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ABSTRACT

In this paper, we study black-box model stealing attacks where the attacker is only
able to query a machine learning model only through publicly available APIs.
Specifically our aim is to design a black-box model stealing attack that uses a
minimal number of queries to create an informative replica of the target model.
First, we reduce this problem into an online variational optimisation problem.
The attacker solves this problem to select the most informative queries that max-
imise the entropy of the selected queries and simultaneously reduce the mismatch
between the target and the stolen models. We propose an online and adaptive
algorithm, MARICH that leverages active learning to select the queries. We in-
stantiate efficiency of our attack on different text and image data sets and different
models including BERT and ResNet18. Marich is able to steal a model that can
achieve 69-96% of true model’s accuracy using 0.83-6.15% samples from the at-
tack datasets which are completely different from the training data sets. Our stolen
models also achieve 85-95% accuracy of membership inference and also show 77-
94% agreement of membership inference with direct membership inference on the
target models. Our experiments validate that Marich is query efficient and also ca-
pable of creating an informative replica of the target model.

1 INTRODUCTION

In recent years, Machine Learning as a Service (MLaaS) are widely deployed and used in industries.
In MLaaS (Ribeiro et al., 2015), an ML model is trained remotely on a private dataset, deployed in a
Cloud, and offered for public access through a prediction API, such as Amazon AWS, Google API,
Microsoft Azure. This API allows an user, including a potential adversary, to send queries to the ML
model and fetch corresponding predictions. Recent works have shown such models with public APIs
can be stolen or extracted by designing black-box model extraction attacks (Tramèr et al., 2016). In
model extraction attacks, an adversary queries the target model with a query dataset, which might
be same or different than the private dataset, collects the corresponding predictions from the target
model, and builds a replica model of the target model. The goal is to construct a model which is
nearly-equivalent to the target model over the input space of interest (Jagielski et al., 2020).

Often, ML models are proprietary, guarded by IP rights, and expensive to build. These models might
be trained on datasets which are expensive to obtain (Yang et al., 2019) and consist of private data
of individuals (Lowd & Meek, 2005). Also, extracted models can be used to perform other privacy
attacks on the private dataset used for training, such as membership inference (Nasr et al., 2019).
Thus, understanding susceptibility of models accessible through MLaaS presents an important co-
nundrum. This motivates us to investigate black-box model extraction attacks while the adversary
has no access to the private data or a perturbed version of it (Papernot et al., 2017). Instead, the
adversary uses a public dataset to query the target model (Orekondy et al., 2019; Pal et al., 2020).

Black-box model extraction attacks pose a tension between the number of queries sent to the target
ML model and the accuracy of extracted model (Pal et al., 2020). With more number of queries and
predictions, adversary can build a better replica. But querying an API too much can be expensive, as
each query incurs a monetary cost in MLaaS. Also, researchers have developed algorithms that can
detect adversarial queries, when they are not well-crafted or sent to the API in large numbers (Juuti
et al., 2019; Pal et al., 2021). Thus, designing a query-efficient attack is paramount for practical
deployment. Also, it indicates how more information can be leaked from a target model with less
number of interactions.
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Figure 1: A schematic for black-box model extraction attack with MARICH.

In this paper, we investigate effective definitions of efficiency of model extraction and corresponding
algorithm design for query-efficient black-box model extraction attack with public data, which is
oblivious to deployed model and applicable for any datatype.

Our contributions. Our investigation yields three-fold contributions.

1. Formalism: Distribution Equivalence and Max-Information Extraction. Often, the ML models,
specifically classifiers, are stochastic algorithms. They also include different elements of random-
ness during training. Thus, rather than focusing on equivalence of extracted and target models in
terms of a fixed dataset or accuracy on that dataset (Jagielski et al., 2020), we propose a distribu-
tional notion of equivalence. We propose that if the joint distributions induced by a query generating
distributions and corresponding prediction distributions due to the target and extracted models are
same, they will be called distributionally equivalent Sec. 4). Another proposal is to reinforce the
objective of the attack, i.e. to extract as much information as possible from the target model. This
allows us to formulate the Max-Information attack, where the adversary aims to maximise the mu-
tual information between the extracted and target models’ distributions. We further show that both
of these attacks can be performed by optimising a variational objective (Staines & Barber, 2012).

2. Algorithm: Adaptive Query Selection for Extraction with MARICH. We propose an algorithm,
MARICH (Sec. 5), that optimises the objective of the variational optimisation problem (Equation 6).
Given an extracted model, a target model, and previous queries, MARICH adaptively selects a batch
of queries enforcing this objective. Then, it sends the queries to the target model, collect the predic-
tions, and use them to further train the extracted model (Algorithm 1). In order to select the most
informative set of queries, it deploys three sampling strategies sequentially. These three strategies
select: a) the most informative set of queries, b) the most diverse set of queries in the first selection,
and c) the set of queries in the first selection where the target and extracted models mismatch the
most. Together these strategies allow MARICH to select a small subset of queries, which maximise
the information leakage and align the extracted model with the target (Figure 1).

3. Experimental Analysis. We perform extensive experimental evaluation with both image and
text datasets, and diverse model classes, such as logistic regression, ResNet18, and BERT (Sec. 6).
Our experimental results validate that MARICH can extract accurate and informative replicas of the
target models in comparison to random sampling. While MARICH uses a small number of queries
(0.83 − 6.15%) selected from publicly available query datasets, the models extracted by it lead to
comparable accuracy with the target model while encountering a membership inference attack. This
shows that MARICH can extract alarmingly informative models query-efficiently.

