
APPENDIX

Algorithm 1 Prompting with Iterative Visual Optimization

1: Given: image I , instruction `, action space A, max
iterations N , number of samples M

2: Initialize: A(0) = A, i = 0
3: while i < N do
4: Sample actions a1:M from PA(i)

5: Project actions into image space and textual labels(
Î , w1:M

)
= Ω(I, a1:M)

6: Query VLM PVLM
(
w

∣∣ Î , `) to determine the most
promising actions

7: Fit distribution PA(i+1) to best actions
8: Increment iterations i← i+ 1
9: end while

10: Return: an action from the VLM best actions

A. Additional Related Work

Prompt optimization. The emergence of few-shot in
context learning within LLMs [5] has lead to many break-
throughs in prompting. Naturally prompt optimization has
emerged as a promising approach, whether with gradi-
ents [28], [29] or without gradients, e.g., with human engi-
neering [27] or through automatic optimization in language
space [66]. These automatic approaches are most related
to our work and have shown that language-model feed-
back [39], answer scores [55], [58], [66], and environment
feedback [49] can significantly improve the outputs of LLMs
and VLMs. A major difference between these prior methods
and ours is that our iterative prompting uses refinement of
the visual input, by changing the visual annotations across
refinement steps. We optimize prompts “online” for a specific
query rather than offline to identify a fixed prompt, and show
that our iterative procedure leads to more precise spatial
outputs.

Foundation models for robot reasoning and control.
In recent years, foundation models have shown impressive
results in robotics from high-level reasoning to low-level
control [13], [19]. Many early works investigated robotic
reasoning and planning regimes where LLMs and language
outputs are well suited [1], [8], [21], [23], [31], [32], [34],
[41], [47], [51], [63]. To apply foundation models to control
tasks, several promising approaches have emerged. One line
of work has shown that foundation-model-selected subgoals
are an effective abstraction to feed into policies for naviga-
tion [7], [12], [14], [20], [43], [44] and manipulation [10],
[45]. Another abstraction that has been shown to be effec-
tive for control is LLM generated rewards, which can be
optimized within simulation [22], [35], [62]. Others have in-
vestigated code writing LLMs to directly write code that can
be executed via control and perceptive primitives [30], [48],
[54]. On simple domains, even few-shot prompting language
models has been shown to be capable of control [36], [50],
while finetuned foundation models have yielded significantly
more capable VLM-based controllers [4], [15], [25], [38],
[42], [45]. Unlike these works, we show how VLMs can be

applied zero-shot to low-level control of multiple real robot
platforms.

B. Robotic Embodiments

Mobile Manipulator Navigation. Shown in Figure 3 (a),
we use a mobile manipulator platform for navigation tasks.
We use the image from a fixed head camera and annotate
the image with arrows originating from the bottom center
of the image to represent the 2D action space. After PIVOT
identifies the candidate action in the pixel space, we then
use the on-board depth camera from the robot to map it to a
3D target location and command the robot to move toward
the target (with a maximum distance of 1.0m). We evaluate
PIVOT on both a real robot and on an offline dataset. For
real robot evaluation, we designed four scenarios where the
robot is expected to reach a target location specified either
through an object of interest (e.g. find apple) or through
an indirect instruction (e.g. find a place to take a nap).
For offline evaluation, we created a dataset of 60 examples
from prior robot navigation data with labeled ground truth
targets. More details on the task and dataset can be found in
Appendix Section F.

Mobile Manipulator Manipulation. Shown in Figure 3
(b), we use a mobile manipulator platform for manipulation
tasks. We use the image from a fixed head camera and
annotate the image with arrows originating from the end-
effector in camera frame, for which each arrow repre-
sents a 3D relative Cartesian end-effector position (x, y, z).
To handle the z-dimension height, we study two settings:
one where height is represented through color grading (a
red to blue spectrum) and one where the arm only uses
fixed-height actions. Gripper closing actions are not shown
as visual annotations but instead expressed through text
prompts. Note that although the end-effector has rotational
degrees of freedoms, we fix these due to the difficulty
of expressing them with visual prompting, as is discussed
in Appendix L. We evaluate PIVOT on both real robot
and an offline dataset. For real robot evaluation, we study
three tabletop manipulation tasks which require combining
semantic and motion reasoning. Success criteria consists of
binary object reaching success, number of steps taken for
successful reaching trajectories, and grasping success when
applicable. For offline evaluation, we use demonstration data
from the RT-X mobile manipulator dataset [38]. We sample
10 episodes of pick demonstrations for most of our offline
evaluations, and 30 episodes of move near demonstrations
for our interaction Figure 7. More details on the results can
be found in Appendix Section H.

