we derive novel theo-
retical analyses uniquely tailored to our problem focus (i.e.,
the impact of the ID label information), which we present
next.

4. Theoretical Results

Based on the analytical framework, we now provide theo-
retical insights to the core question: when and how does
ID label information help OOD detection? To answer this
question, we start by deriving the closed-form solution of the
representations for both ID and OOD data (Section 4.1), and
then quantify the OOD detection performance by measuring
the linear probing error (Section 4.2). Finally, we provide a
formal bound contrasting the OOD detection performance
with and without ID labels (Section 4.3).

4.1. Representation for ID and OOD Data

ID representations. We first derive the ID representations
for the labeled case, which can be similarly derived for the
unlabeled case. Specifically, one can train the neural net-
work hy, : Xjq — R” using the surrogate objective in Equa-
tion 4. Minimizing the loss yields representation Z() ¢
RN *F where each row vector z; = hy, (x;). According to
Lemma 1, the closed-form solution for the representations
is equivalent to performing spectral decomposition of the
adjacency matrix. Thus, we have F\") = [DW]2 Z("), where
F,(CZ)FS)T contains the top-k components of A()’s SVD de-
composition. We further denote the top-k singular vectors
of A as V,gl) e RV*k g0 we have F,&l) S V,(Cl)[E,(f)]%,
where Efﬁl) is a diagonal matrix of the top-k singular values
of A, By equalizing the two forms of Fg), the closed-

formed solution of the learned feature space is given by

z" = DO v ). ©)

OOD representations. In post hoc OOD detection, the
learning algorithm can only observe ID data in Xjq and the
corresponding adjacency matrix. Hence, a key challenge in
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Figure 2: Example showcasing the contrast between adjacency matrices and representations w/ (1) and w/o (u) ID labels. (a) The ID
adjacency matrix in the labeled case A®_(b) The ID adjacency matrix in the unlabeled case A ™ Here darker color indicates denser
connectivity. The contrast of the OOD-ID adjacency matrix A o1 w/ and w/o ID labels in the near OOD and far OOD scenario is shown in
(c) and (d), where the adjacency matrices have a larger Frobenius norm, i.e., ||Agl) |l = 60 in the near OOD scenario and smaller norm

in the far OOD scenario, i.e.,

AS‘I) ||F = 24. (e) Learned representations in the near OOD scenario, where the OOD representations are

overlapped in the unlabeled case but become linearly separable from the ID representations in the labeled case. (d) Representations in the
far OOD scenario. The ID and OOD representations can already be separable in the unlabeled case. The benefit of ID labels is marginal.

our framework is how to derive the OOD representations
based on ID and OOD data connectivity in the input space.
Unlike previous literature (Lee et al., 2018b), we refrain
from making simplified assumptions in the feature repre-
sentation space (although that makes analysis much easier).
More realistically, we characterize OOD data directly in the
input space by the adjacency matrix A(OZ)I € RM*N where
M is the number of OOD data points.

Each row in the matrix indicates the similarity between
an OOD data w.r.t. all the ID samples. Depending on
the characteristics of the OOD data, this matrix may be
sparse if OOD data is far away from all the ID samples (e.g.,
far OOD), or can have dense entries if it is close to some
ID classes (e.g., near OOD). Our characterization is thus
general enough to enable analysis under different scenarios.

Now a question remains: how do we go from this matrix
A(OZ)I to a k-dimensional embedding for each OOD data?
While a naive solution is to perform spectral decomposition
on the stack of two matrices A(Ol)l and AW , this violates the
principle of post hoc OOD detection as it incurs retraining.
Instead, we derive the embeddings of OOD vertices using
existing ID embeddings F() and the OOD-ID similarity.
This can be achieved by solving the following optimization:

~ 2
Jmin A - FQFOT| 7
FoodeRMxk F

where F(()lg 4 denotes the OOD embeddings. Intuitively, the
objective distills the similarity in the input space into the

representation space. For instance, it searches for an OOD
representation, aligning it closely with ID representations
when there is a dense connectivity between OOD and ID
data in the adjacency matrix, and vice versa. Similar to
the ID case, we have Z(()l(z 4= [Dolg d]_%FOQ 4 Where D(()lg d
can be calculated in the same way as D) based on Ag)l.
Therefore, the analytic form of the OOD representations
from the neural network can be derived as
l D=1 3 (DD —12
Zoa = Dol *AGVYIZITE @®)

ood T

Detailed proof and the design rationale are in Appendix D.2.

Representation in the unlabeled case. For the unlabeled
case, we can get the representations for ID and OOD data by
replacing the matrices V,(cl)7 E,(Cl), DO, Dc()lo)c1 and Ag)l in
Equations 6 and 8 with the unlabeled version. We will show
how the labeled and unlabeled representations are rigorously
related in Appendix C.1.

An illustrative example. To contrast the adjacency matri-
ces and the corresponding representations for the unlabeled
and labeled cases, we simulate an example in Figure 2.
The simulation is constructed with simplicity in mind, to
facilitate understanding. Evaluations on complex high-
dimensional data will be provided in Section 5. In particular,
we base our analysis on the ID adjacency matrix as depicted
in Figure 2 (a) and (b), which consists of three ID classes
and 40 data points for each class. In the labeled case, the
ID adjacency matrix has a denser connectivity pattern, espe-
cially for data that belongs to the same ID label. In Figure 2
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(c) and (d), we compare the OOD-ID adjacency matrices
with and without ID labels in two scenarios, i.e., near OOD
where there are dense connections in AOI and far OOD
where the connectivity in Aoris sparse.

Based on the graph, we further visualize in Figures 2 (e)
and (f) the 2D data representations (k = 2, calculated by
Equations 6 and 8) for the near OOD and far OOD scenarios.
We observe that having different adjacency matrices can
lead to significantly different data representations. We will
provide theory to rigorously analyze the OOD detection
performance and contrast between the labeled and unlabeled
cases (Section 4.3). Details of the illustrative example are
included in Appendix F.

4.2. Evaluation Target

With the closed-form representations for both ID and OOD,
we evaluate OOD detection by linear probing error. The
strategy is commonly used in representation learning (Chen
et al., 2020). Specifically, the weight of a linear classifier is
denoted as @ € R¥*2. The class prediction (ID vs. OOD)
is given by go(z) = argmax,c(, ;(hw(x)0);. Denote
the set of ID and OOD features as Z,; € RIVFM)xk —
[ZT,Z] ;T (either labeled (u) or unlabeled (1)), the lin-
ear probing error R(Z.y) is given by the least error of all
possible linear classifiers:

R(Zall) = oéﬂln Ezezan]l[y(z) 7& gG(Z)L )

where y(z) denotes indicates the ground-truth class of fea-
ture z (ID or OOD). With the definition, we can bound the
linear probing error R(Z,);) by the residual of the regression
error as shown in Lemma 2 with proof in Appendix D.3.

Lemma 2. Denote y € RINTM)X2 g5 q matrix where each
row contains the one-hot label for features in Z,y. We have:

R(Za) < 5 T (1= ZaiZly ) yy7) . (0

Here Tr (-) denotes the trace operator. ZZH is the Moore-
Penrose inverse of matrix Z,;. We denote this upper bound
as E(Zall), which is more tractable to analyze and behaves
similarly to R(Z,y) as shown in Appendix D.3. Therefore
our subsequent analysis revolves around it.

4.3. Error Bound on OOD Detection Performance

With the evaluation target defined above, we now present
the formal error bound on OOD detection performance by
contrasting the labeled and unlabeled cases. As an overview,
Theorem 1 will present the lower bound of linear probing
error difference between the unlabeled and label case, along
with an intuitive version in Theorem 2. We specify several
mild assumptions and necessary notations for our theorems

in Appendix A. Due to space limitation, we omit unimpor-
tant constants and simplify the statements of our theorems.
We defer the full formal statements in Appendix B. All
proofs can be found in Appendix C.

Error difference between unlabeled and labeled cases.
Formally, we investigate the following linear probing error
difference between the unlabeled and labeled case:

G =RZY)) - Rz, (11)

where a larger error difference indicates that labeled ID data
benefits OOD detection more substantially, and vice versa.
The lower bound on G is given by the following theorem.

Theorem 1 (Lower bound of the linear probing error differ-
ence w/ and w/o ID labels). (Informal.) Suppose we have
adjacency matrices A(“), AW e RNXN gnd Ag}), Ag% €
RMXN for both the labeled and unlabeled cases. Under
mild conditions, given positive constants ¢;, C, the error
difference G in Equation 11 is lower bounded by

g> G

> e e AN AGY), (12)

where q¢ € RN with each column defined as (q;)x =
Ex,~p,, T (x|%X;),x € Xiq. Similarly, p € RM*¢ is defined
as (pi)x = EilNPliT(X|il)7x € Xood. Semantically, each
entry in q means the connection magnitude from X to all ID
data while each entry in p is the connection from x to OOD
data. Furthermore,

e(p, q,A(“),A(u) = 2ZTr (pl A(U)T>

(1 IAGY IHNA): )anin%

D -2). anzul,

(HA 3 A 2R

where T is a constant that measures the k-th spectral gap
of matrix A, j.e., AL (w) > T/\(Jr1 and /\fcu) is the k-th
largest singular value of AW 1 is the maximum ly norm
of the ID representations, i.e., 7 = maX,czw) ||Z|2.