2 RELATED WORKS

Here, we elaborate the questions in the model extraction literature that we aim to mitigate.

Taxonomy of Model Extraction. Black-box model extraction (or model stealing or model infer-
ence) attacks aim to replicate of a target ML model, commonly classifiers, deployed in a remote
service and accessible through a public API (Tramèr et al., 2016). The replication is done in such a
way that the extracted model achieves one of the three goals: a) accuracy close to that of the target
model on the private training data used to train the target model, b) maximal agreement in predic-
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tions with the target model on the private training data, and c) maximal agreement in prediction with
the target model over the whole input domain. Depending on the objective, they are called task ac-
curacy, fidelity, and functional equivalence model extractions, respectively (Jagielski et al., 2020).
Here, we generalise these three approaches using a novel definition of distributional equivalence
and also introduce a novel information-theoretic objective of model extraction which maximises the
mutual information between the target and the extracted model over the whole data domain.

Framework of Attack Design. Following Tramèr et al. (2016), researchers have proposed multiple
attack algorithms to perform one of the three types of model extraction. The attack algorithms are
based on two main approaches: direct recovery (target model specific) (Milli et al., 2019; Batina
et al., 2018; Jagielski et al., 2020) and learning (target model specific/oblivious). The learning-
based approaches can also be categorised into supervised learning strategies, where the adversary
has access to both the true labels of queries and the labels predicted by the target model (Tramèr
et al., 2016; Jagielski et al., 2020), and online active learning strategies, where the adversary has only
access to the predicted labels of the target model, and actively select the future queries depending
on the previous queries and predicted labels (Papernot et al., 2017; Pal et al., 2020; Chandrasekaran
et al., 2020). As query-efficiency is paramount for an adversary while attacking an API to save the
budget and to keep the attack hidden and also the assumption of access true label from the private
data is restrictive, we focus on designing an online and active learning-based attack strategy which
can be model oblivious.

Classes of Target Model. While (Milli et al., 2019; Chandrasekaran et al., 2020) focus on per-
forming attacks against linear models, all others are specific to neural networks (Milli et al., 2019;
Jagielski et al., 2020; Pal et al., 2020) and even a specific architecture (Correia-Silva et al., 2018). In
contrast, MARICH is based on active learning methodology and also capable to attack both linear
models and neural networks.

Types of Query Feedback. Learning-based attack algorithms often assume access to either the
probability vector of the target model over all the predicted labels (Tramèr et al., 2016; Orekondy
et al., 2019; Pal et al., 2020; Jagielski et al., 2020), or the gradient of the last layer of the target
neural network (Milli et al., 2019; Miura et al., 2021), which are hardly available in a public API.
In contrast, following (Papernot et al., 2017), we assume access to only the predicted labels of the
target model for a given set of queries, which is always available through a public API.

Type of Query Dataset. The adversary needs a query dataset to select the queries from and to
send it to the target model to obtain predicted labels. In literature, researchers assume three types of
query datsets: synthetically generated samples (Tramèr et al., 2016), adversarially perturbed private
(or problem domain) dataset (Papernot et al., 2017; Juuti et al., 2019), and publicly available (or
out-of-problem domain) dataset (Orekondy et al., 2019; Pal et al., 2020). As we do not want to
restrict MARICH to have access to the knowledge of the private dataset or any perturbed version of
it, we use publicly available datasets, which are different than the private dataset.

In brief, we propose an online and active-learning based model extraction attack using MARICH,
which is model-oblivious, assumes only access to the predicted label for a given query through a
public API, and uses only publicly available non-domain data to query the target model. This is a
less restrictive setup than the ones considered in literature, while the models extracted by MARICH
demonstrate significant accuracy and act as informative replica of the target model to conduct per-
vasive membership inference on the private dataset.

3 BACKGROUND: CLASSIFIERS, MODEL EXTRACTION, AND MEMBERSHIP
INFERENCE ATTACKS

Before proceeding to the details of our contribution, we present the fundamentals of a classifier in
ML, and two types of inference attacks: Model Extraction (ME) and Membership Inference (MI).

Classifiers. A classifier in ML (Goodfellow et al., 2016) is a function f : X → Y that maps a
set of input features X ∈ X to an output Y ∈ Y .1 The output space is a finite set of classes,
i.e. {1, . . . , k}. Specifically, a classifier f is a parametric function, denoted as fθ, with parameters
θ ∈ Rd, and is trained on a dataset DT , i.e. a collection of n tuples {(xi, yi)}ni=1 generated IID

1We represent sets/vectors by bold letters, and the corresponding distributions by calligraphic letters. We
express random variables in uppercase, and an assignment of a random variable in lowercase.
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from an underlying distribution D. Training implies that given a model class F = {fθ|θ ∈ Θ}, a
loss function l : Y × Y → R≥0, and training dataset DT , we aim to find the optimal parameter
θ∗ ≜ argminθ∈Θ

∑n
i=1 l(fθ(xi), yi). We use cross-entropy, i.e. l(fθ(xi), yi) ≜ −yi log(fθ(xi)),

as the loss function for classification.