Franka. Shown in Figure 3 (c) we use the Franka for
manipulation. We use the image from a wrist mounted cam-
era and annotate the image with arrows originating from the
center of the camera frame, for which each arrow represents
a 3D relative Cartesian end-effector position (x, y, z, where
the z dimension is captured with a color spectrum from red
to blue). We examine both pick tasks and place tasks, with
5 objects for each task. More details on the results can be
found in Appendix Section J.

Before
Optimization

After
Optimization

Step 2

Step 3

Step 4

Step 1

Step 1 Step 2 Step 3 Step 4

Before
Optimization

After
Optimization

Step 2

Step 3

Step 4

Step 1

Step 2

Step 3

Step 1
“Left Skier” “Boy in Blue”

(a) Navigation: “Help me find a place to
sit and write”

Before
Optimization

After
Optimization

Step 2

Step 3

Step 4

Step 1

Step 1 Step 2 Step 3 Step 4

Before
Optimization

After
Optimization

Step 2

Step 3

Step 4

Step 1

Step 2

Step 3

Step 1
“Left Skier” “Boy in Blue”

(b) Manipulation: “Pick up the coke
can”

Before
Optimization

After
Optimization

Step 2

Step 3

Step 4

Step 1

Step 1 Step 2 Step 3 Step 4

Before
Optimization

After
Optimization

Step 2

Step 3

Step 4

Step 1

Step 2

Step 3

Step 1
“Left Skier” “Boy in Blue”

(c) RefCOCO spatial reasoning

Fig. 5: (a) An example rollout on a real-world navigation task. We use three parallel calls to generate samples. (b) An example rollout on
a real-world manipulation task, where actions selected by PIVOT with 3 iterations are directly executed at every step. PIVOT improves the
robustness and precision of robot actions, enabling corrective behavior such as in Step 2. (c) An example rollout on RefCOCO questions.

RAVENS [64]. Show in Figure 3 (d), we use the RAVENS
simulation domain for pick and place manipulation. We
use the image from an overhead camera and annotate the
image with pick and place locations, following the action
representation in Zeng et al. [64]. This action space allows us
to evaluate higher-level action representations. More details
on the results can be found in Appendix Section I.

C. Zero-shot Visual Grounding.

In addition to robotic control tasks, we also examine
PIVOT for reference localization tasks from RefCOCO [61],
which evaluates precise and robust visual grounding. To this
end, we evaluate GPT-4V with 3 rounds of PIVOT on a
random subset of 1000 examples from the RefCOCO testA
split. We find strong performance even in the first iteration
with modest improvement over further iterations. Prompts
used are in Appendix M and results are in Figure 8 and
examples in Figure 5.

D. Experiments on Prompting.

Text prompts. To understand the effect of different text
prompts, we experiment with several design choices, with
numbers reported in Appendix H. We investigate the role of
zero-shot, few-shot, chain of thought, and direct prompting;
we find that zero-shot chain of thought performs the best,
though few-shot direct prompting is close and more token
efficient. We also experiment over the ordering of the image,
preamble, and task; finding that preamble, followed by
image, followed by task performs best, though by a small
margin.

Visual prompts. Aspects of the style of visual prompts
has been examined in prior works [46], [59], such as the

color, size, shading, and shape. Herein, we investigate aspects
central to PIVOT– the number of samples and the importance
of the visual prompt itself. An ablation over the number of
samples is shown in Figure 6 where we note an interesting
trend: more samples leads to better initial answers, but worse
optimization. Intuitively, a large number of samples supports
good coverage for the initial answer, but with too many
samples the region of the image around the correct answer
gets crowded and causes significant issues with occlusions.
For our tasks, we found 10 samples to best trade off
between distributional coverage and maintaining sufficient
visual clarity.

