A APPENDIX

A.1 PROOF OF THEOREM 1

During the Procrustes alignment, we define Zt+! = (Ut+1)TSt+1Vi+L ¢ R X" Therefore, St
satisfies

St+1 _ Ut+lzt+1(vt+1)'r. (1)

Note that (S!T1)TS!*! = T,... In addition, since matrices U**! and V! have orthogonal columns,
we have

Tr (At(At—H)T(St)T) - Ty (Ut+12t+1(Vt+1)TVt+1(Zt+1)T(Ut+1)7)
= Tr (ZH(Z)T)

- ngﬂ ;4;1 )

Since matrix Z!*! satisfies (Z“’l)TZtJrl = I,/, each element z L yields thrl < 1, we have

Tr (At(At“) (SHT ) < Z i1 o't with the equality achieved at Zt = I,.. Therefore, when the

maximum objective is achieved, matrix S** satisfies

St,* — Ut+1IT/ (Vt+1)‘|' — Ut+1(vt+1)1" (3)
This completes the proof of Theorem 1.

A.2 ALGORITHM FOR FLORG

Algorithm 1 FLoRG

1: Input: Local fine-tuning datasets D,,, n € A; learning rate 7); pretrained model W?; initialized low-rank
matrix A'.

: The central server initializes L and R with orthogonal columns and broadcasts them to all clients.
W!:=Wo 4+ LA)TA'R.

: Fort € T do

The central server broadcasts A* to all clients.

For client n € N in parallel do

t+3 t t
= A" —nVaF,(W%E,).

Aq

. t+%
Transmits A, 2 to the central server.
End for

1
Q=LY (At“) ALTE.

Perform eigendecomposition to Q*+! and obtain A**! := (AH'l) 2Pt
12:  Perform Procrustes alignment to A**! and obtain S** := Ut (V)T
13: A= ghr AT

14 W= W° L L(ATHTA™R,

15: End for

16: Output: Average fine-tuned model W71,
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A.3 PROOF OF LEMMA 1
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2 i (A1 A B2 (A1) 1) [
F
= Duin((AH)TAY) HLH;*” .
2
= Din( (ADTAY) HHt B )

where equality (a) is obtained due to the fact that the second factor within the inner product
is symmetric. Thus, the skew-symmetric part of H? is orthogonal. inequality (b) result from
(AHTAL = Ain ((AHTAY T,

This completes the proof of Lemma 1.
A.4 PROOF OF LEMMA 2

_ 2
We expand ‘ StA — At|l  as follows:

HStAt-H _ AtHi _ HAtHHQF n HAtHi 9Ty (StAt-H(At)T) . )

Similarly, we have

et - acl = A [+ IA 2w (A ). @
Therefore, ALf] satisfies
AL =2 (Tr (Stv*At-&-l(At)T) T (StAt-i-l(At)T)) . (7

Let M! = A*L(AHT = UL, 34, VL, where matrices U, € R”*" and V4, € R”*" have
orthogonal columns. 34, € R™ ", Let P* = U4, (S?)T(V4,)T and Pt* = Uk, (S0*)T(VE,)T =
I,.. Then, we have

Tr (stAt“(At)T) Tr (P'Sh,) Zajp“ ®)

Similarly, we have

’
T

Tr (stﬁ*At“(At)T) =3\ ©)

j=1

By combining eqn. (7), (§), and (9)), we obtain
Abt = 2ZA —Djj)- (10)

Since matrices U%; and V§, have orthogonal columns, we have

Is* = s"|f7 = [[P* —1f;
= Tr (P' —)T(P' — 1))

=2r" — Tr(P") — Tr ((P")7)

_22 —pjj) (11)



By combining eqns. (I0) and (TI), we have
Af)—t‘"_olc =2 Z )‘ — Dy, ]

> 2unin (A1 (ANT) (1= ps)