Theorem 1 is a general characterization of the error differ-
ence in the labeled and unlabeled cases. To gain a better
insight, we introduce Theorem 2 which provides intuition
interpretations.
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OOD category OOD dataset ID labels FPRO5| AUROCT  LP error] FPR95| AUROCT  LP error)
IP’Z‘ZS& - ]P)«I;«fd Pg?c‘f # PIcfd

SVHN - 0.091”'02 99.96:‘:0'()‘1 0.02*7%9 75.62:':?'74 77.09F4 17052+

+ 0.07<090  99,97+0-03 02000 68,73550% 82,9757 .48+0->8

TEXTURES _ 0'37:|:OA20 99'80:‘:0&5 0.02:f:0‘00 86.35:}:247 7(}94:}:3‘77 1'05:‘:0.17

+ 0‘24:!:0.19 99.86:‘:0'11 0.01:t0.00 86.44:\:0.58 75.15j:3.36 0‘95:|:0.10

+0.10 +0.00 +0.01 +2.78 +1.85 +0.27

FAROOD  PLACESISS | | (0000 oggtinl (00 GegetlUl g0 b0

LSUN-RESIZE _ 0‘2410403 99.95j:0,03 0.02j:0.00 83.57j:2.89 77.57j:5.21 0.84i0421

+ 0.24%001 99,91 X007 0,02F0 01 7413%49 g7 FI 0L 75%0- 14

LSUN-C _ 1.68:&0.36 99.20:‘:0.17 0.05:‘:0.01 6342:t616 83.43:‘:3.48 0.82:!:0.38

+ 1.04i0441 99-35i0.08 0.04j:0.02 51.36j:2.26 89.49j:1.91 0‘72i0.41
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Table 1: OOD detection results w/ and w/o ID labels (CIFAR100 as ID). Mean and std are estimated on three different runs. Better results
are highlighted in bold. “+,-”” denotes the labeled and unlabeled case. “LP error” denotes the error of linear probing. 1 indicates larger
values are better, and | indicates smaller values are better. The table shows that (1) the ID labeling information helps OOD detection,
especially in the near OOD scenario and when PES! — PP . Moreover, our observations can generalize to the case where the OOD

test

distribution in linear probing is not the same as that in actual testing (Pt} % PLP), showcasing the generality of our theory.

Theorem 2 (Intuitive version of Theorem 1). Under
the same conditions in Theorem 1, assume the k-th
spectral gap of AW g sufficiently large, i.e., T > k,
then the main error component e(p, q, A | A(Oul))
in Equation 12 satisfies

e(p, 0, A", AG)) >
[1+ 1A (287 = A 13) ] Nall3-

Interpretation and key insights. Theorem 2 shows that
the optimal scenarios for achieving the greatest reduction in
linear probing error—signifying the most significant benefit
by incorporating the ID labels, are when

1. The ID data are connected sparsely in the unlabeled
case (i.e., ||A(")|2, < 2N?), which always holds be-
cause [|[A™]||, < N;

2. The OOD data is closely connected to the ID data (near
00D, i.e., ||ALY)||2 is relatively large);

3. The semantic connection between each ID data to the
labeled ID data from different ID classes is sufficiently
large (i.e., ||q||% is large).

Moreover, the simplified bound also enables us to interpret
the relationship of each key component with the error re-
duction G. For example, 1) the bound will monotonically
increase when the connection within ID data in the unla-
beled case becomes sparser (i.e., ||[A™]|% |); 2) Since
| A2, is smaller than 2N?, strengthening the semantic
connection from each ID data to the labeled data from dif-
ferent ID classes (i.e., ||q||% 1) is always helpful. Intuitively,

a larger ||q||% means one ID data point is more likely to be
augmented from another ID data; 3) If the ID and OOD
data are closer (HA(C;‘I) |% 1), the value of the bound will
increase given the same q and A,

Verification of bound on the illustrative example. Our
theoretical guarantee aligns well with the empirical results.
For example, in Figure 2 (e) where the OOD data is densely
connected to the ID data (near OOD case), the ID labels can
better shape the ID and OOD representations compared to
the unlabeled case, rendering them linearly separable. As a
result, the linear probing error is reduced from 0.09 in the
unlabeled case to O in the labeled case. In contrast, when
the OOD data is far from the ID data (Figure 2 (f)), the
representations for ID and OOD are already well separated
in the unlabeled case, and thus the benefit of ID labels is
relatively marginal. As a verification, the linear probing
error remains O both with and without ID labels. Therefore,
these observations align with our key insight on the effect of
OOD-ID connection Ag? on the error difference for linear
probing. Moreover, we provide additional visualization
results on changing the Frobenius norm of the ID adjacency
matrix A (*) and the semantic connection q in Appendix G.

5. Experiments on Real Datasets

In this section, we verify our theoretical results using real-
world OOD detection benchmarks.

Experimental setup. For ID datasets, we use CIFAR10
and CIFAR100 (Krizhevsky et al., 2009). We first train
the neural network on the ID data for 200 epochs with a
ResNet-18 (He et al., 2016), using objective Lypiapeled and
Liavelea Tor the unlabeled and labeled case, respectively. The
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penultimate layer embedding dimension k = 512. We then
extract the embeddings for the ID and OOD data and per-
form linear probing (50 epochs). We explore two different
scenarios depending on whether the OOD in linear prob-
ing (PLY)) is the same as the test OOD (P'*s}). In the first
scenario (P't = PLP ) we use 75% of the OOD dataset
for linear probing and the remaining for testing. Specifi-
cally, for far OOD test datasets, we use a suite of natural
image datasets including TEXTURES (Cimpoi et al., 2014),
SVHN (Netzer et al., 2011), PLACES365 (Zhou et al., 2017),
and LSUN (Yu et al., 2015). For near OOD, we evaluate
on CIFAR10 when CIFAR100 is ID and vice versa. In the
second scenario (P!t # PLP ) we use 300K RANDOM
IMAGES (Hendrycks et al., 2019) for linear probing and the
other OOD datasets for evaluation. More experiment details

are in Appendix H.

Evaluation metrics. We report the following metrics: (1)
the false positive rate (FPR95]) of OOD samples when the
true positive rate of ID samples is 95%, (2) the area under
the receiver operating characteristic curve (AUROCY), and
(3) the linear probing error (LP error J).

Experiment results. The results are shown in Table 1,
which demonstrate that: (1) the ID labeling information
helps OOD detection, especially in the near OOD scenario
and when P!t = PLP = For example, the AUROC is
improved by 3.08% on CIFAR10 compared to 0.02% on
SVHN, echoing our theoretical insights; (2) Our observa-
tions can generalize to the case where the OOD distribution
in linear probing is not the same as that in actual testing
(Ptest £ PLP ), where the AUROC increases by 12.3% com-
pared to the unsupervised counterpart on CIFAR10, show-
casing the flexibility and generality of our theory. Additional
results on CIFAR10 as the ID dataset and the evaluation us-

ing post-hoc OOD detection score are shown in Appendix I.

Verification of bound. We verify the error difference G
and its relationship to the Frobenius norm of the adjacency

matrices A(*) and A(Oul). Firstly, to verify how the value of

G will change given a larger Frobenius norm of A(C;LI), we
compare the linear probing error on SVHN and CIFAR10
in Table 2 with and without ID labels, where the error dif-
ference on CIFAR10 (near OOD, with larger ||A8‘I) l7) is
consistently larger than that on SVHN (far OOD).

In addition, we ver-

ify the relationship of OOD dataset| SVHN CI0
| A()|| - and the error 1@ FA2R334D NE§;39 D
difference (Cirar10 — [Aorlr [ 388t FTK

as OOD) in Table 3.
Specifically, we calcu-
late the norm of the ID
adjacency matrix from

Table 2: Verification with different
HA(&) |l= (CIFAR100 as ID).

Epochs [ 40 80 120 160 200 240
IA®™]% 120191 19549 18939 16073 15509 14810
g1

001 003 0.06 0.06 0.08 0.09

Table 3: Verification with different | A ||z (CIFAR100 as ID).

different training epochs and observe that the difference
in linear probing error tends to increase with decreasing
| A(®)]|| ., which aligns with Theorem 2. Additional results
and details are included in Appendix E. We further analyze
the tightness of our bound in Appendix J.

6. Related Work

OOD detection has attracted a surge of interest in recent
years (Fort et al., 2021; Yang et al., 2021b; Fang et al., 2022;
Zhu et al., 2022; Ming et al., 2022a;c; Yang et al., 2022;
Wang et al., 2022b; Galil et al., 2023; Djurisic et al., 2023;
Zheng et al., 2023; Wang et al., 2022a; 2023b; Narasimhan
et al., 2023; Yang et al., 2023; Uppaal et al., 2023; Zhu
et al., 2023b;a; Ming & Li, 2023; Zhang et al., 2023; Ghosal
et al., 2024). One line of work performs OOD detection
by devising scoring functions, including confidence-based
methods (Bendale & Boult, 2016; Hendrycks & Gimpel,
2017; Liang et al., 2018), energy-based score (Liu et al.,
2020b; Wang et al., 2021; Wu et al., 2023), distance-based
approaches (Lee et al., 2018b; Tack et al., 2020; Ren et al.,
2021; Sehwag et al., 2021a; Sun et al., 2022; Du et al.,
2022a; Ming et al., 2023; Ren et al., 2023), gradient-based
score (Huang et al., 2021), and Bayesian approaches (Gal
& Ghahramani, 2016; Lakshminarayanan et al., 2017; Mad-
dox et al., 2019; Malinin & Gales, 2019; Wen et al., 2020;
Kristiadi et al., 2020). Another line of work addressed OOD
detection by training-time regularization (Bevandi¢ et al.,
2018; Malinin & Gales, 2018; Geifman & El-Yaniv, 2019;
Hein et al., 2019; Meinke & Hein, 2020; Jeong & Kim,
2020; Liu et al., 2020a; van Amersfoort et al., 2020; Yang
et al., 2021a; Wei et al., 2022; Du et al., 2022b; 2023; Wang
et al., 2023a). For example, the model is regularized to
produce lower confidence (Lee et al., 2018a) or higher en-
ergy (Liu et al., 2020b; Du et al., 2022c) on a set of clean
OOD data (Hendrycks et al., 2019; Ming et al., 2022b),
wild data (Zhou et al., 2021; Katz-Samuels et al., 2022;
He et al., 2023; Bai et al., 2023; Du et al., 2024) and syn-
thetic outliers (Du et al., 2023; Tao et al., 2023; Park et al.,
2023). Additionally, a similar topic in a different domain,
i.e., anomaly detection, often restricts the ID (normality) to
be with a single class and with a different definition of the
outliers (Chandola et al., 2009; Han et al., 2022).