E. Scaling

We observe that PIVOT scales across varying sizes of
VLMs on the mobile manipulator offline evaluation (results
measured in terms of cosine similarity and L2 error between
PIVOT and demonstration data ground truth in Figure 9).
In particular, we compare PIVOT using four sizes of the
Gemini family of models [16] which we labeled a to d, with
progressively more parameters. We find that performance
increases monotonically across each model size. Although
there are still significant limitations and capabilities gaps,
we see this scaling as a promising sign that PIVOT can
leverage next-generation foundation models with increasing
model size and capabilities [16].

F. Mobile Manipulator Navigation Offline Evaluation

Dataset. We create an offline dataset of 60 examples using
images collected from the on-robot camera sensor by walking
the robot in an indoor environment. For each example, we
provide an instruction and a associated location in the image

Iter 1 Iter 2
Steps

0.0

0.1

0.2

0.3

0.4

0.5
2D

 C
os

in
e

Si
m

ila
rit

y

5 samples
10 samples
20 samples

(a) Number of samples

Text
prompting

PIVOT
0.0

0.1

0.2

0.3

0.4

0.5

2D
 C

os
in

e
Si

m
ila

rit
y

Manipulation

(b) Text-only baseline

0 1 2
Optimization Iterations

1.0

0.5

0.0

0.5

1.0

2D
 C

os
in

e
Si

m
ila

rit
y

Average 2D
 Cosine Similarity

(c) Iterations

w/ parallel w/o parallel
1.0

0.5

0.0

0.5

1.0

2D
 C

os
in

e
Si

m
ila

rit
y

Average 2D
 Cosine Similarity

(d) Parallel calls

Fig. 6: Offline evaluation results for manipulation tasks with cosine
similarity (higher is better).

space as the target. We categorize our tasks into three types:
1) in-view finding, where the robot is tasked to approach an
object within the line of sight, 2) semantic understanding,
where the instruction implicitly refers to an object in view
3) out-of-view finding, where the object of interest is not
visible from the current view with arrow annotations, but
can be seen in past images from different locations. Figure
10 shows examples of the three task categories.

Evaluation Results. Table III shows the detailed evalua-
tion results of PIVOT on the offline navigation dataset. We
measure the accuracy of the PIVOT output by its deviation
from the target point in image space normalized by the image
width and break it down into the three task categories. We
report mean and standard deviation for three runs over the
entire dataset.

As seen in the table, by using the parallel call to robus-
tify the VLM output we see significant improvements over
running VLM only once (0 parallel) and running PIVOT
for multiple iterations also improves accuracy of the task.
However, increasing the parallel calls or the iteration number
further did not achieve notably better performance.

We compared our proposed approach, which reasons in
image-space with image annotations, with reasoning in text
without annotated images. In this text-based baseline, we
provide the same image and navigation query to the VLM,

TABLE III: Navigation offline evaluation measured in L2 loss
(lower the better).

In-View Tasks

1 iter 2 iter 3 iter

0 parallel 0.21± 0.002 0.21± 0.007 0.19± 0.007
2 parallel 0.19± 0.004 0.2± 0.012 0.18± 0.005
3 parallel 0.19± 0.003 0.17± 0.007 0.17± 0.009

Semantic Tasks

1 iter 2 iter 3 iter

0 parallel 0.23± 0.012 0.2± 0.006 0.19± 0.025
2 parallel 0.26± 0.015 0.21± 0.02 0.2± 0.02
3 parallel 0.21± 0.01 0.19± 0.04 0.19± 0.01

Out-of-View Tasks

1 iter 2 iter 3 iter

0 parallel 0.44± 0.04 0.38± 0.015 0.39± 0.032
2 parallel 0.38± 0.001 0.39± 0.02 0.39± 0.02
3 parallel 0.37± 0.01 0.38± 0.026 0.39± 0.05

but we ask the VLM to imagine that the image is split into
3 rows and 3 columns of equal-sized regions and output
the name of one of those regions (e.g. “top left”, ”bottom
middle”). We then compute the distance between the center
of the selected region to the ground truth target point. Given
that we are not performing iterative optimization with this
text baseline, we compare its results against PIVOT with
just 1 iteration and 0 parallel. See results in Table IV. For
GPT-4V, the text baseline incurs higher mean and standard
deviation of errors across all tasks.

TABLE IV: Reasoning with Image Annotations vs. with Text
for Navigation offline evaluations measured in L2 loss (lower the
better).

