
A MAIN PROOFS

A.1 PROOF OF THEOREM 1

First, we demonstrate the following lemma:

Lemma 1. Suppose that 0 < b < 1 almost surely and E|f(Ŷ , y)|E| is finite. Under the assumption of
independent and identically distributed data with E having strictly positive probability, the asymptotic
limits DP

µ and DL
µ satisfy:

DP
µ =

Cov
h
b, f(Ŷ , Y )|E

i

E[b|E ](1� E[b|E ]) and DL
µ =

Cov
h
b, f(Ŷ , Y )|E

i

Var[b|E ] ,

and thus

DP
µ = DL

µ · Var[b|E ]
E[b|E ](1� E[b|E ]) .

Proof. We note that:

1

nE

X

i2E

bi
nE!1�! E[b|E ] and

1

nE

X

i2E

bif(Ŷ , Y )
nE!1�! E[b · f(Ŷ , Y )|E ]

by the strong law of large numbers. Similarly,

1

nE

X

i2E

(1� bi)f(Ŷ , Y )
nE!1�! E[(1� b) · f(Ŷ , Y )|E ]

1

nE

X

i2E

(1� bi)
nE!1�! E[1� b|E ]

Then diving numerators and denominators in the definition of the empirical estimator gives that:

bDP
µ =

1
nE

P
i2E

bif(Ŷi, Yi)
1
nE

P
i2E

bi
�

1
nE

P
i2E

(1� bi)f(Ŷi, Yi)
1
nE

P
i2E

(1� bi)

nE!1�! E[bf(Ŷ , Y )|E ]
E[b|E ] � E[(1� b)f(Ŷ , Y )|E ]

E[(1� b)|E ]

Combining terms and expanding out the algebra, the last term is:

E[bf(Ŷ , Y )|E ]� E[b|E ]E[f(Ŷ , Y )|E ]
E[b|E ](1� E[b|E ]) =

Cov
h
b, f(Ŷ , Y )|E

i

E[b|E ](1� E[b|E ]) .

On the other hand, the linear estimator converges asymptotically to

bDL
µ

nE!1�!
Cov

h
b, f(Ŷ , Y )|E

i

Var[b|E ] .

This result can be seen by conditioning on E and then making the standard arguments for the
asymptotic convergence of the OLS estimator. Comparing forms of the limits gives the final result.

Our key theorem follows as a corollary from the following proposition, (Proposition 1 in the main
text):
Proposition. Suppose that b is a prediction of an individual’s protected attribute (e.g. race) given
some observable characteristics Z and conditional on event E , so that b = Pr[B = 1|Z, E ]. Define
DP

µ as the asymptotic limit of the probabilistic disparity estimator, bDp, and Dl as the asymptotic
limit of the linear disparity estimator, bDl. Then:
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1.

DP
µ = Dµ �

E[Cov(f(Ŷ , Y ), B|b, E)]
Var(B|E) (1.1)

2.

DL
µ = Dµ +

E[Cov(f(Ŷ , Y ), b|B, E)]
Var(b|E) (1.2)

We’ll split things into separate proofs for 1.1 and 1.2. We’ll also first separately highlight that
disparity is simply the dummy coefficient on race in a(n appropriately conditioned) regression model.
This fact may be known by some readers in the context of regression analysis (especially without
conditioning on a given event), but we provide proof of the general case.
Lemma 2. Let Dµ be the disparity with function f and event E . Then Dµ can be written as:

Dµ =
Cov(f(Ŷ , Y ), B|E)

Var(B|E) .

Proof. Note that by definition:
Dµ = E[f(Ŷ , Y )|E , B = 1]� E[f(Ŷ , Y )|E , B = 0].

If the right hand side of the equation in the statement of the lemma can be written this way, we are
done. But note that:

Cov(f(Ŷ , Y ), B|E)
Var(B|E) =

E[f(Ŷ , Y )B
��E ]� E[f(Ŷ , Y )|E ]E[B

��E ]
E[B

��E ](1� E[B|E ])
.

Now using the law of iterated expectations and simplifying:
E[f(Ŷ , Y )B|E ] = E[E[f(Ŷ , Y )B|E , B]

= E[f(Ŷ , Y )B|B = 1, E ] Pr[B = 1|E ] + E[f(Ŷ , Y )B|B = 0, E ] Pr[B = 0|E ]
= E[f(Ŷ , Y )|B = 1, E ] Pr[B = 1|E ] + E[0] Pr[B = 0|E ]
= E[f(Ŷ , Y )|B = 1, E ] Pr[B = 1|E ]

Moreover, since B is a Bernoulli random variable, Pr[B = 1|E ] = E[B|E ] and
Var(B|E) = E[B|E ](1� E[B|E ])

Combining these, we can write:
E[f(Ŷ , Y )B

��E ]E[B|E ]� E[f(Ŷ , Y )|E ]E[B
��E ]

E[B
��E ](1� E[B|E ])

=
E[f(Ŷ , Y )|B = 1, E ]� E[f(Ŷ , Y )|E ]E[B|E ]

(1� E[B|E ])
This can be expanded as:
E[f(Ŷ , Y )|B = 1, E ]� E[f(Ŷ , Y )|B = 1, E ] Pr[B = 1|E ]� E[f(Ŷ , Y )|B = 0, E ] Pr[B = 0|E ]

(1� E[B|E ])

=
E[f(Ŷ , Y )|B = 1, E ](1� Pr[B = 1|E ])� E[f(Ŷ , Y )|B = 0, E ](1� Pr[B = 1|E])

(1� Pr[B = 1|E ])
= E[f(Ŷ , Y )|B = 1, E ]� E[f(Ŷ , Y )|B = 0, E ]

as desired.

Note that the familiar interpretation of demographic disparity being the dummy coefficient falls out
from this lemma by letting E be the event “always true” and f(Ŷ , Y ) = Y .

Now we can turn to proving 1.1. Recall first that, by assumption:
b = Pr[B = 1|Z, E ] = E[1[B = 1]|Z, E ]
=) b = E[B|Z, E ] 8Z
=) E[b|E ] = E[E[B|Z, E ]] = E[B|E ]

by the law of iterated expectations. Moreover, if we define ✏ as B � b, then:
E[✏|Z, E ] = E[B|Z, E ]� E[b|Z, E ] = 0
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Proof of 1.1. Note that by Lemmas 1 and 2:

Dµ �DP
µ =

Cov
h
f(Ŷ , Y ), B|E

i

Var(B|E) �
Cov

h
f(Ŷ , Y ), b|E

i

E[b|E ](1� E[b|E ]) .

Since E[b|E ] = E[B|E ] and Var[B|E ] = E[B|E ](1�E[B|E ]) = E[b|E ](1�E[b|E ]), the denominators
are the same and be collected as Var(B|E). As for the numerators, we note that

Cov
h
f(Ŷ , Y ), B|E

i
� Cov

h
f(Ŷ , Y ), b|E

i
= Cov

h
f(Ŷ , Y ), B � b|E

i

by the distributive property of covariance. Recall that the law of total covariance allows us to break
up the covariance of random variables into two parts when conditioned on a third. Applying this to
f(Ŷ , Y ) and B � b, with the conditioning variable being b, we have that:

Cov
h
f(Ŷ , Y ), B � b|E

i
= E

h
Cov

⇣
f(Ŷ , Y ), B � b

⌘
|E , b

i
+Cov

⇣
E[f(Ŷ , Y )|E , b],E[B � b|E , b]

⌘

= E
h
Cov

⇣
f(Ŷ , Y ), B � b

⌘
|E , b

i

= E
h
Cov

⇣
f(Ŷ , Y ), B

⌘
|E , b

i

where the second equality follows because b = E[B|Z, E ] =) E[B|b, E ] = b and the third because
b is trivially a constant given b. Combining these together, we have that:

Dµ �DP
µ =

E
h
Cov

⇣
f(Ŷ , Y ), B

⌘
|E , b

i

Var[B|E ]

=) DP
µ = Dµ �

E
h
Cov

⇣
f(Ŷ , Y ), B

⌘
|E , b

i

Var[B|E ] ,

as desired.

Let’s do 1.2.

Proof of 1.2. First, consider the linear projection of f(Ŷ , Y ) onto B given that E occurs. We can
write this as:

f(Ŷ , Y ) = ↵+ � ·B + ⌫,

where it is understood that the equation holds given E . Now, by the definition of linear projection,

� =
Cov(f(Ŷ , Y ), B|E)

Var(B|E) = Dµ

where the last equality follows by Lemma 2, and by the definition of linear projection, Cov(B, ⌫|E) =
0.

Now, consider the linear projection of f(Ŷ , Y ) onto b given E . Again we can write the equation:

f(Ŷ , Y ) = ↵0 + �b+ ⌘

and similarly

� =
Cov(f(Ŷ , Y ), b|E)

Var(b|E) = DL
µ

and Cov(b, ⌘|E) = 0.