= 20 (A(AYT) [P

= 2 (AT (ADT) |87 = 8|5 (12)
By rearranging this inequality, we have
AtF1
I8 = 8" < (13)
Amin (AtJrl(At)T)
This completes the proof of Lemma 2.
A.5 PROOF OF THEOREM 2
Based on Assumption 1, we expand E[f(W!1)] as
L

E[f(WH] <E[f(W)] +E[(Vf(W"), W —W") ] +5 E {Hwt+1 — th . (14)

Ty T

In particular, Wit! — W satisfies

Wt+1 Wt
= Z LA"H)TAR — L(A)TA'R)
neN
~Lo 3 ((AHTALE - (ayTAY) R
neN
1
L ( (A — gV AF, (W' E,))T (Af = nVAFL (W) — (At)rAt)R
neN

L (A7 = 0 (A)7G + (GR)TAY) +17(GR)TGh ~ (ATAY )R
= L(n*(G)TGh — 1 ((A)TG4 + (GA)TA") )R, (1s)
where Giy = &+ 3, VaF,(W'&,) = At (H' + (H")T). We first bound T} as follows:
Ty
= —nE[(VF(W').L((A)TG, + (GA)TA) R) ] +n’E [(VF(W'),L(G4)TGLR), ]
= E [(VF(W'),L((A"" — A")TG} + (GR)T(A™ — A")) R)
—nE [(Vf(W'),L((A"")TG} + (G4)TA") R)
+ P E [(V(W'),L(GL)TG4AR) ]
@ T —nE [(H', (A)TGY + (GL)TA%F] +7°E [(H', (GtA)TG@F}
=Ts; —nE [(H',(A)TA" (H" + (H)T) + (H' + (H")7) (At)TAt>F]
+7PE[(H',(GL)TGY) ], (16)

]
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where equality (a) is obtained due to the fact that for an arbitrary matrix X, we have (G!, LXR) =
(H',X). T3 can be bounded as follows:

Ty < 3| VAW[5 + JE[|[L (A" — A)TGH + (GA)T(A™ — A)) R

VW[5 + 20E [||(A% — A)TGL ]

<5 Ivrw !\i+2n\\At’*—AtHiE [\
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where inequalities (a) and (c) result from Jensen’s inequality. Inequalities (b) and (e) is obtained

by using the fact ||[AB||r < ||A]|r||B| . Inequality (d) results from Assumption 2. Inequality (f)
results from Assumption 3 and Lemma 2. Then, we further bound the second term of 77 as

—gE [(H!, (AD)TAY (H + (H)T) + (H' + (H)T) (AYTAY) ]

Y iham (AYTAD [[(L)TY (W R (18)

[PE
where inequality (a) results from Lemma 2. Then, we bound 7°E [(H', (G, )TGY ) ] as follows:

_ _ (2)
PR (L (C)6),) < o7 (G 5164l )
= (Sl rwn @+ g el

& wyrv s whmyTE + TS

I (9)

where inequality (a) results from Jensen’s inequality. Inequality (b) is obtained by using Lemma 2.
By combining inequalities (T6), (T7), (I8), and (I9), we have

2mpCy Al 2 ’
mﬁ proc + <—47)>\min ((At)TAt) 4 % + Z) va(wt)HZF —+ %wQ (20)

= Nmin (At(At T )

Now, we bound T5. In particular, it satisfies
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where inequality (a) is obtained by using Jensen’s inequality. Inequality (b) is obtained since L and
R have orthogonal columns. Inequality (c) results from the fact || AB||r < ||A||r||B| r. Inequality
(d) is obtained by using Lemma 4 and Assumption 3.