Most OOD detection methods rely on the supervision of ID
labels, and there have been prior works, such as (Tack et al.,
2020; Sehwag et al., 2021b; Sun et al., 2022) that empiri-
cally verified that training with the ID labels can achieve a
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much better OOD detection performance compared to the
unsupervised version, but a provable analysis of their impact
is critical yet missing in the field.

OOD detection theory. Recent studies have begun to
focus on the theoretical understanding of OOD detection.
Fang et al. (2022) studied the generalization of OOD detec-
tion by PAC learning and they found a necessary condition
for the learnability of OOD detection. Morteza & Li (2022)
derived a novel OOD score and provided a provable under-
standing of the OOD detection result using that score. Du
et al. (2024) theoretically studied the impact of unlabeled
data for OOD detection. In contrast, we formally analyze
the impact of ID labels on OOD detection, which has not
been studied in the past.

Spectral graph theory is a classical research prob-
lem (Von Luxburg, 2007; Chung, 1997; Cheeger, 2015; Kan-
nan et al., 2004; Lee et al., 2014; McSherry, 2001), which
aims to partition the graph by studying the eigenspace of the
adjacency matrix. Recently, it has been applied in different
applications in machine learning (Ng et al., 2001; Shi &
Malik, 2000; Blum, 2001; Zhu et al., 2003; Argyriou et al.,
2005; Shaham et al., 2018). HaoChen et al. (2021) derived
the spectral contrastive learning from the factorization of
the graph’s adjacency matrix, and provably understand un-
supervised domain adaptation (Shen et al., 2022; HaoChen
et al., 2022). Sun et al. (2023a;b) expanded the spectral
contrastive learning approach to novel class discovery and
open-world semi-supervised learning. Our focus is on the
OOD detection problem, which differs from prior literature.

7. Conclusion

In this paper, we propose a novel analytical framework that
studies the impact of ID labels on OOD detection. Our
framework takes a graph-theoretic approach by modeling
the ID data via a graph, which allows us to characterize the
feature representations by performing spectral decomposi-
tion on the graph that can be expressed equivalently as a
contrastive learning objective on neural net representation.
Leveraging these representations, we establish a provable
error bound that compares the OOD detection performance
with and without ID labels, which reveals sufficient condi-
tions for achieving improved OOD detection performance.
Empirical observations further support our theoretical con-
clusions, showcasing the benefits of ID labeling information
under proper conditions. We hope our work will inspire
future research on the theoretical understanding of OOD
detection. One promising direction is to analyze the setting
where there is access to OOD samples, which belongs to an
important branch of work in OOD detection literature.
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of the effect of in-distribution labels for OOD detection. In
Appendix E and Section 5 of the main paper, we properly
verify the necessary conditions and the value of our bound
using real-world datasets. Hence, we believe our theoretical
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how to better leverage the in-distribution labels, such as
in safety-critical applications i.e., autonomous driving and
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When and How Does In-Distribution Label Help Out-of-Distribution Detection?
(Appendix)

A. Notations, Assumptions and Important Constants

Here we summarize the important notations and constants in Table 4, and restate necessary definitions and assumptions in
Section A.2.

A.1. Notations

Please see Table 4 for detailed notations.

Table 4: Main notations and their descriptions.

Notation Description
Spaces
X, Z,) the input, representation space and the label space.
Distributions

Pid, Pood data distribution for ID data and OOD data

Pxy the joint data distribution for ID data.

Data and Models
b4 input to the neural network

Ag‘l) and Ag%
A and AD
A and AD
D® and D®
D) and D),
w, 0
h,, and gg

vy
VA

Z() and Z"
Z\ty and Z)
Zgﬂ) and Z;ll)l
qand p
N, M
A
Vi

V]i)a V@

- s - fl2, 0 - 1

£unlabeled () ) Elabeled ()

R(Zan)

R(Z.n)
G

¢u7 ¢l
k

-
r
C

adjacency matrix between OOD and ID data in the labeled and unlabeled case
adjacency matrix for ID data in the labeled and unlabeled case

normalized adjacency matrix for ID data in the labeled and unlabeled case

ID diagonal matrix with the diagonal elements being the row sum of A(*) and A"

OOD diagonal matrix with the diagonal elements being the row sum of Ag‘l) and Ag)l.
augmentation graph

weight of the ID feature extractor and the linear probing layer

feature extractor on ID data and linear probing layer for OOD detection

binary label for linear probing, vectorized one-hot label for y

feature for single input x

representation matrix for ID data in the labeled and unlabeled case

representation matrix for OOD data in the labeled and unlabeled case

representation matrix for both ID and OOD data in the labeled and unlabeled case
semantic connection from each ID/OOD data to the labeled ID data.
size of Z, size of Zoq
eigenvalue vector of A
the j-th eigenvector of A
the first k eigenvectors of A/the latter N — k eigenvectors of A (null space of Vi)
Distances
{1, ¢ norm and Frobenius norm
Loss and Risk
ID loss function in the unlabeled and labeled case
the empirical risk w.r.t. linear probing module over feature set Z.y
the upper bound of R(Z.y)
linear probing error difference with and without ID labels
Constants
weight coefficients for the unlabeled and labeled case.
dimension of the feature representation
the parameter that measures the eigengap of A®)
the maximum ¢, norm of the ID features, i.e., 7 = max,czw) ||z||2
constants in Theorem 1
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A.2. Assumptions

Assumption 1 (Property of ID adjacency matrix). We assume the adjacency matrix A (™) has the following property: There
exists a positive constant & < N such that the k-th eigengap of A (*) satisfies that AL (u) > T)\](;jrl, 7 > k, where )\,(Cu) is the

k-th largest eigenvalue of matrix A,

Remark 1. We have empirically verified our assumption using both simulated and real-world datasets in Section E.
Assumption 2 (Property of vectors that depict the semantic connection between each ID/OOD data to the labeled ID data).
Similar to (Sun et al., 2023a), we assume each row of the matrix q lies in the linear span of V]g“) and V,(C“) [Eé“)]* 3 ,1.e.,
VT ai =0, ViV g, = q; and VISV Tgs = g5

Remark 2. Following the assumptions made in the existing literature (Sun et al., 2023a), the assumption is used to simplify
VIV T aTvEIvEIT L vyvITe T 6 .97 and simplify VIV [s"]-1v " g 10 g,.

B. Main Theorems

In this section, we provide a detailed and formal version of our main theorems with a complete description of the constant
terms and other additional details that are omitted in the main paper.
Theorem 1 (Lower bound of the error difference between unlabeled and labeled cases, recap of Theorem 1 in the main

paper). Suppose we have adjacency matrices AW AW ¢ RVNXN gpq Agl), A(l) € RMXN for both the labeled and
unlabeled cases. If Assumption 2 holds, given positive constants ¢y, C, the error dlﬁ‘erence G in Equation 11 is bounded by

g> -G

> e e AN AGY), (13)

where q € RN with each row being defined as (q;)x = IE,—(ZNPHT(X\)’Q), X € Xq. Similarly, we have p € R*M and
(Pi)x = Ex,p,, T(X|X1), X € Xooa. Furthermore,

e(p,q, A, AL —22Tr(pz AGT)+ ( IAS)|Z]IA ||F)Z||qz||F+

1=1

(HA 31 AC) 2R ) anznl,

(14)

where T is a constant that measures the k-th spectral gap of matrix AW e, )\,(Cu) > T)\](;j_)l and )\,(Cu) is the k-th largest
singular value of A™). r is the maximum ly norm of the ID representations, i.e., 1 = max,cz ) ||2[|2.

Theorem 2 (Simplified version of Theorem 1, recap of Theorem 2 in the main paper). Under the same conditions in

Theorem 1, if the number of ID and OOD samples N and M is sufficiently large, assume the k-th spectral gap of AW

satisfies T > k (Assumption 1 holds), then the main error component €(p, q, A(“), ASLI)) in Equation 14 satisfies

e(p, 0. A, AG)) > [1+ AL 3 (287 = JA )] S el (15)
=1
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C. Proofs of Main Theorems
C.1. Proof of Theorem 1

Before proving Theorem 1, we first explain the framework introduced in Section 4 of the main paper to analyze the
difference in the adjacency matrices and the corresponding feature representations between the unlabeled and labeled cases.
Specifically, we proposed to analyze the adjacency matrix in the labeled case by perturbation analysis.