Now, by applying the Law of Total Covariance to the equation above, we have:

�Var(b|E) = Cov(f(Ŷ , Y ), b|E)
= E[Cov(f(Ŷ , Y ), b|E , B] + Cov(E[f(Ŷ , Y )|E , B],E[b|E , B]).
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We’ll focus for now on the latter term. Note that by replacing f(Ŷ , Y ) by ↵+�B+ ⌫, we can obtain:

Cov(E[f(Ŷ , Y )|B, E ],E[b|B, E ]) = Cov(�B + E[⌫|B], B � E[✏|B]
��E)

where we’ve moved out the event E and used the fact that ↵ is a constant and B is a constant
conditional on B to remove them from the inner expectations. We can expand as

Cov
�
�B + E[⌫|B, E ], B � E[✏|B]

��E
�
.

We can further expand this covariance term to be

= �Var(B|E)� � Cov(B,E(✏|B)
��E) + Cov(E(⌫|B), B

��E)� Cov(E(⌫|B),E(✏|B)
��E)

= �Var(B|E)� � Cov(B,E(✏|B)
��E),

where the last equality is due to the fact that B is binary so the covariance between B and ⌫ equals
zero.

Next we show that the term Cov(B,E(✏|B)
��E) can be written in terms of b and ✏,

Cov(B,E(✏|B)
��E) = E[BE[✏|B]]� E[B]E[E[✏|B]]

= E[E[B✏|B]
��E ]� E[B|E ]E[E[✏|B]|E ]

= E[B✏|E ]� E[B|E ]E[✏|E ]
= Cov(B, ✏

��E)
= Cov(b+ ✏, ✏

��E)
= Cov(b, ✏

��E) + Var(✏|E).

Plugging these results back into the original equation and using the fact that B = b+ ✏, we have

�Var(b|E) = E[Cov(f(Ŷ , Y ), b|E , B] + �Var(B|E)� �Var(✏|E)� � Cov(b, ✏
��E)

= �[Var(b|E) + Cov(b, ✏
��E)] + E[Cov(f(Ŷ , Y ), b|E , B]

= �Var(b|E) + E[Cov(f(Ŷ , Y ), b|E , B],

where the last equality is due to the fact that E[✏|Z, E ] = 0.

A.2 PROOF OF PROPOSITION 2

Proof. For a fixed ✓̃, we can apply Theorem 1 to write that:

Dp
µ(h✓̃) = Dµ(h✓̃)�

E[Cov(f(h✓̃, Y ), B|b, E ]
Var[B|E ] ,

where the expectation in the numerator is over the distribution of the data. Now, if ✓̃ is drawn from a
distribution ✓ (in particular, ✓ corresponding to ✓t with t being drawn from 1...T ) that is independent
of the data, we can treat the quantities as random variables drawn from a two step data-generating
process. In our setting (as in classical, but not all, learning settings), the distribution of future data is
assumed not to depend on our selected model. Then by the linearity of expectations, we have that

E✓̃⇠✓

⇥
Dp

µ(h✓̃)
⇤
� E✓̃⇠✓

⇥
Dµ(h✓̃)

⇤
= E✓̃⇠✓


E[Cov(f(h✓̃, Y ), B|b, E ]

Var[B|E ]

�
.

A similar statement can be made for the relationship between E✓̃⇠✓T

⇥
Dp

µ(h✓̃)
⇤

and E✓̃⇠✓T

⇥
Dµ(h✓̃)

⇤
.

A.3 STANDARD ERRORS

Here, we discuss the calculation of standard errors; these arguments are more general, but substantially
similar, version of those made in (20). As shown in the proof of Theorem 1, bDl

µ and bDp
µ converge

to their asymptotic limits, Dl
µ and Dp

µ, respectively; however, given that we observe only a finite
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sample, our estimates bDl
µ and bDp are subject to uncertainty whose magnitude depends on the sample

size of the data.

Since the bDl
µ is simply the linear regression coefficient, its distribution is well-studied and well known.

In particular, under the classical ordinary least squares (OLS) assumptions of normally distributed
error, b� ⇠ N

⇣
�, �2

ns2b

⌘
where s2b is the sample variance of b; under mild technical conditions, central

limit theorems can be invoked to show that as the size of data increases, b� follows a distribution
that is increasingly well-approximated by said normal distribution.(41) Note that, since as shown in
Lemma 1

DL
µ =

Cov(f(Ŷ , Y ), b|E)
Var[b|E , DP

µ =
Cov(f(Ŷ , Y ), b|E)
E[b|E ](1� E[b|E ]) ,

it follows that

DP
µ = DL

µ · Var[b|E ]
E[b|E ](1� E[b|E])

;

analogously, by expanding the definitions of the sample estimators, we can easily see that:

bDP
µ = bDL

µ =
1
nE

P
i2E

(bi � b̄E)2

b̄E(1� b̄E)
.

Then by Slutsky’s theorem, we can state that:

bDP
µ

n!1�! bDL
µ

Var[b|E ]
E[b|E ](1� E[b|E])

.

As a consequence, the distribution of bDP
µ is a scaled version of the distribution of bDL

µ , and in
particular

bDP
µ �DP

µ

Var bDL
µ

q
Var[b|E]

E[b|E](1�E[b|E])

n!1�! N (0, 1) .

Thus, in practice, we can estimate the variance of bDL
µ as if it were the usual OLS estimator and then

estimate Var[b|E ] and E[b|E ] to scale it appropriately.

A.4 OBTAINING THE PROBABILISTIC PREDICTION

A.4.1 BIFSG

Recall that conceptually, b functions as a probabilistic confidence score we have that an individual
has B = 1. A perfectly calibrated b will thus have E[B|b] = b, and our main theorems assume that
we have access to this. In practice, however, b must be estimated; in this work, we focus on the
commonly used (23; 45; 48; 31) Bayesian Imputations with First Names, Surnames, and Geography
(BIFSG). In BIFSG, we make the naive conditional independence assumption that the proxy features
are independent conditional on the protected characteristic. In the case of BIFSG, this amounts to
assume that:

Pr[F, S,G|B] = Pr[F |B] Pr[S|B] Pr[G|B],
where the random variable F is first name, S is surname, and G is geography . By applying Bayes’
rules to this assumption, we can obtain that:

Pr[B|F, S,G] =
Pr[F, S,G|B]

Pr[F, S,G]
=

Pr[F |B] Pr[S|B] Pr[G|B]

Pr[F, S,G]
.

The right-hand side of this equation is fairly easy to estimate because it requires knowing only
marginals rather than joint distributions (the denominator can be normalized away by noting that
we must have that Pr[B = 1|F, S,G] and Pr[B = 0|F, S,G] must sum to 1), and these marginals
are often obtainable in the form of publicly available datasets. Note that, BIFSG can be written in
multiple forms by applying Bayes’ rule again to the individual factors (e.g. replacing Pr[F |B] with
Pr[B|F ] Pr[F ]/Pr[B], which may be convenient depending on the form of auxiliary data available.

For our setting, we leverage the census and home mortgage disclosure act (HMDA) data, as mentioned,
to estimate b from publicly available data. We provide quantitative details on our estimates in
Appendix C. We note also that since b is continuous, we will discretize into equally sized bins
whenever we need to compute quantities conditional on b.
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A.4.2 IMPACT OF MISCALIBRATION

Throughout the theoretical work, we have assumed that we have b = Pr[B = 1|Z] - i.e. that b
is perfectly calibrated. In reality, this is a quantity that is estimated, and will thus contain some
uncertainty, including bias due to the fact that the dataset which it is estimated on (e.g. the census for
the U.S. as a whole) may not be fully representative of the relevant distribution (i.e. the distribution of
individuals to whom the model will be applied, which may be a particular subset). This could result
in miscalibration; when this happens, it could be that applying our method with our miscalibrated b
results in failing to bound disparity (both in measuring alone, and in training).

Ultimately, miscalibration is only a real problem insofar as it causes the method to fail. For small
amounts of miscalibration, the method tends to succeed anyway – e.g. in our setting, we do observe
that our estimates are not perfectly calibrated, but we still achieve good results. For larger, or unknown,
miscalibration, there are two paths that can be taken. The first is to conduct a “recalibration" exercise,
and obtain a modified b that more closely matches the distribution of interest; this can be as simple as
fitting a linear regression of B on b in the labeled dataset and replace b with the predictions of this
regression. Alternatively, given an assumed bound on the magnitude of the miscalibration, Theorem
1 can be extended to incorporate its effect. In practice, recalibration is more straightforward to do
empirically, but the theoretical method can also be used for sensitivity analysis; see (20) for their
discussion of the recalibration approach as well as the effect on their special-case bounds.