Model Extraction Attack. A model extraction attack is an inference attack where an adversary aims
to steal a target model fT trained on a private dataset DT and create another replica of it fE (Tramèr
et al., 2016). In the black-box setting that we are interested in, the adversary can only query the target
model fT by sending queries Q through a publicly available API and to use the corresponding
predictions Ŷ to construct fE . The goal of the adversary is to create a model which is either (a) as
similar to the target model as possible for all input features, i.e. fT (x) = fE(x) ∀x ∈ X (Song
& Shmatikov, 2020; Chandrasekaran et al., 2020) or (b) predicts labels that has maximal agreement
with that of the labels predicted by the target model for a given data-generating distribution, i.e.
fE = argminPrx∼D[l(f

E(x), fT (x))] (Tramèr et al., 2016; Pal et al., 2020; Jagielski et al., 2020).
The first type of attacks are called the functionally equivalent attacks. The later family of attacks is
referred as the fidelity extraction attacks. The third type of attacks aim to find an extracted model fE

that achieves maximal classification accuracy for the underlying private dataset used to train the fT .
These are called task accuracy extraction attacks (Tramèr et al., 2016; Milli et al., 2019; Orekondy
et al., 2019). In this paper, we generalise the first two type of attacks by proposing the distributionally
equivalent attacks and experimentally show that it achieves significant task accuracy.

Membership Inference Attack. Another popular family of inference attacks on ML models is the
Membership Inference (MI) attacks (Shokri et al., 2017; Yeom et al., 2018). In MI attacks, given a
private (or member) dataset DT to train fT and another non-member dataset S with |DT ∩ S| ≠ ∅,
the goal of the adversary is to infer whether any x ∈ X is sampled from the member dataset DT

or the non-member dataset S. Effectiveness of an MI attacks can be measured by its accuracy of
MI, i.e. the total fraction of times the MI adversary identifies the member and non-member data
points correctly. Accuracy of MI attack on the private data using fE rather than fT is considered
as a measure of effectiveness of the extraction attack (Nasr et al., 2019). We show that the model
fE extracted using MARICH allows us to obtain similar MI accuracy as that obtained by directly
attacking the target model fT using even larger number of queries. This validates that the model fE

by MARICH in a black-box setting acts as an information equivalent replica of the target model fT .

4 DISTRIBUTIONAL EQUIVALENCE & MAX-INFORMATION MODEL
EXTRACTIONS: A VARIATIONAL OPTIMISATION FORMULATION

In this section, we introduce the notions of distributionally equivalent and max-information model
extractions. We further reduce both the attacks into a single variational optimisation problem.

Definition 1 (Distributionally Equivalent Model Extraction). For any query generating distribution
DQ over Rd × Y , an extracted model fE : Rd → Y is distributionally equivalent to a target model
fT : Rd → Y if the joint distributions of input features Q ∈ Rd ∼ DQ and predicted labels
induced by both the models are same almost surely. This means that for any divergence D, two
distributionally equivalent models fE and fT satisfy D(Pr(fT (Q), Q)∥Pr(fE(Q), Q)) = 0 ∀ DQ.

To ensure query-efficiency in distributionally equivalent model extraction, an adversary aims to
choose a query generating distribution DQ that minimises it further. If we assume that the extracted
model is also a parametric function, i.e. fE

ω with parameters ω ∈ Ω, we can solve the query-efficient
distributionally equivalent extraction by computing

(ω∗
DEq,D

Q
min) ≜ argmin

ω∈Ω
argmin

DQ

D(Pr(fT
θ∗(Q), Q)∥Pr(fE

ω (Q), Q)). (1)

Equation 1 allows us to choose a different class of models with different parametrisation for extrac-
tion till the joint distribution induced by it matches with that of the target model. For example, the
extracted model can be a logistic regression or a CNN if the target model is a logistic regression.
This formulation also enjoys the freedom to choose the data distribution DQ for which we want to
test the closeness. Rather the distributional equivalence pushes us to find the best query distribution
for which the mismatch between the posteriors reduces the most and to compute an extracted model
fE
ω∗ that induces the joint distribution closest to that of the target model fT

θ∗ .
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Remark 1. If we choose DQ
min = DT , distributional equivalence reduces to the fidelity extraction

attack. If we chooseDQ
min = Unif(X ), distributional equivalent extraction coincides with functional

equivalent extraction. Thus, distributional equivalence attack can ensure both fidelity and functional
equivalence extractions depending on the choice of query generating distribution DQ.
Theorem 1 (Upper Bounding Distributional Closeness). If we choose KL-divergence as the diver-
gence function D, then for a given query generating distribution DQ

DKL(Pr(f
T
θ∗(Q), Q)∥Pr(fE

ω∗
DEq

(Q), Q)) ≤ min
ω

EQ[l(f
T
θ∗(Q), fE

ω (Q))]−H(fE
ω (Q)). (2)

By variational principle, Theorem 1 implies that minimising the upper bound on the RHS will lead
to an extracted model which minimises the KL-divergence for a chosen query distribution.

Max-Information Model Extraction. The common objective of any inference attack is to leak as
much information as possible from the target model fT . Specifically, in model extraction attacks,
we want to create an informative replica fE of the target model fT such that it induces a joint distri-
bution Pr(fE

ω (Q), Q)) which retains the most information regarding the target’s joint distribution.
As adversary can control the query distribution, we want to choose such a query distribution DQ for
which the information leakage is maximised.
Definition 2 (Max-Information Model Extraction). A model fE : Rd → Y and query distribution
DQ are called a max-information extraction of a target model fT : Rd → Y and max-information
query distribution, respectively, if they maximise the mutual information between the joint distribu-
tions of input features Q ∈ Rd ∼ DQ and predicted labels induced by fE and that of the target
model. Mathematically, (fE