Method In-View Semantic Out-of-View

Image 0.21± 0.002 0.23± 0.012 0.44± 0.04
Text 0.26± 0.15 0.35± 0.14 0.46± 0.31

G. Mobile Manipulator Manipulation Online Evaluation

In addition to the quantitative evaluation trials for the
real-world manipulation experts described in Section IV-B,
we also showcase additional evaluation rollouts in Figure 11.
Qualitatively, we find that PIVOT is able to recover from
inaccuracies in action prediction, such as those which may
result from imperfect depth perception or action precision
challenges.

H. Mobile Manipulator Manipulation Offline Evaluation

Using the offline mobile manipulator dataset described in
Section B, we additionally ablate the text prompt herein. In
Figure 13 we consider the performance of zero-shot and few-
shot prompting as well as chain of thought [52] and direct
prompting. We find in general that neither is a panacea,
though zero-shot chain of thought performs best, few-shot

Episode progress

1.0

0.5

0.0

0.5

1.0
2D

 C
os

in
e

Si
m

ila
rit

y

Average 2D Cosine Similarity

(a) Easy scenario (b) Hard scenario

Fig. 7: PIVOT performance over “move near” trajectories, which pick up an object and move them near another. Initially performance is
high, but decreases as the robot approaches the grasp and lift (due to objects being obscured and the VLM not understanding the subtlety
of grasping). After the grasp, the performance increases as it moves to the other object, but again decreases as it approaches.

Fig. 8: RefCOCO quantitative results. (Left) Normalized distance
between the center of the ground truth bounding box and the
selected circle. (Right) Accuracy as measured by whether the
selected circle lies within the ground truth bounding box.

direct prompting performs similarly and is significantly more
token efficient. In Figure 14 we consider the effect that
the order of the prompt has on performance. The distinct
elements of the prompt are the preamble (which describes the
high level goal), the task (which describes the specific task
the robot is attempting to perform), and the image. Examples
of these prompts can be seen in Appendix Section M. We find
a small amount of variation in performance between orders,
with preamble, image, and task resulting in the highest
performance. We hypothesize that this order most closely
mirrors the training mixture.

To illustate the limitation of our method described in Fig. 7
better, we visualize two episodes of the mobile manipulator
manipulation offline eval in Fig. 12. The figure shows that at
the beginning of the episode where it is clear where to move,
our method tend to generate accurate predictions while in
the middle of the episode where there are interactions, our
method struggles to generate correct actions.

Fig. 12: Two episodes of mobile manipulator manipulation offline
evaluation. It shows our method can generate reasonable actions
following the arrow annotations.

I. RAVENS Online Simulation Evaluation

We create a suite of evaluation tasks in which the robot
must pick a specified fruit and place it in a specified bowl.
There are three fruits in the scene (banana, strawberry, pear)
and three bowls with different colors (blue, green, yellow).
Each task takes the form ”pick the {fruit} and place it in
the {color} bowl.” Given the task goal, we parse the source
object and the target object, and independently prompt the
VLM to get the pick and place locations corresponding to
these two objects respectively. Refer to Appendix M for the
prompt we use. In Figure 15 we report evaluation over five
random instances. Here we specifically report the error with
respect to ground truth pick and place locations over each
iteration of visual prompting. We see that the error generally
decreases in the first few iterations and eventually converges.
In most settings the chosen pick and place locations are close
to the desired objects, yet the VLM often lacks the ability
to precisely choose points that allow it to execute the task
successfully in one action.

J. Franka Online Evaluation

We evaluate PIVOT in a real world manipulation setting
using a Franka robot arm with a wrist-mounted camera and a
4D relative Cartesian delta action space. We study 7 tabletop
manipulation tasks involving grasping and placing various
objects, and analyze three version of PIVOT with varying
numbers of optimization iterations and number of parallel
PIVOT processes. Each task is evaluated for two trials, for
which we record intermediate reaching success rates for
reaching the correct XY and YZ proximities for the target

a b c d
Gemini model size

0.1

0.2

0.3

0.4

0.5

0.6

2D
 C

os
in

e
Si

m
ila

rit
y

 is

 b
et

te
r

a b c d
Gemini model size

0.1

0.2

0.3

0.4

0.5

0.6

2D
 C

os
in

e
Si

m
ila

rit
y

 is

 b
et

te
r

Fig. 9: Scaling results of first iteration visual prompting performance across Gemini model [16] sizes show that PIVOT scales well with
improved VLMs. Left and center plots are manipulation (pick up objects, move one object next to another), right plot is navigation.