Note also that, in settings where E is affected by the modeling choice h - i.e. when the fairness metric
involves conditioning on model predictions, as in the case of positive predictive value (PPV) - it may
be the case that a perfect or well-calibrated b for one model may be poorly-calibrated for another.
That is, it may be that among observations, we find that that our estimate |b(Z)� Pr[B|Z, E(h✓)]|
is small while our estimate of |b(Z) � Pr[B|Z, E(h✓0)| is large. In this case, we can introduce a
recalibration step in-between iterations, although this deviates from the theoretical assumptions that
ensure convergence. Note that a sufficiently expressive model over a sufficiently powerful set of
proxy features should be able obtain good calibration overall events E ; this suggests that another path
forward in such a setting may be in investing in alternative, more powerful (e.g. machine-learned)
models of b.

A.5 FAIRNESS METRICS

As noted, many fairness metrics can be written in the form required by our formulation. For
concreteness, we provide a table based on (37; 44) summarizing the choice of f and E that correspond
to the many of the most prominent definitions that can be written in our formulation .

Metric f(h(X),Y) E
Accuracy 1[h 6= y] {true}
Demographic Parity 1[h = 1] {true}
True Positive Rate Parity 1[h 6= y] {y = 1}
False Positive Rate Parity 1[h 6= y] {y = 0}
True Negative Rate Parity 1[h 6= y] {y = 0}
False Negative Rate Parity 1[h 6= y] {y = 1}

B MATHEMATICAL FORMULATION OF FAIR LEARNING PROBLEM

B.1 THEORETICAL PROBLEM

We begin by discussing the theoretical problems - i.e. abstracting away from the sample of data and
considering the problems we are trying to solve.

B.1.1 ONE-SIDED BOUND

We first consider the case of imposing a one-sided bound on disparity, i.e. requiring that Dµ  ↵
but allowing Dµ < �↵; certainly this will not be desirable in all situations, but we can use it as a
building block for the two-sided bound as well.
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We begin by formalizing the ideal problem - that is, the problem we would solve if we had access to
ground truth protected class. This is simply to minimize the expected risk subject to the constraint
that - whichever disparity metric we have adopted - disparity is not “too high”. This is the:
Problem 3 (Ideal Problem). Given individual features X , labels Y , a loss function L, a model class
H, a disparity metric µ, and a desired bound on disparity ↵, find an h to:

min
h2H

E[L(h(X), Y )] s.t. Dµ(h)  ↵,

where Dµ(h) is the µ-disparity obtained by h.

The ideal problem is not something we can solve because we cannot directly calculate Dµ over the
dataset, since it requires the ground truth protected class label B. But the Theorem 1 suggests an
alternative and feasible approach: using the linear estimate of disparity as a proxy bound. That is,
if the linear estimator is an upper bound on the disparity, and the linear estimator is below ↵, then
disparity is below ↵ too.

Formally, we would solve following problem:
Problem 4 (Bounded Problem Direct). Given individual features X , labels Y , a loss function L,
a model class H, a disparity metric µ, a desired on disparity ↵, and a predicted protected attribute
proxy b, find an h to:

min
h2H

E[L(h(X), Y )] s.t. DL
µ  ↵

and Dµ  DL
µ

Notice that any feasible solution to Problem 4 must satisfy the constraints of Problem 3, i.e. we must
have that Dµ(h)  ↵. The gap between the performance of these two solutions can be regarded
as a “price of uncertainty”; it captures the loss we incur by being forced to use our proxy to bound
disparity implicitly rather than being able to bound it directly. We explore this price by comparing to
an “oracle” which can observe the ground truth on the full dataset and perform constrained statistical
learning.

As in Problem 2, we cannot directly observe Dµ, so the second constraint is not one that we can
directly attempt to satisfy. But we know that it holds exactly in the conditions under which Theorem
1 applies. Therefore, we can replace that constraint with the covariance conditions:
Problem 5 (Fair Problem - Indirect). Given individual features X , labels Y , a loss function L, a
model class H, a disparity metric µ (with associated event E and function f(h(X), Y )), a desired
maximum disparity ↵, and a predicted proxy b, find an h to:

min
h2H

E[L(h(X), Y )] s.t. DL
µ  ↵

and E[Cov(f(h(X), Y ), b|B, E)] � 0

And indeed, these problems are equivalent:
Proposition 3. Problems 5 and 4 are equivalent.

Proof. Theorem 1 directly says that DL
µ � Dµ () E[Cov(f(h(X), Y ), b|B, E)] � 0. Hence if h

satisfies the constraints of Problem 5 iff it satisfies those of Problem 4. Since the objectives are also
the same, the problems are equivalent.

As written, Problem 5 is still using the population distributions; we will discuss its empirical analogue
below.

B.1.2 TWO-SIDED BOUND

The two-sided bound requires that |Dµ|  ↵; this may be more common in practice. Again, we begin
by considering the ideal problem:
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Problem 6 (Ideal Symmetric Problem). Given individual features X , labels Y , a loss function L, a
model class H, a disparity metric µ, and a desired bound on disparity ↵, find an h to:

min
h2H

E[L(h(X), Y )] s.t. |Dµ(h)|  ↵,

where Dµ(h) is the µ-disparity obtained by h.

As with Problem 4, we cannot directly bound disparity, since we do not have it, but we do have the
disparity estimator. This leads to the following problem:
Problem 7 (Symmetric Problem Direct ). Given individual features X , labels Y , a loss function L,
a model class H, a disparity metric µ, a desired on disparity ↵, and a predicted protected attribute
proxy b, find an h to:

min
h2H

E[L(h(X), Y )] s.t. |DL
µ |  |↵|

and |Dµ|  |DL
µ |

Unfortunately, we don’t have any theory about putting an absolute value bound on disparity, and
indeed, because the weighted and linear disparity estimators are positive scalar multiples of one
another, we cannot hope to use one as a positive upper bound and the other as a negative lower bound.
But notice that if we were to find the best solution when DL

µ 2 [0,↵], and the best solution when
DL

µ 2 [�↵, 0], then we would cover the same range as [�↵,↵].
One attempt to apply this principle would be to solve the following two subproblems:
Problem 6.A.

min
h2H

E[L(h(X), Y )] s.t. DL
µ  ↵

and E[Cov(f(h(X), Y ), b|B, E)] � 0
Problem 6.B.

min
h2H

E[L(h(X), Y )] s.t. � ↵  DL
µ

and E[Cov(f(h(X), Y ), b|B, E)] � 0

And take:
h⇤

5 = argminh⇤
6a,h

⇤
6b
E[L(h(X), Y )].

But this does not even guarantee a feasible, let alone optimal, solution to Problem 7. To see this, note
that there is nothing prevent h⇤

6a to be not simply  ↵, but in fact < �↵, and vice versa. In particular,
what went wrong is that we did not find the two best solutions over [�↵, 0] and [0,↵], but rather the
two best over [�1,↵] and [�↵,1], which is no constraint at all.

To get around, this, though, we can solve the following two problems instead:
Problem 7.A.

min
h2H

E[L(h(X), Y )] s.t. DL
µ  ↵

and E[Cov(f(h(X), Y ), b|B, E)] � 0

and E[Cov(f(h(X), Y ), B|b, E)] � 0
Problem 7.B.

min
h2H

E[L(h(X), Y )] s.t. � ↵  DL
µ

and E[Cov(f(h(X), Y ), b|B, E)]  0

and E[Cov(f(h(X), Y ), B|b, E)]  0

Why are these different? Notice that imposing both covariance constraints in 1.A enforces that
Dp

µ  Dµ  DL
µ ; since Dp

µ = DL
µ

Varb
E[b](1�E[b]) – i.e. Dp

µ is always an attenuated version of Dl
µ – this

can only be the case if all three terms are nonnegative. Similarly, 1.B enforces that Dp
µ � Dµ � Dl

µ;
this similarly ensures that all three terms are nonpositive. Since these terms also include the bound
on the linear estimator, they thus ensure that if we take:

h 2 argminh⇤
7a,h

⇤
7b
E[L(h(X), Y )],

we will indeed obtain a feasible solution to Problem 7. As in Problem 5, there may again be a
suboptimality gap since we have effectively imposed more constraints to the original problem.
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B.2 SOLVING THE EMPIRICAL PROBLEMS

In this section, we use recent results in constrained statistical learning to formulate and motivate
empirical problems that we can solve which obtain approximately feasible and performant solutions to
the problems above. We summarize here the conceptual basis at a high level, providing a discussion of
the rationale behind Theorem 2 in the main text, drawing heavily on (14), and refer interested readers
to said work as well as (13) for a fuller and more detailed discussion of the constrained statistical
learning relevant to our setting and (17) for more general discussion of non-convex optimization via
primal-dual games.

B.2.1 RELATING OUR FORMULATION

We begin by describing the relationship between our problem of interest and that considered in (14).
The (parameterized version of the) problem in (14) is the following:
Problem 8 (Parameterized Constrained Statistical Learning (P-CSL) from (14)).