Matrix perturbation in the labeled case. Recall that we define in Definition 4 that the adjacency matrix in the labeled case
(1) is the unlabeled one (u) plus connectivity incurred by the ID labels, which can be regarded as the perturbation of the
labeling information. Therefore, for the ID adjacency matrix with ID labels, we have the perturbation on A (%) as follows:

AD =, AW 1§ AA, (16)

where AA € RV can be calculated based on the augmentation graph 7~ according to Definition 4. Following (Sun et al.,
2023a), we study the perturbation from two aspects: (1) The direction of the perturbation which is given by AA, (2) The
perturbation magnitude ¢;. We first consider the perturbation direction AA and recall that we defined the concrete form in
Definition 4:

[AAler 2 Egyop, Bxpor, T (x| %) T (X %), x,%X € Xq (17)
i€y
where T is the augmentation graph. In our theory, we consider ||)|| = ¢, and then we observe that AA is the sum of ¢
rank-1 matrices, which can be written as:

=1

where q € RY*¢ with each column defined as (q;)x = Ex,p, T (x| %x;),x € Xiq and Xx; is the labeled ID data with label
1. And following (Sun et al., 2023a), we define the diagonal matrix D® as follows:

DY =g, - D™ + 3" ¢, - diag(q:). (19)

i=1

Without losing the generality, we let ¢,, - diag(leVA(“)) = In«n, which means the ID nodes have equal degree in the
unlabeled case. We then have:

DO 2 diag (1;A<”) =Inun + 1+ Y diag(q,). (20)
=1

The perturbation function of representation. We then consider a more generalized form for the ID adjacency matrix A:

A(d) = puA™ + 1> qia, . @1
=1

For the perturbation on the OOD-ID adjacency matrix Ao, we define p € RM*€ with each column defined as (pi)x =
Ex,op,, T (x| X;),x ~ Xooq and X; is the labeled ID data with label /;. Similar to Equation 17, we can define the concrete

perturbation formula for AOI as follows:

[AAotlor 2 ) Bsiop, Exop, T (x [ %) T (X[ X)), X~ Xia, X ~ Xood. (22)
i€y

And we have:

Aot(d) = puAS) + ¢ > pia; . (23)
=1
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Similarly, for the ID diagonal matrix D, we have that:

D(¢1) = Inun + ¢+ Y _ diag(qy). (24)
i=1
In Equations 21 and 23, we treat the adjacency matrix as a function of the “labeling perturbation” magnitude ¢;. It is clear

that A(0) = ¢, A and AOI(O) = QSMASLI) which are the scaled adjacency matrices in the unlabeled case. When we let
the adjacency matrix be a function of ¢;, the normalized form, and the derived feature representation should also be the
function of ¢;. We proceed by defining these terms.

The normalized ID adjacency matrix is given by:

A(¢) =D(¢1) 2 A(¢)D(¢y) "%, (25)

In addition, for in-distribution feature representation Z(¢;), it is derived from the top-k eigen components of A(d)l).
Specifically, we have:

k

Z(¢1)Z(¢n)" =D(¢1) "2 Ay(¢)D(¢r) "7 = D(y)"* ZAj(¢l)q)j(¢l)D(¢l)_%7 (26)

J=1

where A (¢;) is the top-k SVD components of A (¢;) and can be written as A, (¢;) = Z?Zl Aj(p1)®; (). Here X;(¢y)

1)
and ®;(¢1) = v; ((;Sl)v;'— (¢1) are the j-th eigenvalue and eigen projector of matrix A (¢;). For simplicity, when ¢; = 0, we
remove the suffix (0) and give the following definitions:

A(0) = A, Z(0) = ZM), Ziooa (0) = Zy, Zan(0) = Z3) 0;(0) = A v;(0) = vi* @ 0) = @(. @7

ood’

We proceed to provide the five concrete steps to prove Theorem 1.

Step 1. Recall that our analysis is based on the upper bound of the linear probing loss, and focuses on the error difference
between the labeled and the unlabeled case, which is formulated in Equation 11 of the main paper. In the context of
perturbation analysis, we can reformulate the error difference G as a function of ¢; as follows:

G(¢1) = R(Zan(0)) — R(Zan(¢r))- (28)

By the definition of the derivative, we can rewrite Equation 28:

dR (Zan(¢1))
_ . 29
G(on) 01 o o (29)
With Lemma 3, we can get the lower bound of G(¢;) as follows:
2 ’
G(é) > m@ -max A (Zan(#1) " Zan(er)) - Tr ((Zall(¢l)zall(¢l)—r) ny) Ll_o (30)

According to Lemma 4, max A (Zau(qﬁl)TZaH(@)) |¢l=0 > 0 is a positive constant. Here max A (Zau(qbl)TZau(@))
means the maximum eigenvalue of the matrix Z.j(¢;) " Zan(¢;). We then proceed to analyze the key component

r ((Zau(@)zau(@)T)Iny) oo

Next, according to Lemma 3.1 in (HaoChen et al., 2021), which implies that multiplying any invertible matrix by the features
of the linear probing module does not change the linear probing performance. Therefore, we simplify the mathematical
representation of the ID and OOD features in the Equations 6 and 8 in the main paper as follows by removing the terms
D(¢:) and Dooa(¢n):
Dsa()72 l LDy O ()71
20 = VP 2z = AGVY I G31)

ood
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which simplifies the notation and will be used in our later analysis.

Step 2. Recall that the input feature for linear probing Z(¢;) is defined as:

_( Z(e) '\ _ V(o) Zx(én)
Zall((m) - (Zood(¢l)) - <A01(¢Z)Vk(¢l) Ek(¢l)_1> (32)

Therefore, it is natural to have that:

/ Vi (61)VER($ - - !
Tr<<zan<¢z>zau<¢lﬁ>yyU'm: <<<A01<mkvkl<¢l>¢kzklﬁ )»(\ﬁzmn’vkmﬁ V(@) 1vk(¢l)TA’51<¢l>T)> ny>\

((Vk $1)=x(01) V()" ~ Vrc(<f>1)Vk(¢1,)TAOI(¢H)~ >l>
Aot(@)Vi(6) V()T Aot(¢)Vi(d)Zk(d1)  'Vi(dr) T Aot(ér)

$;=0

| \/

.
CTr(yy )
¢1=0

<Tr ((Ve@n=e60Vion ™)) + 1 (Aot V(o) =k (@) Vi(on) T Aor(en ")) L ﬂ) Iyl
a 33)
In the following steps, we focus on the lower bounds of the two separate terms, i.e.,

T <<AOI(¢1)V,€(¢I)2,€(¢[) V(o) T Aoi(é) ))|q5 _yand Tr ((Vi(@)Zk(@)Vi(60) 7)) |, respectively.

Step 3. As in Lemma 5, we provide the lower bound for the first term Tr ((Vk(gZ)l)Ek(gbl)Vk(qﬁl ) ) as follows:

|10

> leqzllF fQTQZIIqllll, (34)
=1

where r denotes the maximum £5 norm of the ID features, i.e., 7 = max,czw) [|z]|2, and ¢ € RY*¢ with each column
defined as (q;)x = Ex,~p,, T(x|%;),x € Xiq.

T (Vieomeviie) )|
d1=

as in

Step 4. We provide the lower bound for second term Tr <(A01(¢z)vk(¢l)2k(¢z) Wi() T Aor(dn) ) ) |¢ 0

Lemma 6 as follows:

Tr ((A01(¢1)Vk(¢z)2k(¢l) Vi) T Aor(en) ) ) |10

> 2 T (pia - AG)T) — IAGYIHIA® Z laill: - Z laill)
i=1

where p € RM*¢ is defined as (p;)x = Ex,~p, T (X[X1), % € Xood-

35)

Step 5. Putting the result in Equations 34 and 35 together, if we denote C' = 2 ||y||% - max A (Zan(0) T Zan(0)), we can get:

Cé
N +

M
= (u - 2(t —
[Z (poal - AGYT) + (1= DAGY I - IAWIE) S laslit — o (2= IAGD I - A2 2= ) an In].
=1 i=1

T —

G(¢1) > TY(( all(¢l)zall(¢L)T>/>

¢1=0
(36)

We have completed the proof of Theorem 1.
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C.2. Proof of Theorem 2

As in Assumption 1, we can find a k such that 7 > k. Based on this condition, we can get the following

T>k=14+k—-1
JAS) %A |3 k—1 (37)

=1t o A (u) [|2 (k=1)=0( =55 A (u) |2
[Aor 7 [[A 7 —1 [Aor I [[A |7 —1

When we have a sufficient number of ID or OOD data, ||A H 2 |A)||2, will be large such that we can omit the term

(”A(u) \|2k|\A1<u> = -) because k < N. Therefore, we will have the inequality of

||A8‘3||2FHA<'@||%

(k —1). (38)
IAGY 13 A3, —
Simply the above inequality, we can get that
< (u < (u T—1
|AGY I IACF > — (39)

Therefore we have

H A(u)

- (- 1A,

Under this condition, the main error term €(p, q, A, A(Oul)) in Theorem 1 can be further bounded by:

) leqzlh >0, (40)

B . 5 (& _ T _ _ N (&
elp. 0, A AL > 23 T (pial - AG)T) + (1= IAG)IFIACIE) D llailF (1)
i=1 =

Following the same analysis approach in literature (See Section 4.1 of (HaoChen et al., 2021)), we decompose the
vectors p and ¢ into numbers in each dimension instead of using the vectorized form for calculation. Specifically, we
let T(x|X) = K,%,X ~ Xooq and T (x|X) = 7,%x,X ~ Xjq Based on the adjacency matrix and its relationship with the
augmentation graph (Equation 1), we can prove that the following result holds:

Z¢“M+N [Pis -oos P ZN3 [Pis -oes Pi] + O(r), (42)
where ¢, = NIJ;' Then, we obtain that:
T (pial - AT) = T (a7 - AG ) = Y ANIAG) sl + OG0, 3)
=1
After that, we can get:
(b0, A AL > (1- JALYIFIAC)3) ;nqanmw?nA HFZquuwo (44)
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Further simplify the right-hand side of the above inequality, we can get:

c c
(1= A IR IACE) S laillz + 29N A 13 3 il + O)
i=1 i=1

= (1= IAG BNA@E) D llaill3 + 207 N2 AG) 3N + O(x)

o (45)
= (1= IASIFIAE) D laill + 2V AL 1E - S lailE + O(x)

i=1 i=1
= (1- JASYIZIA 2 + 2N2AGY 2 ) S flailly + O)

=1

We have completed the proof of Theorem 2.
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D. Necessary Lemmas
D.1. Details for Spectral Contrastive Learning

Lemma 1. (Recap of Lemma 1 in the main paper) We define fx = +/(xhw(X) for some function hy,. Recall ¢,,, ¢; are
two weight coefficients given in Definition 4, then minimizing the loss function /J(F(l), A(l)) in Equation 3 is equivalent to
minimizing the surrogate loss in Equation 46.