Fig. 10: Example tasks in the offline navigation dataset from
different task categories. Red dot denotes the ground truth target.

object (where in the camera frame the x-axis is into and out
of the page, the y-axis is left and right, and the z axis is
up and down), as well as the overall number of timesteps
taken for successful trials. As shown in Table V, we find
that all instantiations of PIVOT are able to achieve non-zero
success, but increasing the number of optimization iterations
and number of parallel processes increases performance and
stability. Rollouts are shown in Figure 16.

K. Visual Annotation Sensitivity

Inspired by prior works which find interesting biases and
limitations of modern VLMs on understanding visual annota-
tions [46], [59], [60], we analyze the ability of state-of-the-art
VLMs to understand various types of arrow annotations. We
generate two synthetic datasets: one toy dataset of various
styles of CV2 [24] arrows overlaid on a white background,
and a more realistic dataset of various styles of object-
referential arrows overlaid on a real-world robotics scene.
The datasets adjust parameters such as arrow color, arrow
thickness, and relative arrowhead size. In the first dataset,
we query VLMs to classify the direction of the arrows,
which studies the effect of styling on the ability of VLMs to
understand absolute arrow directions; examples are shown in
Figure 17. In the second dataset, we query VLMs to select

the arrow which points at a specified object out of multiple
objects, which studies the effect of styling on the ability
of VLMs to understand relative and object-centric arrow
directions. The second dataset contains scenes with various
objects, which we categorize into “Easy” (plates, boxes,
cubes), “Medium” (cups, bags, mugs), “Hard” (hangers,
toys), and “Very Hard” (brushes, eccentric objects).

L. Limitations

In this work, we evaluate PIVOT using state-of-the-art
VLMs and their zero-shot capabilities. We note that the
base models have not been trained on in-domain data for
robotic control or physical reasoning represented by visual
annotation distributions. While the exact failure modes may
be specific to particular underlying VLMs, we continue to
observe trends which may reflect broad limitation areas. We
expect that future VLMs with improved generalist visual
reasoning capabilities will likewise improve in their visual
annotation and robotics reasoning capabilities, and the gen-
eral limitations of PIVOT on current state-of-the-art VLMs
may serve to highlight potential risks and capabilities gaps,
that point to interesting open areas for future work.

3D understanding. While VLMs only take 2D images
as visual inputs, in principle the image annotations and
transformations applied via PIVOT can represent 3D queries
as well. Although we examined expressing depth values as
part of the annotations using colors and label sizes (and
described what they map to within a preamble prompt), we
have observed that none of the VLMs we tested are capable
of reliably choosing actions based on depth. Beyond this,
generalizing to higher dimensional spaces such as rotation
poses even additional challenges. We believe more complex
visuals (e.g. with shading to give the illusion of depth) may
address some of these challenges, but ultimately, the lack
of 3D training data in the underlying VLM remains the
bottleneck. It is likely that training on either robot specific
data or with depth images may alleviate these challenges.

Interaction and fine-grained control. During closed-
loop visuomotor tasks (for first-person navigation tasks, or
manipulation task with hand-mounted cameras), images can
often be characterized by increasing amounts of occlusion,
where the objects of interest can become no longer visible
if the cameras are too close. This affects PIVOT and the
VLM’s capacity for decision-making determining when to

Fig. 11: Evaluating PIVOT on real world mobile manipulator tabletop manipulation scenarios which require a combination of semantic
reasoning and action understanding. Using 3 optimization iterations on the real world mobile manipulator, we see promising successes
for (a) “move the orange to complete the smiley face represented by fruits”, (b) “use the marker to trace a line down the blue road”, and
(c) “sort the object it is holding to the correct piece of paper”.

TABLE V: Manipulation results on the real-world Franka setting shown in Figure 3 (c), where “XY” and “YZ” indicate success rates
for reaching the relevant object XY and YZ proximities respectively and “Steps” indicates the number of steps taken if successful finished
the task. We observe that while all approaches are able to achieve some non-zero success, iteration and parallel calls improve performance
and efficiency of the policy.