P ⇤ = min
✓2⇥

E(x,y)⇠D0
[`0(f✓(x), y)] s.t. E(x,y)⇠Di

[`i(f✓(x, y)]  ci, i = 1...m

That is, they aim to minimize some expected loss subject to some constrained on other expected losses,
with loss functions that may vary and be over different distributions. Our problem, i.e. Problem 5 can
be seen as a special case of this, though our framing is different. To see the correspondence, consider
applying the following to Problem 8:

1. Take Di to be the restriction of D to E
2. Take `0 to be the loss function of interest, e.g. 1[h 6= y] for accuracy
3. Take `1 = f(h(X), Y ) and c1 as ↵

4. Take `2 = f(h(X), Y ) ·B � f(h(X), Y )
B
b̄B and c2 = 0

5. Take `3 = f(h(X), Y ) · b� f(h(X), Y )
b
B̄b and c3 = 0

Then we arrive at Problem 5.

B.2.2 MOVING TO THE EMPIRICAL PROBLEM

The problems described above relate to the population distribution, but we only have samples from
this distribution. This is, of course, the standard feature of machine learning situations; the natural
strategy in such a setting is to simply solve the empirical analogue - i.e. to replace expectations over a
distribution with a sample average over the realized data. Instantiating this and focusing on Problem
1.A (since the other problems can be solved analogously and/or using it as a subproblem) we could
write the following empirical problem.
Problem 9.

min
h2H

1

n

X

i2nD

L(h(Xi), Yi) s.t. bDL
µ  ↵

and 0  � 1

nDL

X

i2DL

h⇣
f(h(Xi), Yi)� f(h(Xi)), Yi

Bi
⌘
(bi � b̄Bi)

i

and 0  � 1

nDL

X

i2DL

h⇣
f(h(Xi), Yi)� f(h(Xi)), Yi

bi
⌘
(Bi � B̄bi)

i

.

Problem 9 is not, in general, a convex optimization problem; if it were, the standard machinery and
solutions of convex optimization, i.e. formulating the dual problem and recovering from it a primal
solution via strong duality, could be applied. However, as shown in (14), under some conditions,
there exists a solution to the empirical dual problem that obtains nearly the same objective value as
the primal population problem. In other words, rather than applying strong duality as a consequence
of problem convexity, (14) directly prove a relationship between the primal and the dual under some
conditions. These conditions are that:
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1. The losses `i(·, y) are Lipschitz continuous for all y
2. Existence of a family of funtions ⇣i(N, �) � 0 that decreases monontically in N and bounds

the difference between the sample average and population expectatoin for each loss function
3. There is a ⌫ � 0 so that for each � in the closed convex hull of H, there is a ✓ such that
4. The problem is feasible

We briefly discussing these conditions. For 1), we note that Lipschitz continuity requires existence
of scalar such that |f(x)� f(x0)| M |x� y|, which will be true for bounded features when using
sample averages. 2) simply requires that we are in a situation where more data is better, and is implied
by the stronger condition we assume of H being of finite VC-dimension. 3) asks that our hypothesis
class is rich enough to cover the space finely enough (how fine will determine the quality of the
solution), which is met for reasonable model classes. 4), is simply a technical requirement ensuring
that there exists at least some solution, is analogous to Slater’s criterion in numerical optimization.

Thus, we can leverage the described guarantees to assert that solving the empirical dual would Yet
this initial result, while positive, is one of existence; to actually find a solution requires a solution. To
do so, one can construct an empirical Lagrangian from the constrained empirical problem, and this
can be solved by running a game between primal player, who selects a model to minimize loss, and a
dual player, who selects dual parameters in an attempt to maximize it. If we construct this empirical
dual in our settings, it is as in Equation 3; Algorithm 1 provides a primal-dual learner that instantiates
this idea of a game.

Algorithm 1: Primal-dual algorithm for probabilistic fairness
Input :Labeled subset DL, unlabeled data DU , ✓-oracle, number of iterations T 2 N, step

size ⌘ > 0
Define :h✓(t) as the model parameterized by ✓(t)

Initialize :µ(1)
L  0; µ(1)

b|B  0; µ(1)
B|b  0

1 for t = 1 . . . T do
2 ✓(t)  argmin✓ bL(✓, µ(t))

3 µ(t+1)
b|B  µ(t)

b|B + ⌘ bCf,b|B(h✓(t)); µ(t+1)
B|b  µ(t)

B|b + ⌘ bCf,B|b(h✓(t))

4 µ(t+1)
L  µ(t)

L + ⌘
⇣
bDL(h✓(t) � ↵

⌘

5 end
6 return < ✓(1), . . . , ✓(T ) >

B.3 THEORETICAL GUARANTEES

If either all of the losses are convex, or:

6. The outcome of interest Y takes values in a finite set
7. The conditional random variables X|Y is are non-atomic
8. The closed convex hull of H is decomposable

Then the primal-dual algorithm 1 performs well. In the classification setting, which we focus on,
Item 5) is trivially true. Item 6) asks that it not be the case that any of the distribution over which
losses are measured induce an outcomes induce an atomic distribution; this mild regularity condition
prevents pathological cases that would be impossible to satisfy. For 7) Decomposability is a technical
condition stating that for a given function space, it closed in a particular sense: for any two function
�,�0 and any measurable set �, the function that is � on � and �0 on its complement is also in
the function space; many machine learning methods can be viewed from a functional analysis as
optimizing over decomposable function space.

As we have shown that our problem can be written as a case of the CSL problem, and Algorithm 1 is
a specialization of the primal-dual learner analyzed in (14), Theorem 3 in the same applies, again
with appropriate translation. In particular, the promise is that when an iterate is drawn uniformly at
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random, the expected losses (over the distribution of the data and this draw) for the constraints are
bounded by the constraint limit ci plus the family of functions at the datasize mention in Assumption
2, plus 2C/(⌘T ), where T is number of iterations, ⌘ is the learning rate, and C is a constant; at
the same time, the expected loss (again over both the data and drawing the iterate) is bounded by
the value of primal plus several problem-specific constants that capture the difficult of the learning
problem and meeting the constraints, as well as said monotonically decreasing function of the data
capturing the rate of convergence. Our Theorem 2 can be obtained by applying a standard result from
statistical learning theory and collecting/re-arrange/hide problem-specific constants.

In this section, we discuss our approach to learning a fair model using the probabilistic proxies and a
small subset of labeled data. To do so, we leverage recent results in constrained statistical learning.

B.4 CLOSED-FORM SOLUTION TO FAIR LEARNING PROBLEM FOR REGRESSION SETTING

In this appendix we provide a closed-form solution to the primal problem Problem 2.A for the special
case of linear regression with mean-squared error losses and demographic parity as the disparity
metric. We express the constraints in matrix notation and show that the constraints are linear in
the parameter �. Thus, we are able to find a unique, closed-form solution for � by solving the
first-order conditions. Given a choice of dual variables, it can be interpreted as a regularized heuristic
problem with particular weights; while there are no guarantees that this will produce a performant or
even feasible solution, it may be useful when applying the method in its entirety is computationally
prohibitive.

We define the following notation for our derivation. Let n denote the number of observations and
p the number of features in our dataset. Then let X 2 Rn⇥p, y 2 Rn⇥1,� 2 Rp⇥1, b 2 Rn⇥1, and
B 2 {0, 1}n⇥1. For j = 0, 1, let Bj = {i : Bi = j} and nj = |Bj | denote the set of observations
for which the observed protected feature B = j and the size of the corresponding set, respectively.
Since we consider demographic parity as the disparity metric of interest, we denote the disparity
metric as f(Ŷ , Y ) = Ŷ .

For ease of exposition, we restate the empirical version of the constrained optimization problem for
linear regression and demographic parity.

Problem 9.A.

min
�

(y �X�)>(y �X�)

s.t. bDL
µ  ↵,

E[Cov(bY , b|B)] � 0,

E[Cov(bY ,B|b)] � 0

As discussed in Section 2.1, the linear disparity metric bDL
µ is the coefficient of the probabilistic

attribute b in a linear regression of Ŷ on b. Thus, bDL
µ can be expressed as

bDL
µ = (b>b)�1(b>X�).

The covariance of Ŷ and b conditional on B can be written as

Cov(Ŷ , b|B) = E(b>X�|B)� E(X�|B)E(b|B) (4)

23



We expand the first term on the right-hand side of Equation 4, considering the case where B = 1.

E(b>X�|B = 1) =
1

n1

X

i2B1

biXi�

=
1

n1

X

i2B1

pX

j=1

biXij�j

=
1

n1

pX

j=1

X

i2B1

biXij�j

=
1

n1

pX

j=1

�j

X

i2B1

biXij .

Collecting the second summation as the vector v1j = 1
n1

P
i2B1

biXij , we can write the expression
for E(b>X�|B = 1) as

E(b>X�|B = 1) =
pX

j=1

�jv1j = �>v1,

where v1 = (v1j)
p
j=1.

For the second term on the right-hand side of Equation 4 we can rewrite the summation in a similar
manner. Again focusing on the case where B = 1,

E(X�|B)E(b|B) =

 
1

n1

X

i2B1

Xi�

! 
1

n1

X

i2B1

bi

!