»Clabeled(hw) £ _2¢l£1(hw) - 2¢u£2(hw)+

> > (46)
¢l £3(hw) + 2¢l¢u£4 (hw) + ¢u£5 (hw)a
where
L= E - [hu(0) h (xV)],
i Xp~Pr X ~Pry
& TR T CIR))
T
Lo(hy) = . lam [hw(x) " hy (x7)],
X T (R ), x T ~T (%)
2
L3(hy) = E hy (x) "hy, (x~ ,
gze:y B Py [( =) } 47)
X T (%)%~ ~T (%))
— T _ 2i|
=3 En (0w (0 Tha (x7))°]
xNT('Iil)txiNT('liu)
2
Ls(hw)=  E [(h () hu (x7))°] -
X ~Piq, X, ~Piq,
KT (%), x ™ ~T(H]X,)
Proof. We can expand Ljapeled (hy ) and obtain
¢ e\
,Ca ele hw - xx! _fxfx’ =
labeled (hw) xng'd ( ol )
’ ' (48)

const + Z ( 2 sex M (X) " hyy (%) + G (hw(X)ThW (X’))Q) )

x,x/ €Xjq

where fy = v/(xhw (%) is a re-scaled version of hy,(x). At a high level, we follow the proof in (HaoChen et al., 2021),
while the specific form of loss varies with the different definitions of positive/negative pairs. The form of Ljapeleq (hw ) is
derived from plugging (xx’ and (x.

Recall that (yy is defined by

Gex! = @1 Z E:ZLNIP’” Ei{NPziT(X|il)T (X/|i;) + Gulx, g T (X[%0) T (X/|>_CU) )
i€y

and (x is given by
gx - Z Cxx’
= > By, Bxpory, TOx%0) ST (10) + buBae, oy T(x[%0) 30T (%)

i€y
=&Y Expr, T(XIR0) + GuBx i T (X[%0)-

i€y
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Plugging in (xx’ we have,

-2 Z CxX’hW(X)Thw (x')

x,x' €Xiq

=—2 Z <xx+ hW (X)Thw (X+)

x,xtE€Xiq

=—2¢ ZE*WPMEX?NPM Z T (x[%) T (x'%;) hw(X)Thw (x')

i€y x,x' € Xia

— 20uBs, by Y T (X[%u)T (x'|%0) hw (%) Thy (X))

x,x/

2, Y E [hy (x) "hy (x7)]

> o/
X~y % ~Py

Y T (R X~ T (%)
~20u X, LEIP’.d [hw (X)Thw (X+)]

X~ T (+[%a) x T~ T ([R0)
= 2¢l£1(hw) - 2¢u£2(hw)

Plugging (x and (x» we have,

Z Cx(x’ (hW(X)ThW (X/))2

x,x' €Xiq
= Y G (hw(®)Thy (x7))°
X, X~ EXjq
= Z <¢l Z Eileli T(X|)_(l) + ¢uEiu ~Piq T(X|)_(U)>
x,x' € Xjq i€y
] Z Eg;~p, T(x7|%]) + duBsr b T (x7|X7,) (hy(x) "hy (Xf))z
jeY
:¢12 Z Z]EXLNPZiT(X‘il) ZEXENPZJ. T(X_|)_(;) (hW(X)ThW (X_))2
X, X~ EXiq 1€EY JjeY

200t YD B, TR B, o, T %) (B (%) Thyy (x7))°

X,X~ €EXjq 1€Y
+02 Y Exyeria T(xI%0)Exp o, T(x71X,) (hw (%) Thy (x7))

X,X~ EXiq

=622

€Y jEY

(0 (0w (x7))]

S o/
XiPy X P,

x~T (%), x ™ ~T(|%7)

+ 2¢u¢l Z

i€y

()77 (x))7]

x~Pr %y ~Pid,
X T (%)% ~T (%)
+$  E [(hw(x)7f (x7))7]
Xy ~Pia, X, ~Pia,

X~ T (%)%~ ~T (X))
=¢7L3(hy) + 20,41 La(hw) + 2 Ls5(hy).

We complete this proof.
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D.2. Derivation of the Data Representations

For the ID representations, we have the following equation.
z") = DY vl (49)

It is easy to see that the following equation holds because of the Eckart—Young—Mirsky theorem (Eckart & Young, 1936) as
we use the top-k SVD components of the matrix A () to approximate it (low-rank approximation).

For OOD representations, we have the following equation.

z{), =D FAL VI [sP)8 (50)

ood o
The above result can be obtained by the condition that the optimization problem in Equation 7 is solved perfectly, i.e.,
A(Ol)l = F(()lng(l)T. Note that it is easy to check that F() = V,(Cl) [ES)]%, if we multiply V,(Cl) [E,(Cl)]’% to both sides of the
equation A} = F). FOOT  we can get:

(D) (D) (D=2 1 D12+ (DT (D) ()= 1 1
AGVY B = FOEIE VTV =T (5D
Note that F((f(z 4= [D(()lg al 3 Z(()lg 4 and thus we can get Z((f(z 1= [D(()lg d]*%A(Ol)IV,(j) [Z,(Cl)]’%. Therefore we have completed
the proof.

Design Rationale. Here we explain the design rationale of the optimization problem in Equation 7 to get the OOD
O]

representation F(()l(z qand Z;’

4» Which is inspired by the literature in out-of-sample extension.

The out-of-sample extension is a statistical approach that computes the embeddings of new vertices in a graph with the
existing in-sample embeddings and the similarity measurements (Bengio et al., 2003; Levin et al., 2018). The goal is to
avoid the repeated computational cost of embedding calculations on a large graph when a new vertex emerges. Most of the
current works focused on graph Laplacian embedding (Belkin & Niyogi, 2003; Trosset & Priebe, 2008; Belkin et al., 2006;
Quispe et al., 2016; Jansen et al., 2015), while a few works relied on the adjacency spectral embedding (Sussman et al.,
2012; Tang et al., 2013) for embedding extension. Our framework is similar to the least-squares optimization approach in
out-of-sample extension, which derives the out-of-sample embeddings using the adjacency matrix between the in-sample
and out-of-sample data (Please refer to Section 3.1 of (Levin et al., 2018) for detailed derivation).

D.3. Upper Bound of the Linear Probing Loss

Lemma 2 (Recap of Lemma 2 in the main paper). Denote the y € ROV+M)x2

ID and OOD features in Z.1. We have:

as a matrix contains the one-hot labels for

R(Za) < Tr ((I - zanziu) ny) . (52)

N+ M

Proof. Recall the definition of the linear probing loss is defined as follows:

R(Za) = min Eoez,,1[y(2) # go(2)]. (53)
OcRF*2
According to Lemma 5.1 in (Sun et al., 2023b), we can get the upper bound of R(Z,}) as follows:
2 . 9
R(Z.n) < m 95@&2 ly — Zaller (54)

Given the fact that the closed-form solution of the above minimization problem is Z;Hy where ZZH denotes the Moore-
Penrose inverse of the feature matrix Z,;;, we can rewrite the right side of the above inequality as follows:

i —ZaOl% = |y — ZanZ!, v % 55
egﬂl%l,}iz ly 10z =y 1Zyylle (55)
Simplify it further, we have
Iy = ZanZlyy 13 = 10 = ZanZl)y 13 = T (1= ZanZly ) 3y 7). (56)
Therefore we finished the proof. O
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D.4. Necessary Lemmas for Theorem 1

Lemma 3. Following the definitions in Equations 10 and 28, the error difference for linear probing between the unlabeled
and labeled case (with a perturbation magnitude ¢;) is upper bounded by the following term:

O p—

> m@ -max A (Zan(d1) " Zan(¢y)) - Tr ((Zall(¢l)Zall(¢l)T)/ny)

; (57)
¢1=0

where max \ (Zall(qbl)TZan(qSl)) means the maximum eigenvalue of the matrix Z1(¢;) " Zan ().

Proof of Lemma 3. From the definition of the derivative, we know that G(¢;) = — dﬁ(zd"‘i(;l(@)) L o @1, we then investigate
the key component — dﬁ(zd“iw - as follows. Recall that we have
B dR(Zan (1)) . (dzall(¢l)zall(¢l)T T) 29
o P déi W )lyoo N+ M

= NQflM : TI"( [Zén(@)zan(qﬁl)f + Za11(¢1)( — (Za11(¢1)TZa11(¢1)) o (Z;11(¢1)Tzall(¢l)

+ Zall(@)ngn(@)) (Za11(¢z)TZall(¢l)) - Za($)" + (Zan(@)TZan(fﬁz)) - Z;“(@)Tﬂ ny>

¢1=0

= N2—flM Tr( _Z;H(gﬁl)Zau(qﬁl)T - (Zall(cf’l)T) ! Z.1(4) " Zan(¢1) Zan (1)’

- (Zall(¢l)T) ! Zall(¢Z)TZ;11(¢Z)Za11(¢l)T + (Zall(¢l)T)T Z;n(@)T] ny>

¢1=0

= N2flM Tr( _Z:ﬂl(@)za“(@)f - (Zall(ﬁbl)T)T Z20($1) " Zan (61) Zan (1)

— (Zan($1)Zan(¢1)") T Zin(61) Zan (60) " + (Zan(@)f) ! Z;n(@)q ny)

¢1=0

= N2flM Tr ( _(I — Za($) Zan (1)) T Zli (01) Zani (91) T + (Zall((f)l)f) ! Zin(d) " (I— Zall(¢l)zall(¢l)f):| ny> oo
= szlM Tr < _(I = Zan (1) Zan (1)) Zini (1) Zan ()" + (Zall(¢l)T)T Zin(o) (I— Zall(¢l)zall(¢1)T)T:| YYT) so (58)
- szlM Tr < _(I = Zan (1) Zan(61) ") Zion (61) Zan (1) + [(I - Zall(¢1)Zall(¢l)T)Z;ll(¢l)zall(¢l)T:| T]ny> -
= N2+¢ZM Tr ((I — Zall(¢l)zall(¢l)T) . (Z:mn((ﬁl)zau(d)l)T + (Z;11(¢1)Za11(¢1)T)T) ny) o
> e (1= Za(0)Za(o)) - (Zu(@)Zan() + Ban(0) 20 ) 757 .
> N2flM {V(gl — Za(61) Zan () ") + W(%I - Za11(¢z)zan(¢l)f)] .