ω∗ ,DQ
max) is a max-information extraction of fT

θ∗ such that

(ω∗
MaxInf ,DQ

max) ≜ max
ω

argmax
DQ

I(Pr(fT
θ∗(Q), Q)∥Pr(fE

ω (Q), Q)) (3)

Similar to Definition 1, Definition 2 also does not restrict us to choose a parametric model ω dif-
ferent than that of the target θ. It also allows us to compute the data distribution DQ for which the
information leakage is maximum rather than relying on the private dataset DT used for training fT .
Theorem 2 (Lower Bounding Information Leakage). For any given distribution DQ, the informa-
tion leaked by any max-information attack (Equation 3) is lower bounded as follows:

I(Pr(fT
θ∗(Q), Q)∥Pr(fE

ω∗
MaxInf

(Q), Q)) ≥ max
ω
−EQ[l(f

T
θ∗(Q), fE

ω (Q))] +H(fE
ω (Q)). (4)

By variational principle, Theorem 2 implies that maximising the lower bound in the RHS will lead
to an extracted model which maximises the mutual information between target and extracted joint
distributions for a given query generating distribution.

Distributionally Equivalent and Max-Information Extractions: A Variational Optimisa-
tion Formulation. From Theorem 1 and 2, we observe that the lower and upper bounds of
the objective functions of distribution equivalent and max-information attacks are negatives of
each other. Specifically, −DKL(Pr(f

T
θ∗(Q), Q)∥Pr(fE

ω∗
DEq

(Q), Q)) ≥ maxω −F (ω,DQ) and

I(Pr(fT
θ∗(Q), Q)∥Pr(fE

ω∗
MaxInf

(Q), Q)) ≥ maxω F (ω,DQ), where

F (ω,DQ) ≜ −EQ[l(f
T
θ∗(Q), fE

ω (Q))] +H(fE
ω (Q)). (5)

Thus, following a variational approach, we aim to solve an optimisation problem on F (ω,DQ) in an
online and frequentist manner. Specifically, we do not assume a parametric family of DQ. Instead,
we choose a set of queries Qt ∈ Rd at each round t ∈ T . This leads to an empirical counterpart of
our problem, i.e.

max
ω∈ω

max
Q[0,T ]∈DQ

[T ]

F̂ (ω,Q[0,T ]) ≜ max
ω∈ω

max
Q[0,T ]∈DQ

[T ]

− 1

T

T∑
t=1

l(fT
θ∗(Qt), f

E
ω (Qt))] +

T∑
t=1

H(fE
ω (Qt)).

(6)

As we need to evaluate fT
θ∗ for each Qt, we refer Qt’s as queries, the dataset DQ ⊆ Rd × Y from

where they are chosen as the query dataset, and the corresponding unobserved distribution DQ as
the query generating distribution. Given the optimisation problem of Equation 6, we propose an
algorithm MARICH to solve it effectively.
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5 MARICH: A QUERY SELECTION ALGORITHM FOR MODEL EXTRACTION

In this section, we propose an algorithm, MARICH, to solve Equation 6 in a query-efficient manner.

Algorithm Design. In Equation 6, we observe that once the queries Q[0,T ] are selected the outer
maximisation problem, equivalent to regualrised loss minimisation, can be solved using any standard
empirical risk minimisation algorithm, such as Adam, SGD etc. Thus, to achieve query efficiency,
we focus on designing a query selection algorithm that selects a batch of queries Qt at round t ≤ T
such that

Qt ≜ argmax
Q∈DQ

−1

t

t−1∑
i=1

l(fT
θ∗(Qi ∪Q), fE

ωt−1
(Qi ∪Q))] +

t−1∑
i=1

H(fE
ωt−1

(Qi ∪Q)). (7)

Here, fE
ωt−1

is the model extracted by round t−1. The objective of query selection using Equation 7
is two-fold. First, we want to select a query that maximises the entropy of predictions for the
extracted model fE

ωt−1
. This allows us to select the queries which are most informative about the

mapping between the input features and the prediction space. Secondly, Equation 7 also pushes
the adversary to select queries where the target and extracted models mismatch the most. Thus,
minimising the loss between target and extracted models for such a query forces them to match over
the whole domain of queries. In MARICH, we execute this query selection in two phases.

Initialisation Phase. In the Phase 1, i.e. the initialisation phase, we select a set of n0 queries,
called Qtrain

0 uniformly randomly from the query dataset DQ. We send these queries to the target
model and collect corresponding predicted classes Y train

0 (Line 3). We use these n0 samples of
input-predicted label pairs to construct a primary extracted model fE

0 .

Adaptive Phase. In Phase 2, i.e. the adaptive phase, we select γ1γ2B number of queries at every
round t. In order to be query-efficient, we sequentially deploy three query selection mechanisms,
namely ENTROPYSAMPLING, GRADIENTSAMPLING, and LOSSSAMPLING. These techniques to-
gether aim to select a batch of Qt at every step that optimises the objective of Equation 7.

ENTROPYSAMPLING. First, we aim to select the set of queries which unveil most information about
the mapping between the input features and the prediction space. Thus, we deploy ENTROPYSAM-
PLING. In ENTROPYSAMPLING, we compute the output probability vectors from fE

t−1 for all the
query points in DQ \ Qtrain

t−1 and then select top B points with highest entropy (Line 18). This
selects the queries Qentropy

t , about which fE
t−1 is most confused and training on these essentially

would make the model a better classifier.