=

0

@ 1

n1

X

i2B1

pX

j=1

Xij�j

1

A
 

1

n1

X

i2B1

bi

!

= b̄1
1

n1

X

i2B1

pX

j=1

Xij�j .

We again collect the second summation and write it as w1j =
1
n1

P
i2B1

Xij and then we can write
E(X�|B)E(b|B) as

E(X�|B)E(b|B) = b̄1�
>w1,

where w1 = (w1j)
p
j=1.

Now we can write Equation 4 in matrix notation as,

Cov(Ŷ , b|B) = �>v1 � b̄1�
>w1 + �>v0 � b̄0�

>w0, (5)

where v0, w0 and b̄0 are defined equivalently for the set B0. Finally we take the expectation of this
covariance term to get,

E(Cov(Ŷ , b|B)) =
n1

n

�
�>v1 � b̄1�

>w1

�
+

n0

n

�
�>v0 � b̄0�

>w0

�
(6)

We now consider the covariance of Ŷ and B conditional on b which can be written as

Cov(Ŷ , B|b) = E(B>X�|B)� E(X�|b)E(B|b). (7)

The steps for expressing this conditional covariance in matrix notation are similar to the first co-
variance term, however, now we are summing over the continuous-valued variable b. Let k 2 [0, 1]
denote the value of b we are conditioning on and let Gk = {i : bi = k}, nk = |Gk| denote the set of
observations with b = k and the size of the set, respectively.
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Once again we expand the first term on the right-hand side of Equation 7, this time considering the
general case where b = k,

E(B>X�|B) =
1

nk

pX

j=1

�j

X

i2Gk

BiXij = �>vk.

Here we define vk = (vkj)
p
j=1 and vkj = 1

nk

P
i2Gk

BiXij . Following a similar process for the
second term, we can express the term as

E(X�|b)E(B|b) = B̄k�
>wk,

where wk = (wkj)
p
j=1 and wkj = 1

nk

P
i2Gk

Xij. Combining the two terms together we write
Equation 7 as

Cov(Ŷ , B|b) =
X

k

�>vk � B̄k�
>wk. (8)

For the last step we take the expectation of the conditional covariance term to get,

E(Cov(Ŷ , B|b)) =
X

k

nk

n

�
�>vk � B̄k�

>wk

�
. (9)

Now we can write the empirical Lagrangian of Problem 9.A as

bL(�, ~µ) = (y �X�)>(y �X�)� µL

�
(b>b)�1(b>X�)

�

+ µb|B

⇣n1

n

�
�>v1 � b̄1�

>w1

�
+

n0

n

�
�>v0 � b̄0�

>w0

�⌘

+ µB|b

 
X

k

nk

n

�
�>vk � B̄k�

>wk

�
!
.

Solving for � we get the solution,

�⇤ =
1

2
(X>X)�1

h
2X>y + µL

�
(b>b)�1(b>X)

�

� µb|B

⇣n1

n

�
v1 � b̄1w1

�
+

n0

n

�
v0 � b̄0w0

�⌘

� µB|b

 
X

k

nk

n

�
vk � B̄kwk

�
! i

.

C DATA

C.1 L2 DATA DESCRIPTION

We select seven features as predictors in our model based on data completeness and predictive value:
gender, age, estimated household income, estimated area median household income, estimated home
value, area median education, and estimated area median housing value. While L2 provides a handful
of other variables that point to political participation (e.g., interest in current events or number of
political contributions), these features suffer from issues of data quality and completeness. For
instance, only 15% of voters have a non-null value for interest in current events. We winsorize voters
with an estimated household income of greater than $250,000 (4%) of the dataset. Table 1 shows the
distribution of these characteristics, as well as the number of datapoints, for each of the states we
consider. In general, across the six states, a little more than half of voters are female, and the average
age hovers at around 50. There is high variance across income indicators, though the mean education
level attained in all states is just longer than 12 years (a little past high school). Voting rates range
from 53% in Georgia to 62% in North Carolina, while Black voters comprise a minority of all voters
in each state, anywhere from 16% in Florida to 35% in Louisiana and Georgia.
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Feature NC SC LA GA AL FL
(n=6,305,309) (n=3,191,254) (n=2,678,258) (n=6,686,846) (n=3,197,735) (n=13,703,026)

Gender (F) 0.54 0.54 0.55 0.53 0.54 0.53
(0.5) (0.5) (0.5) (0.5) (0.5) (0.5)

Age 49.62 52.2 50.16 48.24 50.27 52.17
(18.76) (18.69) (18.29) (18.07) (18.44) (18.89)

Est. Household 89,788.54 82,172.22 80,770.79 90,622.61 79,919.66 90,145.4
(HH) Income (56,880.78) (53,886.64) (54,579.77) (57,699.76) (52,237.42) (56,786.94)

Est. Area Me- 76,424.55 69,666.4 68,068.86 78,377.2 69,070.63 74,547.99
dian HH Income (32,239.45) (25,911.0) (29,779.93) (35,941.68) (27,226.34) (29,820.33)

Est. Home 300,802.36 233,354.36 199,286.06 273,424.9 201,901.9 360,533.81
Value (202,634.22) (155,221.32) (123,564.26) (176,273.9) (126,255.0) (243,854.1)

Area Median 12.83 12.64 12.36 12.72 12.51 12.65
Education Year (1.13) (0.98) (0.92) (1.12) (0.99) (0.97)

Area Median 206,312.82 193,172.13 170,521.45 206,253.25 162,925.8 237,245.18
Housing Value (106,274.59) (107,225.93) (81,184.86) (112,142.54) (81,467.58) (118,270.22)

Black 0.22 0.26 0.32 0.33 0.27 0.14
Vote in 2016 0.61 0.57 0.63 0.52 0.55 0.57

Table 1: Distribution of features used for L2 across all six states: from left to right, North Carolina,
South Carolina, Louisiana, Georgia, Alabama, and Florida. Each cell shows the mean of each feature
and the standard deviation in parentheses. The last two rows show the proportion of observations that
are black, and voted in the 2016 General Election.

C.2 RACE PROBABILITIES

The decennial Census in 2010 provides the probabilities of race given common surnames, as well as
the probabilities of geography (at the census block group level) given race. In order to incorporate
BIFSG, we also use the dataset provided by Voicu (45) which has the probabilities of common first
names given race.

We default to using BIFSG for all voters but use BISG when a voter’s first name is rare since we
do not have data for them. Consequently, we only use geography instead of BISG when both one’s
first name and surname are rare. On average, around 70% of people’s race across the six states were
predicted using BIFSG, 10% using BISG, and 18% using just geography; < 2% of observations were
dropped because we could not infer race probabilities using any of the three options.

State Accuracy Precision Recall AUC

NC 0.83 0.77 0.30 0.85
SC 0.81 0.83 0.35 0.86
LA 0.82 0.87 0.52 0.89
GA 0.80 0.85 0.49 0.88
AL 0.84 0.89 0.45 0.90
FL 0.89 0.80 0.33 0.86

Table 2: Accuracy, precision, recall (thresholded on 0.5), and AUC for BI(FS)G for all six states
considered in L2.

Table 2 shows results for our BI(FS)G procedure with respect to true race. Accuracy and precision
range from 80-90%, but recall is much lower at around 30-50%. Note, however, that we evaluate
these metrics by binarizing race probabilities; in our estimators, we use raw probabilities instead,
which provide a decent signal to true race. For instance, AUC hovers at 85-90%, while Figure 3 shows
that our predicted probabilities are generally well-calibrated to true probability of Black (although
BIFSG tends to overestimate the probability of Black).
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Figure 3: Calibration plots showing predicted probability of Black (x-axis) versus actual proportion
of Black (y-axis).

D DETAILS ON MEASUREMENT EXPERIMENTS

D.1 VOTER TURNOUT PREDICTION PERFORMANCE

Table 3 shows results for voter turnout prediction on logistic regression and random forest models.
In general, predicting voter turnout with the features given in L2 is a difficult task. Accuracy and
precision hovers at around 70% throughout all experiments, while recall for logistic regression ranges
from 71-82% and random forests perform slightly better at 80-90%. This result is in line with
previous literature on predicting turnout, which suggest that “whether or not a person votes is to
a large degree random” (35). Note again that our predictors rely solely on demographic factors of
voters because those are the most reliable data L2 provides us.

State Model Accuracy Precision Recall AUC

NC LR 0.72 0.75 0.81 0.75
RF 0.72 0.72 0.89 0.76

SC LR 0.67 0.69 0.77 0.71
RF 0.67 0.67 0.86 0.71

LA LR 0.70 0.73 0.84 0.72
RF 0.70 0.71 0.91 0.73

GA LR 0.69 0.70 0.71 0.75
RF 0.69 0.68 0.78 0.75

AL LR 0.67 0.69 0.74 0.72
RF 0.67 0.67 0.80 0.72

FL LR 0.67 0.69 0.76 0.71
RF 0.67 0.67 0.85 0.72

Table 3: Accuracy, precision, recall, and AUC for voter turnout prediction for all six states considered
in L2. We evaluate two different model performances for turnout prediction: logistic regression (LR)
and random forests (RF).