TI“((Zf~m(¢1)(Zan(<Z51)TZan((Zﬁl))_lzaxn(@)T + Za11(¢1)(za11(¢1)TZa11(¢1))_1ZQ11(¢1)T>ny>

¢1=0
= szlM% : Tr(((Zall(¢l)TZall(¢l))71Zall(qﬁl)—rzén(d’l) + (Zau(¢1)TZau(¢1))712;11(¢1)7Za11(¢1))ny>
$1=0

> o g min A6 Zan00) ) T (Zan() Zan(0) + Zinn) Zan(6) )y ) »

- ?)(NL?M) max A(Zai(¢1) | Zan(¢r)) - Tr ( ((Zau(@)zau(@f)’) ny)

$1=0

where y(%I — Zan (1) Zan(¢r)T) and 77(%1 — Z.1(¢1)Zan(¢1)") denote the smallest negative eigenvalues and the smallest
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positive eigenvalues' of the matrix %I — Zant(d1) Zan (o).

The first seven equations calculate the derivative w.r.t. the perturbation magnitude ¢; and use the cyclic property of the trace
operator. The first inequality is true because we have

%Tr((Z;”(qb])Zau(dn)T + (z;n(@)zau(@)*f)ny)|¢1=0 > %rnax)\(Zau(¢1)TZa11(¢1))max)\(ny) . Tr((zau(cm)zau(@f)’){¢1=0. (59)

Since we know max A(Zan(¢1) " Zan(¢1))] ,,_, > 0 (Lemma 4) and max A(yy ") > 0, and Tr((Zan(é1)Zan(¢1) ")), _,
is lower bounded and can be large than O (Lemmas 5 and 6). The second inequality holds because of the main theorem

in (Baksalary & Puntanen, 1992). The third inequality holds because the inequality for the trace of matrix product of two
square matrices (Fang et al., 1994), i.e., Tr(HM) > min A\(H) - Tr(M). O

Lemma 4. Suppose the perturbation magnitude ¢, is 0, denote the input feature of linear probing as Z,;(0), then we have
that:

max A (Zau (1) " Zan(1)) >0, (60)
¢1=0

here max \ (Zan(qﬁl)TZau((bl)) means the maximum eigenvalue of the matrix Z .y (¢;) " Zan(¢r).

Proof of Lemma 4. Since we know that the column rank of the ID feature matrix Z(0) € RV** is k, then when adding
M rows of OOD features Zy0q(0) to get Z,;1(0) will not increase the column rank. Therefore, the rank of matrix Z,; (0)
is equal to k, which means Z,;(0) has a full column rank. Thus, the matrix Z,y(0) " Z.y;(0) is positive definite 2, which
means the eigenvalues of Z,1(0) " Z.y;(0) are all greater than 0 and the lemma is proved. O

Lemma 5. If Assumption 2 holds, the lower bound for Tr ((Vk (01)2k(1) Vi (qﬁl)—r)/) is given as follows:

¢1=0

Tr ((Vk(¢l)2k(¢l)vk(¢l)T>/) ’ > Z gl — 2r Z lgalls, 61)

¢1=0 i=1

where q € RN ¢ with each column defined as (q;)x = Ex,~p, T (x|X1),x € Xig, and r is the maximum ls norm of the ID
representations, i.e., 1 = MaX,czw |22

Proof of Lemma 5. As Vi.(¢1)Zx(¢1)Vi(¢r)T denotes the top-k SVD components of the matrix A(¢;), according to
Equation 26, we rewrite it using the eigenvalues and the eigen projectors as follows.

1 (VewomeeovienT)) | = 1 (D@ T3 a 0@ (60Den 21

¢;=0

;=0
J (62)

k
Som
=1
k
Z Tr
=1

' u u u u _17 u u
([pon=2] A0 4220 [Dan =] + a@0) &0 + A (@500

J <;le:01
where )\Su) and ‘1>§u) are the j-th eigenvalue and eigen projector of matrix A(qﬁl) when ¢; = 0. Moreover, assume A (%) to
be the normalized adjacency matrix when ¢; = 0, recall D(¢;) = Inxn + ¢ D; where D; = Y ;_, diag(q;) (Equation 24),
we have the following calculation for the derivatives:

1

Do)t = o0 (63)

!The value of the two terms are % and f% according to https://math.stackexchange.com/questions/188129
2Proof idea is shown here https://math.stackexchange.com/questions/2202242
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[A()]

[D(@)_%A(@) (1)~ %]

¢L:0 ¢L:0

= [Do) ] A® + [A@)) + A® D] (64

To get the derivative of the eigenvalues, according to Equation 3 in (Greenbaum et al., 2020),

(00 ], = Tr (@A)

¢1=0

1
) _liw
<<I> (2 A +qu A D))
Y W XY
Tr< ;D<I>”+<I>“qul 72<I>j“Dl)

=Tr (q);u) <Z qiqiT — AEU)DZ>> .
i=1

To get the derivative of the eigenvectors, according to Equation 10 in (Greenbaum et al., 2020),

(65)

T

u u u u u ~ (u T
qC (A( Ty —AW) A" + @A) (ALy —AW)

=2 W w (<I> A2 + 8 [A(n) @)
i#]

c
_ e (_1 (w) T liw (u) (u) (u)
)\(u) )\(u)< ( SDAM 4> g’ - SA D><I>]. + o )8 >
i#£] i=1

N )\(@) +>\£“) N u c A(y“) +>\£“) N
- Z }\(u) }\(u) (‘I’E : <Z G’ — %Dz <I>§- )+‘I’§ ) Zqian - %Dl ™ .
i=1

i#£j =1
(66)
Put them together in Equation 62, we can get
T /
Tr ((Vk(¢l)2k(¢l)vk(¢l) ) )
¢1=0
k 1 1 c
=3 T (—2Dl)\§,“)¢.§u) — A @D+ T (@5.“) <Z g’ — A§“>Dl>> (" 4+ Al [<I>j(¢z)}’) -
=1 i=1 1=
SO ) g w (5 () () (w)
u u u T u u u /
= [ -Em (ch1> +3"D ) <¢>j (Zqiqi — A Dl>> Tr (<1>j ) +Tr (Aj B, ()] ) -
=1 =1 =
(67)
For Tr (@;") (Z;l qiqi | — A;“)Dl>) Tr (@gu)), we have the following:
k k
ZTr( (Z G — AD )) Tr (@5.“)) =3 T ((Z i’ —AMD ) 4’5.“)@5.“)) (68)
=1 =1
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For Tr <A§.u) [®; ((bl)]/), we have the following:

j=1
N A(.u) A(“) +A(“ A(“) +A(u
— (U) (w) (w)
ZTr(ZW qu. fiDl +®! qu. fiDl !
Jj=1 i#j 7N i
k N )\(_U) )\(U) +A(U)
— ; (u) g (v) (u) g (w)
j=1 i#j ) i
k A )\(u) )\(U)
j=1 i#j,i<k >‘j — A
k N A(_u) A(u) —|—A(u)
(u) g (w) (u) g (v)
e (3 L (e ae) (Saar - X2
j=1 i=k+1 N i
A A A + A
— J i (u) g, (uw) (uw) g (u) N T
=3 T (Z <A(u>)\<u>+>\(u>)\(u) (el + o) Zq G D,
J=1 i<j j i 7 j
k N A(_u) A(“) +A(“)
(u) g (v) (u) g (w)
+Z“( > S ( (e serel) qul =D
j=1 i=k+1 7\ i
=S m (Z <(<1>§ o+ ael") <Zq qi — D
=1 i<j
k N A(_u) A(“) +A(“)
(u) g (v) (u) g (w)
*ZTr<Z 0@ (i’j e +2,7 2, ) qu -
j=1 i=k+1 V) i
- U (a0 4 p@am) [S=oor AT+
:ZTr Z b} (<bjL e+ @, <I’jL ) anfli — %Dz
j=1 i#§,i<k i=1
k N /\(_u) )\(U) +A(u)
(u) g (v) (u) g (w)
j=1 i=k+1 7V i
(69)
If we put the result in Equations 68 and 69 together, we can get:
k c k
> Tr ((Z qa - A§“)Dl> ¢§“>¢§“>> >0 (A @ (a0
j=1 = =1
k () g () () g (w) (u) ()
P+, A4+
R e PO CIRE)  BS S CR
j=1 i=1
70
. ) A 4 2 (70)
Z Z ((i);“)‘l’iu) + (I)(u)(I,(u)) (Z CIIC{IT ; l))
j=1 i<k i=1
k N () c (u) (u)
A AT+ A
J (w) g (w) (u) g (w) T
(2 ot (e ee) (Saar - 2520 ) )
=1 i=k+1 i=1
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(w)
For the term — )"é Z?:l Tr (Dl‘ig-u) + <I>§“)Dl>, we can have the following equation:

A S W W S (W | W
J u u _ ] u u
-2y (Dl@j + @ Dl> I (D@j + B Dl>
j=1 j=1
LA (W | g
_ 7 u u
-y = ((cpj + @ )Dl>
Jj=1
SeVN (w (w
_ J u u
_ ; T ((@"1+12)")D)) (71)
k A(u) N N
-y =-m ((@gu’ PIIREDY @5“)¢§">)Dl>
j=1 i=1 i=1
=Y T (Z - (@e + <I>§“><I>§.“>)Dl>
j=1 i=1

Therefore, we can get the following result for Tr ((Vk(¢l)2k(¢l)Vk(¢l)T)l)

¢1=0

Tr ((Vk(¢l)2k(¢l)vk(¢l)T)/)

k k c (w) (w)
1 3L Al
— (u) g (u) (u) g (w) T i
= [ DT [ > = (‘I’j @+, ) > dqiqi | — ————D;
=0 Lj=1 2 =1 2

i=1
k N Al c
2T D ((‘i’;u)‘igu) + ‘1’5”)‘}?)) (Z qiai — AE@D[)) }
j=1 i=k+1 )‘j —A; i=1
k k 1 c
= [ZTY (Z 5 <( (el 4 ‘I’f:”)‘P;“)) (Z qigi | — ZAE”)DZ)>>
j=1 i=1 im1
(72)
k N )\(u) c
(30 2 (e aer) (Saa avn ) )]
=1 i—k+1 >\§“) - Aﬁ“’ =1
E ok c
-y ( <z - ug.le) )
j=1li=1 i=1

k N (u) c
+ Z Z T QAJ' V(u)Tv(u) 'V(U)T Z T )\(u)D V(u)
. . i 3 . qiqi > 1 § .