GRADIENTSAMPLING. To be frugal about the number of queries, we refine Qentropy
t to compute the

most diverse subset of it. First, we compute the gradients of entropy of fE
t−1(x), i.e. ∇xH(fE

t−1(x)),
for all x ∈ Qentropy

t . The gradient at point x reflects the change at x in the prediction distribution in-
duced by fE

t−1. We use these gradients to embed the points x ∈ Qentropy
t . Now, we deploy K-means

clustering to find k (= #classes) clusters and sample γ1B points (Line 25), namely Qgrad
t , from

these clusters. Selecting points from k different clusters ensures diversity of queries and reduces the
number of queries by γ1.

LOSSSAMPLING. In this step, we select points from Qgrad
t for which the predictions of fT

θ∗ and
fE
t−1 are most dissimilar. To identify these points, we compute the loss l(fT (x), fE

t−1(x)) for all
x ∈ Qtrain

t−1 . Then, we select top-k points from Qtrain
t−1 with the highest loss values (Line 29), and

sample a subset Qloss
t of size γ1γ2B from Qgrad

t which are closest to the k points selected from
Qtrain

t−1 (Line 31). This ensures that fE
t−1 would align with fT better if it trains on the points at

which the mismatch in their predictions is the highest.

At the end of Phase 2 in each round of sampling, Qloss
t is sent to fT for fetching the labels Y train

t
predicted by the target model. We use (Qloss

t , Y loss
t ) along with (Qtrain

t−1 , Y train
t−1 ) to train fE

t−1
further. Thus, MARICH performs n0 + γ1γ2BT number of queries through T + 1 number of inter-
actions with the target model fT to create the final extracted model fE

T . We describe a pseudocode
for MARICH in Algorithm 1. We experimentally demonstrate effectiveness of the model extracted
by MARICH to achieve high task accuracy and to act as an informative replica of the target model
for extracting private information regarding the private training data DT .
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Algorithm 1 MARICH

Input: Target model: fT , Query dataset: DQ, #Classes: k
Parameter: #initial samples: n0, Training epochs: Emax, #Batches of queries: T , Query budget:
B, Subsampling ratios: γ1, γ2 ∈ (0, 1]
Output: Extracted model fE

1: //* Initialisation of the extracted model*// ▷ Phase 1
2: Qtrain

0 ← n0 datapoints randomly chosen from DQ

3: Y train
0 ← fT (Qtrain

0 ) ▷ Query the target model fT with Qtrain
0

4: for epoch← 1 to Emax do
5: fE

0 ← Train fE with (Qtrain
0 , Y train

0 )

6: //* Adaptive query selection to build the extracted model*// ▷ Phase 2
7: for t← 1 to T do
8: Qentropy

t ← ENTROPYSAMPLING(fE
t−1,D

Q \Qtrain
t−1 , B)

9: Qgrad
t ← GRADIENTSAMPLING(fE

t−1, Q
entropy
t , γ1B)

10: Qloss
t ← LOSSSAMPLING(fE

t−1, Q
grad
t , Qtrain

t−1 , Y train
t−1 , γ1γ2B)

11: Y new
t ← fT (Qloss

t ) ▷ Query the target model fT with Qloss
t

12: Qtrain
t ← Qtrain

t−1 ∪Qloss
t

13: Y train
t ← Y train

t−1 ∪ Y new
t

14: for epoch← 1 to Emax do
15: fE

t ← Train fE
t−1 with (Qtrain

t , Y train
t )

16: return Extracted model fE ← fE
T

17: function ENTROPYSAMPLING(extracted model: fE , input data points: Xin, budget: B)
18: Qentropy ← argmaxX⊂Xin,|X|=B H(fE(Xin)) ▷ Select B points with maximum entropy
19: return Qentropy

20: function GRADIENTSAMPLING(extracted model: fE , input data points: Xin, budget: γ1B)
21: E ← H(fE(Xin))
22: G← {∇xE | x ∈ Xin}
23: Cin ← k centres of G computed using K-means
24: Qgrad ← argminX⊂Xin,|X|=γ1B

∑
xi∈X

∑
xj∈Cin

∥∇xi
E −∇xj

E∥22
25: ▷ Select γ1B points from Xin whose ∂E

∂x are closest to that of Cin

26: return Qgrad

27: function LOSSSAMPLING(extracted model: fE , input data points: Xin, previous queries:
Qtrain, previous predictions: Ytrain, budget: γ1γ2B)

28: L← l(Ytrain, f
E(Qtrain)) ▷ Compute the mismatch vector

29: Qmis ← ARGMAXSORT(L, k) ▷ Select top-k mismatching points
30: Qloss ← argminX⊂Xin,|X|=γ1γ2B

∑
xi∈X

∑
xj∈Qmis

∥xi − xj∥22
31: ▷ Select γ1γ2B points closest to Qmis

32: return Qloss

6 EXPERIMENTAL ANALYSIS

In this section, we perform an experimental evaluation of models extracted by MARICH. In the fol-
lowing, we discuss the experimental setup, the objectives of experiments, and experimental results.
We defer the source code and additional experimental results to the supplementary material.