D.2 THE KDC METHOD

Kallus et al. (31) similarly propose a method of finding the tightest possible set of true disparity
given probabilistic protected attributes. A subtle difference between KDC and our method is their
assumptions around the auxiliary dataset. While we consider the case where the test set (with predicted
outcomes and race probabilities) subsumes the auxiliary data (which contains true race), KDC mainly
considers settings where the marginal distributions P(B,Z) and P(Y, Ŷ , Z) are learned from two
completely independent datasets – in particular, to estimate P(B|Z) and P(Ŷ , Y |Z). Therefore, in
order to produce a fairer comparison between the two methods, we instead reconfigure KDC to
incorporate all the data available by treating the auxiliary data as a subset of our test set3; doing so

3Note that a component in calculating the variance of the KDC estimators is r, the proportion of datapoints
from the marginal distribution P(Y, Ŷ , Z) to the entire data. Without considering this independence assumption
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only strengthens KDC because we pass in more information to learn both marginal distributions.
However, their main method does not leverage information on P(Y, Z|B), as we do, so their bounds
are notably wider. We also implement the KDC estimators as originally proposed in Figure 4 but the
results do not change substantially4.

Figure 4: Comparison of different KDC implementations. In dark grey, we have our implementation
that violates the independence assumption in Kallus et al. (31). In light grey, we have KDC’s original
implementation with the independence assumption – nothing substantively changed. The top and
bottom pairs of each state correspond to the estimators from logistic regression (LR) and random
forest (RF) models, respectively. Kallus et al. (31) additionally proposes estimators for estimating DD
where the independence assumption is violated but they rarely bound true disparity (right subfigure),
so we omit these results in our main experiments.

D.3 RANDOM FOREST

We also run experiments on bounding disparity when voter turnout is predicted on random forest
models, as seen in Figure 5. We observe similar results to logistic regression in that our methods
always bound true disparity within 95% confidence intervals, and with bounds that are markedly
tighter than KDC’s. While our bounds are always within 5 p.p. and the same sign as true disparity,
KDC is ranges from -0.5 to 0.5.

E DETAILS ON TRAINING EXPERIMENTS

E.1 EXPERIMENTAL SETUP

As noted in the main text, to enforce fairness constraints during training, we solve the empirical
version of Problem 1.A and its symmetric analogue, which enforces negative covariance conditions

in our calculation, r = 1, but this loosely goes against the assumption that r is closer to 0 in Section 7 of (31).
For simplicity, we attenuate the multiplicative terms in the variance calculations of Equations 25 and 26 to give
KDC the tightest bounds possible. However, as will be seen in Figure 1, KDC’s incredibly large bounds are
mostly attributed to its point estimates rather than their variances, which are quite small.

4In Appendix A.5, (31) do in fact propose an estimator where the independence assumption is violated (i.e.,
precisely the setting we consider where we have race probabilities in our entire data), but it suffers from two key
limitations: a) we are only provided estimators for DD and none other disparity measure, and b) we implemented
the DD estimator and it failed to bound true disparity in both applications we consider – see Figure 4.

28



Figure 5: Comparison of our method of bounding true disparity (blue) to the method proposed in (31)
(grey), using a random forest model to predict voter turnout on L2 data in six states. We evaluate
three disparity measures: demographic disparity (DD), false positive rate disp. (FPRD), and true
positive rate disp. (TPRD). The grey dot represents true disparity. Both methods always bound true
disparity within their 95% standard errors.

and bDL
µ as a (negative) lower bound. For both of these problems we run the primal-dual algorithm

described in Algorithm 1 for T iterations and then select the iteration from these two problems with
the lowest loss on the training data while satisfying the constraints on the training and labeled subset.

We use the Chamon et al. (14) method with two different model types under the hood, neural networks
and logistic regression. Both types of models are implemented in Pytorch. Our neural network models
consist of a single hidden layer of 8 nodes, with a ReLu activation.

E.2 CSL (CHAMON ET AL.)

We implement our constrained problem using the official Pytorch implementation provided by (14)5

for both a logistic regression model as well as a shallow neural network. We run the non-convex
optimization problem for 1,000 iterations with a batch size of 1,024 and use Adam (32) for the
gradient updates of the primal and dual problems with learning rates 0.001 and 0.005, respectively.
We provide further explanation of the mathematical background to the Chamon et al. (14) method in
Appendix B above.

E.3 THE METHOD OF WANG ET AL.

Wang et al. (46) propose two methods to impose fairness with noisy labels: 1) a distributionally
robust optimization approach and 2) another optimization approach using robust fairness constraints,
which is based on Kallus et al. (31). We use code provided by Wang et al. (46)6 to implement only
the second method because it directly utilizes the protected attribute probabilities and yields better
results.

We tune the following hyperparameters: ⌘✓ 2 {0.001, 0.01, 0.1} and ⌘� 2 {0.25, 0.5, 1, 2}, which
correspond to the descent step for ✓ and the ascent step for � in a zero-sum game between the ✓-player
and �-player, see Algorithm 1 and 4 of Wang et al. (46). Finally, we also tune ⌘w 2 {0.001, 0.01, 0.1},
which is the ascent step for w (a component in the robust fairness criteria), see Algorithm 3 of Wang et
al. (46). In order to choose the best hyperparameters, we use the same data as outlined in Section 4.3.1
(80/20 train/test split), but use a validation set on 30% of the training data (i.e., 24% of the entire
data). Note that as implemented in the codebase, Wang et al. (46) chooses the hyperparameter that
results in the lowest loss while adhering to the fairness constraint with respect to true race. Since we

5https://github.com/lfochamon/csl
6https://github.com/wenshuoguo/robust-fairness-code
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assume access to true race on a small subset (1%) of the data, we only evaluate the fairness constraint
on 1% of the validation set.

E.4 THE METHOD OF MOZANNAR ET AL.

Mozannar et al (36) primarily focus on the setting of training a fair model with differentially private
demograpghic data, which poses assumptions which are infeasible for our setting—however, the
authors do propose a potential extension of their method to handle a case that matches ours: training
a fair moodel with incomplete demographic data. The authors do not discuss this in detail or provide
the code for this extension, so we modify the code Mouzannar et. al. provide for their paper (36) to
implement the extension of their approach, detailed in Section 6 of their paper that is relevant for our
setting. This involves using FairLearn’s exponentiated gradient method changed so that it will only
update for its fairness-related loss on data points in the labeled subset, but allows classification loss to
be calculated over the entire training set.

We note that Mozannar’s method guarantees fairness violation 2(epsilon + best_gap) (2) on their test
set where epsilon is set by the user, but gives no method of approximating best_gap. Thus, we set
epsilon = ↵/2 (i.e. assume best_gap=0) in our experiments in order to come as close as possible to
their method providing similar fairness bounds to ours on the test set.

E.5 SATISFYING CONSTRAINTS AND BOUNDING TRUE DISPARITY ON TRAINING SET

In Table 4, we present a summarized description of the results of various training runs in terms of
the satisfaction of covariance constraints on the labeled subset and meeting our desired bound ↵
on bDL

µ on the training set, as well as whether or not we actually bound true disparity on the test
set.Specifically, we show the rates at which we meet different constraints and the rate at which we
actually bound disparity on the test set.

As we see in Table 4, we meet our desired covariance condition on the labeled subset, which we use
to enforce these conditions, approximately 81% of the time, and we satisfy the condition that bounds
bDL
µ by ↵ approximately 75% of the time. This is a side effect of the near-feasibility of the Chamon et

al. method (13).

Note that not satisfying the bDL
µ condition does not mean that we do not bound true disparity; it only

means that we do not bound true disparity within our desired bounds. It is still possible that we bound
true disparity, on a slightly larger bound—which we see is the case in almost 97% of instances on the
test set.

We note that we mistakenly misrepresented our results in the main paper, and will fix the error to
match our full results in this Appendix as soon as we have access to updating the main draft: we
stated that we always meet the covariance constraint on the training set, when in fact the relevant test
is the labeled subset, and we meet the bounds approximately 81% of the time. We also stated that we
always bound the true disparity on the test set, when in fact we bound it approximately 97% of the
time.

% Cov Match (aux) % Dl (train) < Disp. bound % Estimators bound true disp. (test)

80.83 75.0 96.67

Table 4: We present the rate of satisfaction of the covariance bounds in the labeled sunbset, as well as
the rate at which we satisfy the bound on bDL

µ , our linear estimate of disparity, on the training set, and
the rate at which we bound true disparity within our error bounds on the test set. We note that lack of
satisfaction of our bound on the training and labeled subset simply means that the Chamon et al. (14)
method was only able to find a near feasible solution for certain rounds of certain problems.