Then, we combine inequalities (I4)), (20), and (2I)), we have

E[f(W)] <E[f(W)] + (”2 5~ AnAin ((AY) TA%) |77 WOl

2
2./0,2 3L 2 2 202 2 02 At
g 3Ln ¥ (n*y +2C3) N mp proc 22)
2 2 Nmin (At(At—l) )

We denote Q = 41 minge7{Amin ((A?)TAY)} — ? — 7. By rearranging inequality and sum-
ming over all T fine-tuning rounds, we have

QY VW]

teT
2,1,2 3L 2 2 2c2 9 02 At
< Z Wt-‘rl)) +T <77 2¢ + n 1/’ (7721/} + A)) + 77¢ proc
teT te7 N Amin (At(AFl) )

(a) 7)2'(/)2 3L7]2¢ (T]2¢ + 201%‘) > n Z 2771/102 proc

= AONOS W < 2 " 2 te7 NAmin (A (At=1)T ) |

(23)

where inequality (a) is obtained due to the fact that f(W*) < f(WTHh), If n <
8 minye7{Amin ((A")TA")} —1, we have Q2 > 0. Then, we multiply - on both sides of inequality
(23)) and obtain

1 . WH — f(W* 2,/,2 3L 2¢ 2w+202
= Z HVf(W )Hfr < f( )TQf( ) + 7723 n (7729 A)

teT
i 277¢C2 Aproc
TQ =7 Nmin (At(Atq) )

(24)

This completes the proof of Theorem 2.

A.6 ADDITIONAL EXPERIMENTAL RESULTS

Table 1: Comparison of the testing accuracy.

Base Model Dataset | FLoORG FedIT FeDeRA FFA-LoRA FedSA-LoRA
OPT-125M MRPC 88.30 82.09 85.70 84.78 86.51
QQP 89.72 84.18 87.09 86.30 87.92
ROBERT-large MRPC 90.80 85.16 88.30 87.50 89.21
QQP 91.52 87.89 89.30 88.51 90.01

A.7 THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models (e.g., ChatGPT) for the general purpose of writing assistants to
revise and polish the manuscript’s prose: improving grammar, wording, clarity, and fixing mi-
nor LaTeX/formatting issues. The models were not used for research ideation, designing algo-
rithms/experiments, deriving proofs, selecting citations, or writing substantive technical content.



Table 2: Comparison of the testing accuracy under different ranks.

Rank | Dataset | FLORG FedIT FeDeRA FFA-LoRA FedSA-LoRA
MRPC 85.91 79.66 83.17 82.32 83.00
;=9 QQP 87.62 81.88 84.90 84.09 85.65
MNLI 86.14 80.70 83.44 82.64 84.22
QNLI 89.70 86.67 87.22 86.40 88.10
MRPC 90.80 85.16 88.30 87.50 89.21
S QQP 91.52 87.89 89.30 88.51 90.01
MNLI 91.39 84.76 88.20 89.12 90.90
QNLI 92.44 87.63 89.91 90.82 91.69
MRPC 91.70 85.55 87.12 88.20 89.91
r—8 QQP 91.80 86.39 89.26 88.45 90.10
MNLI 91.70 86.40 89.29 90.44 90.41
QNLI 92.50 87.77 90.20 90.41 91.13

Table 3: Comparison of the testing accuracy under different degrees of data heterogeneity.

Non-IIDness | Dataset | FLORG FedIT FeDeRA FFA-LoRA FedSA-LoRA

MRPC 85.06 78.19 81.91 81.00 83.01

p=0.1 QQP 86.95 78.80 84.15 83.21 85.00
MNLI 81.35 75.44 78.42 77.57 79.36

QNLI 88.88 83.31 86.20 85.33 87.19

MRPC 90.80 85.16 88.30 87.50 89.21

p=05 QQP 91.52 87.89 89.30 88.51 90.01
MNLI 91.39 84.76 88.20 89.12 90.90

QNLI 92.44 87.63 89.91 90.82 91.69

MRPC 90.76 85.77 89.26 88.91 88.20

p=1 QQP 91.88 88.61 89.93 89.37 90.39
MNLI 91.75 86.47 90.05 91.70 91.33

QNLI 92.17 88.03 90.52 90.79 92.72
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