Experimental Setup. We have implemented a prototype of MARICH using Python 3.9 and PyTorch
1.12, and run on a NVIDIA Quadro GV100 32 GB GPU. We perform our attacks against three
target models (fT ), namely Logistic Regression (LR), ResNet18 (He et al., 2016), and BERT (De-
vlin et al., 2018), trained on three private datasets (DT ): MNIST handwritten digits (Deng, 2012),
CIFAR10 (Krizhevsky et al.) and BBC News, respectively. For model extraction, we use EMNIST
letters dataset (Cohen et al., 2017), CIFAR10, STL10, and AGNews (Zhang et al., 2015), as publicly
available and mismatched query datasets DQ. To instantiate task accuracy, we compare accuracy
of the extracted models fE

MARICH with the target model and models extracted by Random Sampling
(RS), fE

RS . To instantiate informativeness of the extracted models (Nasr et al., 2019), we compare
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Figure 2: Accuracy of the extracted model (mean ± std. over 10 runs) in comparison to the target
model using MARICH and random sampling. Each figure stands for a target model class and a query
dataset. Models extracted using queries selected by MARICH are closer to the target model.

the membership inference, i.e. membership inference accuracy, AUC of membership inference, and
membership inference agreements, performed on the target models, and the models extracted using
MARICH and RS with same query budget. For membership inference, we use in-built membership
attack from IBM ART (Nicolae et al., 2018). The objectives of our experimental studies are:

1. How do the accuracy of the model extracted using MARICH on the private dataset compare with
that of the target model, and RS with same query budget?

2. How do the models extracted by MARICH behave under membership inference attack in compar-
ison to the target model, and the models extracted by RS with same query budget?

Accuracy of Extracted Models. MARICH extract logistic regression models with 5,130 (3.5%)
and 1,420 (2.37%) queries from EMNIST and CIFAR10 query datasets by attacking a target logistic
regression model, fT

logistic trained on MNIST. While the target model achieves 90.82% test accuracy,
the models extracted using EMNIST and CIFAR10 achieve test accuracies 80.32% (88.43% of
fT
logistic) and 87.39% (96.22% of fT

logistic), respectively (Figure 2a and 2b). The models extracted
using RS show test accuracy 52.96% and 84.18%, i.e. 58.31% and 92.69% of fT

logistic, respectively.

MARICH attacks a ResNet18, fT
ResNet. trained on CIFAR10 (accuracy: 93.58%) with 6,950 (6.15%)

queries from STL10 dataset. The extracted ResNet18 shows 68.22% (72.90% of fT
ResNet) test ac-

curacy. But the model extracted using RS achieves 24.44% (26.12% of fT
ResNet) accuracy (Fig. 2c).

To verify MARICH’s effectiveness for text data, we attack a BERT, fT
BERT trained on BBCNews (test

accuracy: 98.65%) with queries from the AGNews dataset. By using only 0.83% of AGNews, i.e
1,070 queries, MARICH extracts a model with 87.01%(88.20% of fT

BERT ) test accuracy (Figure 2d).
The model extracted using RS shows test accuracy of 79.91% (81.00% of fT

BERT ).

Thus, for all the models and datasets, MARICH is able to extract models that achieve closer test
accuracy with respect to the target models and are more accurate than the models extracted by RS.
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Figure 3: BERT with AGNews queries

Membership Inference with Extracted Models. In Ta-
ble 1, we report the statistics, i.e. accuracy, agreement
in inference with target model, and agreement AUC, of
membership attacks performed on different target mod-
els and extracted models with different query datasets.
The models extracted using MARICH demonstrate higher
MI agreement with the target models than the models ex-
tracted using RS (Figure 4). They also achieve compara-
ble MI accuracy with respect to the target model. These
results instantiate that the models extracted by MARICH
act as informative replicas of the target model.

Analysis of Membership Distributions. To analyse the
outcomes of MI attacks further, we visualise the member-
ship distributions for a BERT model trained on BBCNews dataset, and two BERT models, fE

MARICH

and fE
random extracted using MARICH and RS respectively. To check efficacy of MI, we use BBC-

News as the member dataset and AGNews as the non-member dataset. After training 5 neural nets
on them, we compute the distribution of membership probabilities for the member and non-member
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Table 1: Statistics of membership inference (MI) for different target models, datasets & attacks

Member dataset Target model Query Dataset Algorithm Non-member dataset #Queries MI acc. MI agreement MI agreement AUC
MNIST LR - - EMNIST 50,000 (100%) 87.99% - -
MNIST LR - - CIFAR10 50,000 (100%) 92.30% - -
MNIST LR EMNIST MARICH EMNIST 5,130 (3.5%) 88.58% 92.82% 92.73%
MNIST LR CIFAR10 MARICH CIFAR10 1,420 (2.37%) 94.27% 93.97% 92.43%
MNIST LR EMNIST RS EMNIST 5,130 (3.5%) 89.61% 91.01% 91.11%
MNIST LR CIFAR10 RS CIFAR10 1,420 (2.37%) 92.61% 89.84% 85.79%

CIFAR10 Resnet18 - STL10 40,000 (100%) 79.35% - -
CIFAR10 Resnet19 STL10 MARICH STL10 6,950 (6.15%) 93.90% 75.52% 76.69%
CIFAR10 Resnet19 STL10 RS STL10 6,950 (6.15%) 92.32% 75.25% 75.83%
BBCNews BERT - AGNews 1,490 (100%) 98.61% - -
BBCNews BERT AGNews MARICH AGNews 1,070 (0.83%) 94.42% 91.02% 82.62%
BBCNews BERT AGNews RS AGNews 1,070 (0.83%) 89.17% 86.93% 58.64%
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Figure 4: Membership agreements of models extracted by MARICH and by Random Sampling
(mean over 10 runs). Each figure stands for a target model class and a query dataset. Models
extracted using queries selected by MARICH are higher.

data points for fT , fE
MARICH and fE

random. From Figure 3, we observe that MI on fE
MARICH produces

membership distributions closer to the membership distributions of fT than those of the fE
random.