E.6 RESULTS ON ORACLE AND NAIVE

In Figure 6, we present the mean and standard deviation of the resulting disparity and on the test
set, as well as classifier accuracy on the test set, of experiments with our method compared to an
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Figure 6: Mean and standard deviation of resulting disparity (top, y-axis) and accuracy (bottom,
y-axis) on the test set after enforcing the target fairness bounds (x-axis) on our method (blue); using
ground truth race on the entire data, i.e., “oracle” model (red); and using only the estimated race
probabilities, thresholded to be binary (brown) over ten trials. On the top row, we fade bars when the
mean does not meet the desired bound, which is indicated by the dotted blue lines. The dashed grey
line in all plots indicates disparity from the unconstrained model.

oracle model, that has access to ground truth race on the whole dataset and uses these to enforce a
constraint directly on ground truth disparity during training, as well as a naive model which simply
enforces a constrained directly on the observed disparity of the noisy labels, without any correction.
(Namely, in this technique, we simply threshold the probabilistic predictions of race on 0.5 to make
them binary, and use as race labels.) As a whole, we perform relatively comparably to the oracle,
except on FPRD. We always outperform the naive method in terms of reducing disparity, which is to
be expected. We typically perform within 2 percentage points of accuracy from the oracle, (except
for the 0.04 and 0.06 bounds on DD and the 0.04 bound on TPRD). We suggest the accuracy results
in this figure show the fairness-accuracy trade-off in this setting: when we dip below the oracle in
terms of accuracy, it is most often because we are bounding disparity lower than the oracle is (e.g.,
on the 0.04 bounds in DD or TPRD). And, while we do not outperform the naive method in terms of
accuracy, we consistently out-perform it in terms of disparity.

E.7 RESULTS ON NEURAL NETWORK MODELS

We describe the outcome of our shallow neural network experiments in Figure7. We describe details
on the optimization of the neural networks in Section E.1. We note that for these experiments, we do
not compare to Wang et al. (46) as they do not provide a built-in way to work with neural networks
in their code. Although we do not reach the desired disparity bounds as often when using neural
networks, we consistently out-perform all methods except for the oracle on disparity reduction, as
the guarantees on the labeled subset do not generalize, and enforcing constraints on the thresholded
labels do not take the protected attribute label noise into account. In this case, we also outperform the
labeled subset on accuracy. This may be because it takes a larger amount of data to effectively train a
neural network than logistic regression models, so the accuracy does not saturate with the labeled
subset.

F ADDITIONAL EXPERIMENTS: COMPAS

In this section, we present a suite of additional experiments we run on the COMPAS (5) dataset.
The COMPAS algorithm is used by parole officers and judges across the United States to determine
a criminal’s risk of recidivism, or re-committing the same crime. In 2016, ProPublica released a
seminal article (5) detailing how the algorithm is systematically biased against Black defendants.
The dataset used to train the algorithm has since been widely used as benchmarks in the fair machine
learning literature.

31



Figure 7: Mean and standard deviation of resulting disparity (top, y-axis) and accuracy (bottom,
y-axis) on the test set after enforcing the target fairness bounds (x-axis) on our method (blue); only
using the labeled subset with true labels (orange); using ground truth race on the entire data, i.e.,
“oracle” model (red); and using only the estimated race probabilities, thresholded to be binary (brown)
over ten trials. On the top row, we fade bars when the mean does not meet the desired bound, which
is indicated by the dotted blue lines. The dashed grey line in all plots indicates disparity from the
unconstrained model.

F.1 DATA DESCRIPTION

We use the eight features used in previous analyses of the dataset as predictors in our model: the
decile of the COMPAS score, the decile of the predicted COMPAS score, the number of prior crimes
committed, the number of days before screening arrest, the number of days spent in jail, an indicator
for whether the crime committed was a felony, age split into categories, and the score in categorical
form. We process the data following Angwin et al. (5), resulting in n = 6, 128 datapoints. Table 5
outlines the feature distribution of the dataset.

F.2 RACE PROBABILITIES

We generate estimates of race (Black vs. non-Black) based on first name and last name using a LSTM
model used in (49) that was trained on voter rolls from Florida. The predictive performance and
calibration of these estimates is displayed in Table 6 and Figure 8, respectively. In general, the results
are quite reasonable; accuracy is at 73% while the AUC is 86%. The probabilities are somewhat
calibrated, although the LSTM model tends to overestimate the probability of Black.

Figure 8: Calibration plot showing the predicted probability a person in the dataset is Black (x-axis)
versus the actual proportion of Black people in the dataset (y-axis) for COMPAS.
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Feature COMPAS
(n=6,128)

Decile Score 4.41
(2.84)

Predited Decile Score 3.64
(2.49)

# of Priors 3.23
(4.72)

# of Days Before Screening Arrest -1.75
(5.05)

Length of Stay in Jail (Hours) 361.26
(1,118.60)

Crime is a Felony 0.64
(0.48)

Age Category 0.65
(0.82)

Risk Score in 3 Levels 1.08
(0.66)

Black 0.51
Two Year Recidivism 0.45

Table 5: Distribution of features used for COMPAS. Each cell shows the mean of each feature and
the standard deviation in parentheses. The last two rows show the proportion of observations that are
Black and who recidivized within two years.

Accuracy Precision Recall AUC

0.73 0.86 0.56 0.86

Table 6: Accuracy, precision, recall (thresholded on 0.5), and AUC for predicting probability a person
is Black in the COMPAS dataset.

F.3 MEASUREMENT EXPERIMENTS

We first compare our method of bounding disparity to that of KDC. We train an unconstrained logistic
regression model with a 80/20 split on the data, i.e., n = 1, 226 in the test set. Then, we construct
the labeled subset by sampling 50% of the test set (n = 613) and use that to check out covariance
constraints. We also compute D̂L and D̂P with standard errors on the entire test set, as specified by
the procedure in Appendix Section D.

Our main results are displayed in Figure 9. Similar to the L2 data, our bounds are consistently tighter
than KDC, albeit to a lesser extent in this case since the COMPAS dataset is significantly smaller.
Despite this fact, we emphasize that, unlike KDC, our estimators are always within the same sign as
the true disparity, barring the standard errors which shrink as the data grows larger.

Accuracy Precision Recall AUC

0.69 0.69 0.57 0.74

Table 7: Accuracy, precision, recall (thresholded on 0.5), and AUC for predicting two-year recidivism
on the COMPAS dataset using a logistic regression model.
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Figure 9: Comparison of our method of bounding true disparity (blue) to the method proposed in (31)
(grey), using a logistic regression model to predict two-year recidivism on the COMPAS dataset. We
compare results across three disparity measures: demographic disparity (DD), false positive rate disp.
(FPRD), and true positive rate disp. (TPRD). The grey dot represents true disparity. Both methods
always bound true disparity within the 95% standard errors.

F.4 TRAINING EXPERIMENTS

We compare our training method to Wang et al. (46), Mozannar et al. (36) and a baseline where we
directly enforce disparity constraints on only the labeled subset. We run 10 trials – each corresponding
to different seeds – and report the mean and standard deviation of the accuracy and disparity on the
test set in Figure 10. For each trial, we split our data (n = 6, 128) into train and test sets, with a 80/20
split. From the training set, we subsample the labeled subset so that it is 10% of the total data (around
n = 613). We chose a higher proportion of the data compared to L2 to adjust for the smaller dataset.
The remaining details are as described in Section 4.3.1. Note that the resulting disparities for the
unconstrained model differ among the three fairness metrics. On DD and TPRD, the unconstrained
model resulted in a 0.28-0.29 disparity, but it drops to 0.21 for FPRD. We adjusted our target fairness
bounds accordingly.

Figure 10: Mean and standard deviation of resulting disparity (top, y-axis) and accuracy (bottom,
y-axis) on the test set after enforcing the target fairness bounds (x-axis) on our method (blue); Wang
et al.’s method (green); Mozannar et al.’s method (red) and only using the labeled subset with true
labels (orange). On the top row, we fade bars when the mean does not meet the desired bound, which
is indicated by the dotted blue lines. The dashed grey line in all plots indicates disparity from the
unconstrained model.

In Figure 10, we see that our method again is able to consistently meet the desired disparity bound
across all experiments, as opposed to the Mozannar et al. method (red) or the labeled subset method
(orange), which only meet the constraint 3 out of 12 times each. While the Wang et al. method
does meet the disparity bound at each experiment where the comparison is possible (i.e., excluding
DD), in the case of FPRD, there is a steep accuracy cost. In the case of DD, our method has worse
accuracy bounds likely due to actually meeting the disparity bounds (the accuracy is comparable in
the experiment where all three method reach the DD constraint, i.e. 0.24). In TPDR an FPRD, our
method performs largely comparably to the other methods, with the exception of the low accuracy of
Wang et al. in FPRD.
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G ADDITIONAL EXPERIMENTS: SIMULATION STUDY

We note that the utility of our method is often dependent upon the size of the subset of the data labeled
with the protected attribute—if this subset is relatively large, then (depending on the complexity of the
learning problem) it may be sufficient to train a model using the available labeled data. Symmetrically,
if the labeled subset is exceedingly small, the enforcement of the covariance constraints during training
may not generalize to the larger dataset. To characterize the regimes under which our method may be
likely to perform well relative to others, we empirically study simulations that capture the essence of
the situation. We study the utility of our method in comparison to only relying on the labeled subset
to train a model along two axes: data complexity, which we simulate by adjusting the number of
features, and size of the labeled subset.