() (u) " J
)\j - i=1

(u)

Since A(®) has all positive eigenvalues, then we can get > 1. Denote V,(Cu) and Efcu)as the matrix of the first

J
NN
3 ;
k eigenvectors and eigenvalues of A(*) when ¢; = 0, if we rewrite the above formula in the matrix form, we can get the
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following:

! u . u u w u u u
© (Vionmionviton)) | =[BTV VT S aa V) -2 Tv TV SV DIV

¢1=0 i=1

+2T (VI TV VTS g V) — 2 (V) TV s vV TD V)

i=1

= {Tr(VfC”) VTS g VOV -2 AMWD VY Vi)

=1

o (VIVET S0 (1 - VEOVET) ) o (A (1 VIOV

i=1

_fmn <v,<;>v,gu>T ZqiqiT> o (APD) T <v;u>vgm anqiTV,g“)V,(f)T> }
L i=1

i=1

= 2T <V£“>V£”)T > g —AMD, - %V,(C”)V,i“>T > qiqiTV,(c“)V,(C“)T) }
- =1

i=1

= | Tr <V,(€“)V](€“)T > g — 28D + VIVEYT S qiqﬁvngﬁ;”) ] :

i=1 i=1

(73)
For Tr (V,(;L)V,(cu)—r S G — QA,iu)Dl + V,(Cu)V,(ﬂu)—r Sy qiqiTVJ(;)Vf;)T), given that we let D, =

>i_, diag(q;), and Assumption 2, i.e., qiTng)zo, we have that:

Tr ((Vk(¢l)2k(¢l)vk(¢l>T)l)

> Tr (Z G — QAI(CU)D1> =Tr (Z G — QF(H)F(")TDJ>
i—1

i=1

w)T u
= aill? — 2P TE S s,
=1 1=1

o=0 (74)

()T

According to the definition of r, we have the upper bound of the ID features as F, FZ(.“) < r2. Therefore, we have the

following lower bound:

Tr ((Vk(@)zk(@)Vk(@)T)/) ’ > el =2 llailh (75)
=1

¢1=0 i=1

Lemma 6. Under same conditions in Lemma 5, the lower bound for Tx ((AOI(@)V,C(¢,)zk(¢,)—1vk(¢Z)TAOI(¢,)T) ')

¢ =0
given as follows:

T ((Aolwl)vk(@)zk(@)1Vk(¢z>TAOI<¢l)T>/> L 0
1= (76)

- ()T ~ (u < - 2r2(1 — k) o
>2) T (pial - AG) ) = IAGIFIACE - (3 laullf — =7 2 llailly),
i=1 i=1 i=1

where p € RMX*¢ js defined as (p;)x = Exinp, T(x[%1), % € Xooa.
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Proof of Lemma 6. Given the fact that AOI(QSZ) = QSUA(OuI) +dr- >y piq, , we have the following:

Tr ((AOI(¢1)Vk(¢l)2k(¢l)1Vk(¢l>TAOI(¢l)T>I> )

¢1=0

. u w) L u X (u x(u — I 2 (u
=2Tr (Z pia, VISV )TAE)I)T> +1Tr (A(OI) (Vi(o)Zk(d) Vi) ") AE)I)T)

i=1 ¢1=0
- (qu? - <A<“>>1A8?T> 1o ((Raton ) - AG)TAG)) |

=1 ¢1=0
>2Tr (Zm? <A<“>>1A<“RT> + min AAG) TAGD) - Tr ((Au(e) ™)

=1 ¢l:0
=2 (Z pia - <A<“>>‘1Aé§1”> ~min AAG)TAG)) - Tr (A™)72 - (Ax(40))

1= ¢1=0

. l (77)

>2Tr (Z piq; - (A(“))lA(OuI)T> — min A(A&)TAg’&)) -max A((AW)=2) . Tr ((Ak(qﬁl))’)

i=1 ¢$1=0
=2 (Z pia <A<“>>-1A8‘RT> ~min A(AGY ALY - (min AA™))? - Tr ((Au(en)')

i=1 ¢1=0
22Tr (Z pia, <A<“>>—1A8‘RT) — IAGYIE - (min A(AC))2 - Tr ((Ax()')

i=1 ¢$1=0
> 21 (Z pia - <A<“>>1A8?T> A5 AW T (Ax(on) )

=1 ¢$1=0

2 X (uw)T A (u A X
=27 (Zpiqf Ag) ) ~IAGIE - A3 - Tr ((Ar(o))

i=1

¢1=0

The first two inequalities are again the inequality for the trace of matrix product of two square matrices (Fang et al., 1994).
The third inequality holds because:

. A ()T 3 (u A(w)T X (u T (u
min \(AG)TASY) < Te(AG)TAL)) = AG) 13 (78)
The last inequality holds because:
(min A(A™))2 = min A(A(®?) = min \(A®™ . AWT) < A%, (79)

Finally, the last equation holds true because of Assumption 2 where the perturbation vector ¢; lies in the linear span of the
matrix V,(Cu) [E,(cu)] —3:

- —1
0] (AT =ql . viIsM vl =gl (80)

2

()

For the key term Tr (Ak(d)l)’) , it is easy to check that W < 75,7 <k <k+1 < ibecause 7T is a constant
J ?

¢1=0

that measures the k-th spectral gap of matrix AW je., Aé") > 7')\,(;21, we can similarly get its upper bound to Equation 73
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as follows:

(vt )

¢1=0

Tr (Ak(ébl)/)
$1=0
{T“Vf:” VTS g VOV -2 A D VY V)

T u TN T )T T ~ s T
t2—Tr <V1(< vy ;qich (IN —-vvi )) 22— Tr (Aﬁf‘)Dz (IN — vy ))}

T u w) T . T+1 u u)T . u u)T
Sa T (VEVET e ) - T (VT S aa vV )

1=1
Tr (A](CH)DZ)

=1

(A(U)D V(“)v(“)T) _ 2#
T
(v<“>v<“ T Z qudi ) + % Tr (A,S‘)DZV,Q“)V,Q“”) - 2& Tr (A,S”Dl)

(V(“)V(“)TZq a >+ VLR T (ARUD)) — 2= Tr (A D))

<Tr (V(u)v(u)'r qiqi-r> n 2k —7) Te (A,(:)Dz)
T—1

< QF(U)TF(U)
leqzll—ZIqu\F— Z\qulll

=5 a3 -
i=1
81)
Therefore, it is natural to obtain that:
~ - /
o ( (Ror(on V(o0 Za(on Vilon Aar()) ) |
$1=0 (82)
uw) T X (u "
22Tr(pqu AGT) — IAGIRIACE - ( an I~ == anm
O

32



When and How Does In-Distribution Label Help Out-of-Distribution Detection?

E. Empirical Verification of the Main Theorems

Verification of Theorems. We provide more verification results on CIFAR10. Firstly, we verify how the value of G will

change given a larger Frobenius norm of Ag‘l).

OOD dataset SVHN C100
FAR OOD NEAR OOD

IAS (17 1 2583 2876

gt 0.00 0.14

Table 5: Verification with different ||A8‘I) ||= (CIFAR1O as ID).

Next we verify the relationship of || A (|| - and the error difference (CIFAR 100 as OOD) in Table 6.

Epochs 40 80 120 160 200 240
[AG||- ] | 19873 19762 17539 16640 15982 15361
G 1 003 004 007 011 014 0.15

Table 6: Verification with different || A()|| > (CIFAR10 dataset as ID).

These two tables show a similar result as when the ID dataset is CIFAR 100, where the error difference on CIFAR100 (near
OOD, with larger ||A8? || ) is consistently larger than that on SVHN (far OOD). Moreover, the difference in linear probing
error G tends to increase with decreasing || A(“)|| -, which aligns with Theorem 2.

Verification of the assumptions. Here are the empirical verifications of the assumptions on real-world datasets, i.e.,
CIFAR10 and CIFAR100 datasets and simulated datasets as shown in Figure 2.

For C1IFAR10 and CIFAR100, we have checked the largest eigengap of matrix A ™) and observed that 7 = 7740.92 for
CIFAR10 and 7 = 8834.78 for CIFAR100, which are much larger than the feature dimension 512. Therefore, we can always
find a proper k such that 7 > k is satisfied because k < 512.

For the simulated datasets as shown in Figure 2, the largest eigengap of matrix A is 872.00. Therefore the condition
7 > k always holds because k = 2 in this case. We have provided more details about the matrix itself in Section F.