Summary of Results. From the experimental results, we deduce the following conclusions.

Accuracy. Test accuracy (on the subsets of private datasets) of the models extracted using MARICH
are higher than the models extracted with random queries and ... of the target model (Figure 2 and
Table 1). This shows effectiveness of MARICH as a task accuracy extraction attack, while solving
distributional equivalence and max-info extractions.

Effective Membership Inference. The agreement in MI achieved by attacking fE
MARICH and the target

model is always higher than that of the fE
RS (Figure 4). Also, membership accuracy for fE

MARICHs are
88.58% − 94.42% (Table 1). This shows that the models extracted by MARICH act as informative
replicas of the target model.

Query-efficiency. Table 1 shows that MARICH uses only (0.83−6.15%) of the public query datasets,
which in most cases are lower than data used for training the target models. This shows MARICH is
significantly query efficient whereas other known active learning attacks use at least 8% of the query
dataset to begin (Pal et al., 2020, Table 2).

7 CONCLUSION AND FUTURE DIRECTIONS

In this paper, we investigate the design of a model extraction attack against a target ML model
(specifically classifier) trained on a private dataset and accessible through a public API, which re-
turns only a predicted label for a given query. We propose the notions of distributional equivalence
extraction, which extends the existing notions task accuracy and functionally equivalent model ex-
tractions. We also propose another information-theoretic notion, i.e. Max-Info model extraction.
We further propose a variational relaxation of these two types of extraction attacks. We solve this
variational optimisation problem by proposing an online and adaptive query selection algorithm,
MARICH, which uses a publicly available query dataset different than the private dataset. We exper-
imentally demonstrate that the models extracted by MARICH achieve 68.22 − 87.39% accuracy on
the private dataset while using 0.83− 6.15% of the query dataset. For both text and image data, we
demonstrate that the models extracted by MARICH act as informative replicas of the target models
leading to 79.35 − 94.42% accuracy and 75.52 − 93.97% agreement in membership inference on
the target model.

Typically, the functional equivalence attacks require model-specific techniques, while our experi-
ments validate that MARICH can be model-oblivious while performing distributional equivalence
attack. This poses an interesting question: is distributional equivalence extraction ‘easier’ than
functional equivalence extraction, which is NP-hard (Jagielski et al., 2020)?
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A PROOFS OF SECTION 4

In this section, we elaborate the proofs for the Theorems 1 and 2.2

Theorem 1 (Upper Bounding Distributional Closeness). If we choose KL-divergence as the diver-
gence function D, we can show that

DKL(Pr(f
T
θ∗(Q), Q)∥Pr(fE

ω∗
DEq

(Q), Q)) ≤ min
ω

EQ[l(f
T
θ∗(Q), fE

ω (Q))]−H(fE
ω (Q)).

Proof. Let us consider a query generating distribution DQ on Rd. A target model fT
θ∗ : Rd → Y

induces a joint distribution over the query and the output (or label) space, denoted by Pr(fT
θ∗ , Q).

Similarly, the extracted model fT
θ∗ : Rd → Y also induces a joint distribution over the query and the

output (or label) space, denoted by Pr(fE
ω , Q).

DKL(Pr(f
T
θ∗(Q), Q)∥Pr(fE

ω (Q), Q))

=

∫
Q∈Rd

dPr(fT
θ∗(Q), Q) log

Pr(fT
θ∗(Q), Q)

Pr(fE
ω (Q), Q)

=

∫
Q∈Rd

Pr(fT
θ∗(Q)|Q = q) Pr(Q = q) log

Pr(fT
θ∗(Q)|Q = q)

Pr(fE
ω (Q)|Q = q)

dq

=

∫
Q∈Rd

Pr(fT
θ∗(Q)|Q = q) Pr(Q = q) log Pr(fT

θ∗(Q)|Q = q) dq

−
∫
Q∈Rd

Pr(fT
θ∗(Q)|Q = q) Pr(Q = q) log Pr(fE

ω (Q)|Q = q) dq

=

∫
Q∈Rd

Pr(fT
θ∗(Q)|Q = q) Pr(Q = q) log Pr(fT

θ∗(Q)|Q = q) dq + Eq∼DQ
[
l(fT

θ∗(q)), fE
ω (q))

]
≤ −H(fT

θ∗(Q) dq + Eq∼DQ
[
l(fT

θ∗(q)), fE
ω (q))

]
≤ −H(fE

ω (Q) dq + Eq∼DQ
[
l(fT

θ∗(q)), fE
ω (q))

]
(8)

The last inequality holds true as the extracted model fE
ω is trained using the outputs of the target

model fT
θ∗ . Thus, by data-processing inequality, its output distribution posses less information than

that of the target model. Specifically, we know that if Y = f(X), H(Y ) ≤ H(X).

Now, by taking minω on both sides, we obtain

DKL(Pr(f
T
θ∗(Q), Q)∥Pr(fE

ω∗
DEq

(Q), Q)) ≤ min
ω

EQ[l(f
T
θ∗(Q), fE

ω (Q))]−H(fE
ω (Q)).

Here, ω∗
DEq ≜ argminω DKL(Pr(f

T
θ∗(Q), Q)∥Pr(fE

ω (Q), Q)). The equality exists if minima of
LHS and RHS coincide.

Theorem 2 (Lower Bounding Information Leakage). The information leaked by any max-
information attack (Equation 3) is lower bounded as follows:

I(Pr(fT
θ∗(Q), Q)∥Pr(fE

ω∗
MaxInf

(Q), Q)) ≥ max
ω
−EQ[l(f

T
θ∗(Q), fE

ω (Q))] +H(fE
ω (Q)).