Overall, we find that there exists a regime, even in simple problems, where there is insufficient data
for the labeled subset to effectively bound disparity to the desired threshold. We find that the more
complex the data is, the larger this regime is—with the most complex setting in our simulations (50
features) suggesting that the labeled subset technique does not converge even when the size of the
labeled subset is 10,000 samples, or 20% of the overall dataset.

G.1 SIMULATION DESIGN

In this section, we describe the design of our simulation used for additional experiments. While
stylized, our simulation has the advantage that we can vary key features of the setting like the
dimensionality and distribution of the data, the size of the labeled and unlabeled datasets, the
complexity of the relationship between the features and the outcome, and so on. To be useful,
however, we must be able to ensure that the key conditions of our method are met by the data-
generating process. To ensure this while also allowing for the tuneability and flexibility we require,
we settle on a hierarchical model specified by parameterized components that are individually simple
but can serve as building blocks. In particular, the model building blocks consist of:

• Primitive features Z1, ..., Zm

• Conditional probability b of being Black a function of Z1...Zm

• Realized status as Black or not B drawn from Bernoulli(b)

• Downstream features X1, ...Xp, a function of Z1, ..., Zm and B

• Score for outcome P (Y ), a function of downstream features X1...Xp

• Outcome Y ,which is an indicator of P (Y ) at threshold ⌧ with some noise probability of
being flipped 0.1

The primitive features Z1, ..., Zp intuitively represent the variables that correspond to proxies in
BIFSG, e.g. geographic locations. They serve a dual role: first, as in BIFSG, they give rise to the
probability that an individual is Black. Second, since the secondary features X are a function of
Z, they affect the distribution of these features; thus downstream, they affect P (Y ) and ultimately
Y , but do not directly enter into P (Y ) or Y themselves. This corresponds to how geography and
other variables which are correlated to race may also be correlated to many learning-relevant features,
even when not directly entering causing the outcome of interest themselves. Note that in addition to
primitives affecting P (Y ) through each X , we allow for B to affect P (Y ). This corresponds to how
there may be associations between group membership and features which affect the outcome of the
interest via the downstream features even if the group status is not directly relevant tot he outcome of
interest.

These relationships are not fully specified by the description in the text above, of course, so we
provide details of the selected functional forms in Table 8. Figure 11 also summarizes the features
and their associative relationships visually. This visualization, along with the language of directed
acyclic graphs (DAGs), allows us to more easily reason about whether the covariance conditions are
likely to be satisfied in our model, at least for the underlying outcome.
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Feature Interpretation Functional Form

Zj Primitive Feature Zj ⇠ U [0, 1], j = 1, ...m
Xi Secondary Feature Xi =

Phk

k=1 ciX
k
i , i = 1, ...p

hk Degree hk ⇠ U{0, 1, 2, 3}
ci Coefficients ci ⇠ U [0, 1], i = 1, ...p
b Probability Black b = max{0,min{1, b̃}},

b̃ ⇠
(
N (0.1, .04) 1

m

Pm
j=1 Zj  ⌧b

N (0.9, .04) 1
m

Pm
j=1 Zj > ⌧b

⌧b Threshold on b (based Irwin-Hall distribution) 1
2 + 1.2

p
1/(12m)

B Indicator for Black B ⇠ Bernoulli(b)
P̃ (Y ) Score of Outcome P̃ (Y ) =

P
i

⇥
diXk

i + diBB
⇤

P (Y ) Normalized Score of Outcome P (Y ) = P̃ (Y )�min(P̃ (Y ))

max(P̃ (Y ))�min(P̃ (Y ))

Y Realized Outcome Y ⇠
⇢

Bernoulli(0.1) P (Y )  ⌧
Bernoulli(0.9) P (Y ) > ⌧

di Coefficients for features X di ⇠ U [0, 1]
diB Coefficients for indicator for Black diB ⇠ U [0, uB ]

Table 8: Description of several variables we use in our simulation study and their functional forms.
For ease of notation, we omit the index denoting individuals in the dataset. Unspecified constants
were selected by inspection to match key indicators across scenario and are specified in Table 8.

Z1 Z2 ... Zp

b

B

P (Y )

Y

X1 X2 ... Xk

Figure 11: A heuristic depiction of the data generating process for our simulations. Nodes indicate
random variables, and edges indicate (causal) relationships between nodes. Importantly, relationships
are not necessarily linear.
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Figure 12: We present a three by three figure showing the test disparity of the our disparity reduction
method when compared with relying on only the labeled subset to reduce disparity by directly
enforcing a constraint on the protected attribute labels. The rows correspond to datasets of increasing
sizes (number of features from 10 to 50), indicating problems of increasing complexity. The columns
correspond to the size of the overall dataset, ranging from 5,000 to 50,000 samples. The x-axis
shows the percentage of the total dataset is decicated to the labeled subset, and the y-axis denotes the
percentage disparity between the two groups calculated on the test set. The blue graphs correspond to
our method, and the orange to the labeled subset method. The red dashed line is the desired disparity
bound.

Figure 13: We present a three by three figure showing the test accuracy of the models created using
our disparity reduction method when compared with relying on training models only on the labeled
subset and reducing disparity by directly enforcing a constraint on the protected attribute labels.
The rows correspond to datasets of increasing sizes (number of features from 10 to 50), indicating
problems of increasing complexity. The columns correspond to the size of the overall dataset, ranging
from 5,000 to 50,000 samples. The x-axis shows the percentage of the total dataset is dedicated to the
labeled subset, and the y-axis denotes the test accuracy of the models. The blue graphs correspond to
our method, and the orange to the labeled subset method.
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G.2 EXPERIMENTAL SETUP

Following the notation above, we have p to be the number of features X in our data, and let n be the
number of datapoints. We run experiments for p 2 {10, 20, 50} and n 2 {5000, 10000, 50000}. For
each p, we fix the parameters in the data generation process and realize 50,000 datapoints. Refer to
Table 9 for a list of parameter values, which differ slightly for each p to control demographic disparity
on the dataset at around 0.25-0.28. For experiments n 2 {5000, 10000}, we simply randomly
subsample from the 50,000 dataset.

p m ⌧ uB

10 4 0.4 0.05
20 5 0.4 0.1
50 10 0.425 0.2

Table 9: List of parameters in the data generation process for each p, the number of secondary features
X in the data. m corresponds to the number of primitive features Z, ⌧ is the threshold for P (Y ),
while uB is the upper bound for the uniform distribution to generate diB , see Table 8.

The last dimension we tune is the size of the labeled subset (measured by the percentage of n), which
from hereon we refer to as e. For each n, we specified slightly different e as outlined in Table 10. This
is to account for the fact that, for instance, one might need 40% of 5,000 datapoints with protected
attribute labels to learn a predictor that reaches the target disparity bound. On the other hand, using
20% of 50,000 datapoints might be more than enough, especially considering the exponentially higher
costs to query thousands of people’s protected attributes.

n e

5,000 {2, 4, 6, 8, 10, 15, 20, 30, 40}
10,000 {1, 2, 3, 4, 5, 7, 10, 20, 30}
50,000 {0.5, 1, 2, 3, 4, 5, 7, 10, 20}

Table 10: Suite of experiments varying percentage of the data taken as labeled subset (e) by the size
of the full dataset (n).

We prototype these simulation experiments on demographic parity. For each experiment, we split the
data 80/20 into train/test data, then repeat 10 times with different seeds. We run both our method and
the labeled subset method, evaluating disparity and accuracy on the test set.

G.3 RESULTS

We present our results in Figures 12 and 13. In Figure 12, we see that while increasing the size of the
labeled subset can sometimes lead to a regime where training on the labeled subset alone can produce
a model which comes close to (or in one case–n = 50, 000, p = 10, reaches) the desired disparity
bound, for the most part, even with a large labeled subset, the mean of the disparity over 10 trials
is above the desired disparity threshold. Meanwhile, our method stays below the desired disparity
threshold across all nine experiments.

As we can see by looking at the rows from top to bottom, the complex (i.e., more features in the data)
the problem is, the more data is necessary for the labeled subset to get close to the desired disparity
bound. Thus, our simulation experiment sheds light on the fact that model applications with small
amounts of labeled data, and more complex data, are particularly well-suited for our method.
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