F. Details of the Illustrative Example

For Figure 2 in the main paper, we generate the augmentation graph 7 as follows:

B:; By B
T=|B: Bs B2, (83)
B, By By
where the block-wise matrices B1, By, B3, By € R*°*40 are square matrices. Specifically, B; has the following definition:
1 1
B1 = 140%40 - B1 + Jert 55?,
114
B2 = 140x40 - B2+ -2 + -5,
2 2
1 1 (84)
B3 = 14040 - B3 + 588 + 5531
11+
By = 14040 - B4 + 54 + 564,

here €1, €5, 3,4 € R4%40 are matrices where each element of them is sampled from a truncated normal distribution
(lower bound is -0.1, upper bound is 0.1, mean is 0 and variance is 1). 149x40 is @ matrix where each element in it is 1.
Essentially, the matrix B; measures the connectivity pattern between the data that belongs to the first ID class. We set
B, =0.8.
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Similarly, B3 and B4 measure the connectivity pattern between the data that belongs to the second/third ID class, and we
set Bs = 0.75, B4 = 0.7 respectively for B3 and B4. Moreover, the matrix B, measures the connectivity pattern between
the data that belongs to different ID classes and we set By = 0.1 in this case. For the ID adjacency matrix A(*) and A",
we can follow the definition in Definitions 3 and 4 of the main paper for calculation.

In addition, we generate the OOD-ID adjacency matrix Ag? by sampling from a truncated normal distribution where the
lower bound is 0, the upper bound is 0.5, the mean is 0.5 and variance is 0.05 in the near OOD scenario. In the far OOD
scenario, we set the lower bound to be 0, the upper bound to be 0.2, the mean to be 0.2, and the variance to be 0.05 for
the truncated normal distribution. In the labeled case, the OOD-ID adjacency matrix A(Ol)l can be calculated according
to Equation 23. Here q can be calculated based on the augmentation graph 7 and each element of p (that represents the
connectivity probability between the OOD and ID data) is set to 0.1 because we let the connectivity probability be 0.1 when
the data belongs to different classes in the augmentation graph 7. Finally, we set ¢, = 1 and ¢; = 0.5 for the calculation of
all the adjacency matrices and the data representations.

G. Additional Results on the Illustrative Example

In this section, we provide additional visualization results on changing the Frobenius norm of the ID adjacency matrix AW
and the semantic connection q in Figure 3. For all the examples, we visualize under the near OOD scenario (meaning that
we use the same A o7 as in Section F). Please check the caption for a detailed explanation.

oob ID cls 3 Decision boundary .

. 030 ! 030 <
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| g 02s - IDcs1 . IDcs1 | IDcls 1 2 ; 025 \ o
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'-_;._ ' S “Decision boundary i . IDcs1 7
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(a) ID adj matrix A ()w/ larger || A (b) OOD and ID representations with larger | A 1 (¢) ID adj matrix A('w/ smaller ||A®[ (d) OOD and ID representations with smaller A®)]|
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(e) ID adj matrix A “) w/ smaller ||q|| - (f) OOD and ID representations with smaller [|q]| ! () ID adj matrix A *) w/ larger ||q[ (h) OOD and ID representations with larger [|q]|

Figure 3: Additional example showcasing the contrast between adjacency matrices and representations w/ (1) and w/o (u) ID labels. (a) The
ID adjacency matrix in the unlabeled case A™ with a larger ||A(“) ||lF (B1 = 0.8, B = 0.1, B3 = 0.75, B4 = 0.7). (b) The contrast
of the learned representations in both labeled and unlabeled cases when ||A(“) ||F = 1.20. (c) The ID adjacency matrix in the unlabeled
case A with a smaller ||A(“)||F (B1 = 0.7,B2 = 0.1, B3 = 0.65, B4+ = 0.6). (d) The contrast of the learned representations
in both labeled and unlabeled cases when HA(“) |lF = 1.16. Compared with (b) where the difference in the linear probing loss G is
0.09, the linear probing loss reduces from 0.16 to 0.02. (e) The ID adjacency matrix in the unlabeled case A ™ with a smaller lall 7
(B1 =0.7,B2 = 0.1, Bs = 0.65, B4 = 0.6). (f) The contrast of the learned representations in both labeled and unlabeled cases when
llal| = = 7.30. (2) The ID adjacency matrix in the unlabeled case A with a larger ||q|| (B1 = 0.8, Bz = 0.2, B3 = 0.75, By = 0.7).
(h) The contrast of the learned representations in both labeled and unlabeled cases when ||q||r = 8.79. Compared with (f) where the

difference in the linear probing loss G is 0.14, the linear probing loss reduces from 0.16 to 0.00. The visualization aligns with our
theoretical reasoning as shown in Section 4.3.

H. Additional Experimental Details

We provide more training details for both contrastive learning and linear probing. For contrastive training, we use the
same data augmentation strategies as SimSiam (Chen & He, 2021). For CIFAR1O0, we set ¢, = 0.5, ¢; = 0.25 with
training epoch 200, and we evaluate using features extracted from the layer preceding the projection. For CIFAR100, we
set ¢, = 3, ¢; = 0.0225 with 200 training epochs and assess based on the projection layer’s features. We use SGD with
momentum 0.9 as an optimizer with cosine annealing (Ir=0.03), weight decay 5e-4, and batch size 512.

For linear probing, we train a linear layer on the extracted features from the pretrained model by contrastive learning. We
use SGD for 50 epochs with momentum 0.9 as an optimizer with a decayed learning rate in epoch 30 by 0.2 (The initial
learning rate is 5), and batch size 512.
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I. Additional Experimental Results

Results on CIFAR10. We present the experimental results on CIFAR10 in Table 7, where the effect of the ID labels is

similar to the results on CIFAR100.

OOD category OOD dataset ID labels FPR95 AUROC LP error FPR95 AUROC LP error
P P A

_ 0.0SiUiJl 99(1-98i0,0(§1 O.OIiU'UU 36.60i2.84 9117fj:190d 0.33iU411

SVHN + 0.03£0-00 99 9g+0.01 (000 g grt1.12  gg 43+0.47 () 35+0.19

TEXTURES _ 0‘21ﬂ:0.03 99‘96:|:0,01 0.01:t0.00 10.16:&0.72 98.13:&2.?3 0‘52:!:0410

+ 0.57i0406 99.80:‘:0'10 0.01ﬂ:0.00 13.87ﬂ:0.82 97.60ﬂ:1.39 0.58i0.18

FAR OOD _ 0.36:|:0.01 99.91:|:0.00 0.02:t0.00 20.19:‘:1.23 96.]8:‘:0.28 0'43ﬂ:0.16

PLACES365 + 0.68i0402 99.68:*:0,06 0.02j:0.01 15.83j:1.83 97.01j:0.96 0‘26i0.06

_ 0'68i0.01 99.78ﬂ:0.18 0'03ﬂ:0A00 18'21ﬂ:1A71 96'87i3A28 0.42i0421

LSUN-RESIZE + 0‘56:|:0.23 99.78i0'10 0.01:t0.01 10.83:‘:1'18 97.94:t0.23 0‘39:!:0403

_ 0.68i0412 99-80i0.()5 0-04j:0.02 11.10i1.78 97.93j:1489 0.42i0407

Lsun-C + 0325016 9 510-05 2002 795E192 g 444021 (40019

_ 49'88:!:1,81 89.29:l:0A99 0.24:I:0A07 54.76:I:2A21 86.65:!:304 0'53:!:0.08

NEAROOD — CIFART00 + 41560 928307 010002 40.04%29%  92.42%0 18 (415019

Table 7: OOD detection results w/ and w/o ID labels (CIFAR10 as ID). Mean and std are estimated on three different runs. Better results
are highlighted in bold. “+,-” denotes the labeled and unlabeled case. “LP error” denotes the error of linear probing.

Results on using post-hoc OOD detection scores. Instead of using linear probing to evaluate the OOD detection
performance, we investigate another approach, which directly calculates the £-NN score (Sun et al., 2022) on top of the
extracted representations for both the ID and OOD data and then computes the OOD detection metrics for comparison. The
result is shown in Table 8, where the OOD detection performance is usually better in the labeled case.

OOD category OOD dataset ID labels FPR95 AUROC FPR95 AUROC
CIFAR10 as ID CIFAR100 as ID
; 37355917 gR.08T2UT  27.275055 93 85710
SVHN + 1497181 97824096 55394478 gg 3 +1.12
- 63.91%2:16  7809%3.06 77 g7+L.97 g1 gg+1.68
TEXTURES + 44917290 92 89+095 719208 g1 17289
FAR OOD ) 65.00T4:02 8601 E3:38 76501429 50 cgE2.90
PLACES365 + 61027261 92,65+191 64167072  §5.28%129
- 689117 8589%090 90,00+ 57.91%53:96
LSUN-RESIZE £ S681F00T 0281FLT 67404310 85.89%577
_ 26-08i1,48 93.21i0,27 62.57i0'97 75.50i1.98
Lsun-C + 36325220 0497188 5710%293  g33+2:26
_ 71'76i2.49 81‘97i0A71 92‘10i290 58.57i4A86
NEAR OOD  CIFAR100/CIFARI0 N D3295210  goatll7 g4 12226 g a1E063

Table 8: OOD detection results measured by post-hoc k-NN score w/ and w/o ID labels (CIFAR10 and CIFAR100 as ID). Mean and std
are estimated on three different runs. Better results are highlighted in bold. “+,-” denotes the labeled and unlabeled case and k is set to 25

for all the experiments.

J. Tightness of the Bound

We provide the evidence to verify the tightness of our bound. Specif-
ically, we present numerical results on the illustrative example (Fig-
ure 2) to show the proximity between the value of the error difference
G and the bound in our Theorem in Table 9. Specifically, we set a

different value of ||A8LI) || = and observed our lower bound is suffi-
ciently close to the error difference G (The details of the dataset used
are the same as those described in Appendix Section F except for the
Frobenius norm of the OOD-ID adjacency matrix).

35

HA(C;LI) lF | G  Ourbound
60 0.09 0.07
72 0.16 0.12
84 0.21 0.16
96 0.39 0.37
108 0.40 0.34
120 0.61 0.56

Table 9: Numerical results on the bound tightness.