Proof. Let us consider the same terminology as the previous proof. Then,

I(Pr(fT
θ∗(Q), Q)∥Pr(fE

ω (Q), Q))

= H(fT
θ∗(Q), Q) +H(fE

ω (Q), Q)−H(fT
θ∗(Q), fE

ω (Q), Q)

= H(fT
θ∗(Q), Q) +H(fE

ω (Q), Q)−H(fE
ω (Q), Q|fT

θ∗(Q)) +H(fT
θ∗(Q))

≥ H(fE
ω (Q), Q)−H(fE

ω (Q), Q|fT
θ∗(Q)) (9)

≥ H(fE
ω (Q))−H(fE

ω (Q), Q|fT
θ∗(Q)) (10)

≥ H(fE
ω (Q))− EQ[l(f

E
ω (Q), fT

θ∗(Q))] (11)

2Throughout the proofs, we slightly abuse the notation to write l(Pr(X),Pr(Y )) as l(X,Y ) for avoiding
cumbersome equations.
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The inequality of Equation 9 is due to the fact that entropy is always non-negative. Equation 10 hols
true as H(X,Y ) ≥ max{H(X), H(Y )} for two random variables X and Y . The last inequality is
due to the fact that conditional entropy of two random variables X and Y , i.e. H(X|Y ), is smaller
than or equal to their cross entropy, i.e. l(X,Y ) (Lemma 1).

Now, by taking maxω on both sides, we obtain

I(Pr(fT
θ∗(Q), Q)∥Pr(fE

ω∗
MaxInf

(Q), Q)) ≤ max
ω
−EQ[l(f

T
θ∗(Q), fE

ω (Q))] +H(fE
ω (Q)).

Here, ω∗
MaxInf ≜ argmaxω I(Pr(fT

θ∗(Q), Q)∥Pr(fE
ω∗

MaxInf
(Q), Q)). The equality exists if maxima

of LHS and RHS coincide.

Lemma 1 (Relating Cross Entropy and Conditional Entropy). Given two random variables X and
Y , conditional entropy

H(X|Y ) ≤ l(X,Y ). (12)

Proof. Here, H(X|Y ) ≜ −
∫
Pr(x, y) log Pr(x,y)

Pr(y) and l(X,Y ) ≜ l(Pr(X),Pr(Y )) =

−
∫
Pr(x) lnPr(y) denotes the cross-entropy.

l(X,Y ) = H(X) +DKL(Pr(X)∥Pr(Y ))

= H(X|Y ) + I(X;Y ) +DKL(PX∥PY )

≥ H(X|Y )

The last inequality holds as both mutual information I and KL-divergence DKL are non-negative
functions for any X and Y .

B ADDITIONAL EXPERIMENTAL RESULTS

We provide an anonymised version of the code at: https://drive.google.com/drive/
folders/1mpM-zE3w_pIS0c3DDb_uiR9Jw_MYvVer?usp=sharing.

Here, we elaborate further experimental setups against CNN models and also finer details of extrac-
tion results (Table 2, Figure 5, and Figure 6).

Extraction of a CNN Trained on MNIST. Along with the other experiments mentioned in the
paper, we trained a CNN with MNIST handwritten digits (DT here), that shows a test accuracy of
97.53% on a disjoint test set. Two datasets are used as DQ here, EMNIST letters and CIFAR10 to
extract two CNN models from the target model. MARICH extracts two CNNs using queries from
EMNIST letters and CIFAR10 which show test accuracies of 88.81% and 87.16% respectively. On
the other hand, models extracted using random sampling using EMNIST letters and CIFAR10 show
accuracies of 85.37% and 88.46% respectively. Table 2 contains queries used, and membership
inference statistics for all the experiments.

Summary of Observations. From Figure 5, we see that in most cases the probability densities of
the membership inference are closer to the target model when the model is extracted using MARICH,
than using random sampling (RS).

In Figure 6, we present the agreements from the member points, nonmember points and overall
agreement curves for varying membership thresholds, along with the AUCs of the overall member-
ship agreements. We see that in most cases, the agreement curves for the models extracted using
MARICH are above those for the models extracted using random sampling, thus AUCs are higher
for the models extracted using MARICH.

These observations support our claim that model extraction using MARICH gives models are accu-
rate and informative replica of the target model.
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(a) Logistic regression with EMNIST queries
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(b) Logistic regression with CIFAR10 queries
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(c) CNN with EMNIST queries
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(d) CNN with CIFAR10 queries
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(e) ResNet18 with STL10 queries
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(f) BERT with AGNews queries

Figure 5: Comparison among membership vs. non-membership probability densities for member-
ship attacks against models extracted by MARICH, Random sampling and the target model. Each
figure represents the model class and query dataset. Memberships and non-memberships inferred
from the model extracted by MARICH are significantly closer to the target model.
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(a) Logistic regression with EMNIST queries
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(b) Logistic regression with CIFAR10 queries
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(c) CNN with EMNIST queries
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(d) CNN with CIFAR10 queries
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(e) ResNet18 with STL10 queries
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(f) BERT with AGNews queries

Figure 6: Comparison of membership, nonmembership and overall agreements of membership at-
tacks against models extracted by MARICH and Random sampling and the target model trained with
MNIST. Each figure represents the model class and query dataset. Membership agreement of the
models extracted by MARICH are higher.
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