No Iterations 3 Iterations 3 Iterations
No Parallel No Parallel 3 Parallel

Task XY YZ Steps XY YZ Steps XY YZ Steps

Place saltshaker on the blue plate 0% 0% - 0.5% 0% - 50% 50% 3.0
Place peppershaker on the pink plate 100% 100% 8.0 100% 100% 3.5 50% 50% 4.0

Grasp the pink cup 50% 50% 7.0 0% 50% - 0% 50% -
Grasp the pepper shaker 50% 50% 8.0 0% 50% - 0% 50% -

Grasp the blue cup 0% 50% - 0% 50% - 0% 50% -
Grasp the red ketchup bottle 0% 50% - 0% 0% - 100% 100% 6.0

Grasp the can 0% 0% - 0% 0% - 50% 50% 3.0

Average 25% 38% 7.8 28% 31% 3.5 34% 59% 4.4

grasp, whether to lift an object, or approaching an object
from the correct side to push. This is visualized in Figure 7,
where errors over the trajectory are shown. These errors
are a result of both occlusions, resolution of the image, but
perhaps more crucially, a lack of training data from similar
interactions. In this case, training on embodied or video data
may be a remedy.

Greedy behavior. Though we find iterative optimiza-

tion alleviates many simple errors, we also find that the
underlying VLM often displays greedy, myopic behaviors
for multi-step decision-making tasks. For instance, given
the task “move the apple to the banana”, the VLM may
recommend immediately approaching the banana rather than
the apple first. We believe these mistakes may lessen with
more capable VLMs, or with more in-domain examples
provided either via fine-tuning or via few-shot prompting

TABLE VI: Visual annotation arrow robustness of VLMs on a synthetic toy arrow dataset. For various colored arrows with different
thicknesses, different sized arrowheads, and different absolute directions, we evaluate the robustness of GPT-4V on correctly classifying
the absolute arrow direction.

Arrow Thickness Arrowhead Size Direction

Color 2 4 6 0.1 0.3 0.5 up+right down+right up+left down+left

red 96% 92% 96% 97% 94% 88% 100% 75% 75% 92%
orange 92% 88% 96% 100% 91% 84% 100% 100% 50% 83%
yellow 88% 88% 100% 100% 94% 84% 93% 100% 75% 67%
green 96% 92% 96% 100% 100% 88% 100% 92% 92% 83%
blue 92% 92% 88% 91% 91% 88% 100% 17% 100% 100%

purple 100% 96% 96% 97% 97% 97% 100% 92% 92% 92%

TABLE VII: Visual annotation arrow robustness of VLMs on an object-referential arrow dataset. For various colored arrows with different
thicknesses, different sized arrowheads, and different absolute directions, we evaluate the robustness of GPT-4V on correctly selecting the
arrow which refers to a specified object.

Arrow Thickness Arrowhead Size Target Object

Color 2 4 6 0.1 0.3 0.5 Easy Medium Hard Very Hard

red 42% 33% 33% 50% 33% 25% 44% 100% 0% 0%
orange 25% 25% 25% 25% 25% 25% 0% 100% 0% 0%
yellow 67% 58% 50% 83% 58% 33% 100% 33% 56% 44%
green 50% 58% 50% 83% 58% 33% 100% 33% 56% 44%
blue 42% 36% 33% 36% 50% 25% 100% 33% 22% 0%

purple 33% 50% 50% 58% 58% 17% 89% 22% 56% 11%

Zero-shot Direct

Zero-shot CoT

Few-shot Direct

Few-shot CoT
0.2

0.0

0.2

0.4

0.6

0.8

1.0

2D
 C

os
in

e
Si

m
ila

rit
y

0.42 0.48 0.47 0.38

Average 2D Cosine Similarity

Zero-shot Direct

Zero-shot CoT

Few-shot Direct

Few-shot CoT

0

500

1000

1500

2000

Re
sp

on
se

 L
en

gt
h

(c
ha

ra
ct

er
s)

15.31

1048.83

11.85

368.27

Average Response Length

Fig. 13: Ablation of few-shot vs. zero-shot and CoT vs. direct
performance on manipulation domain. The best performing com-
bination is zero-shot CoT. However, direct models can achieve
similar performance with much fewer output tokens thus more token
efficient.

with a history of actions as input context to the VLM to
guide future generated actions.

Vision-language connection reasoning errors. We find
that though overall the thought process of the VLM is
reasonable, it stochastically connects the thought process to
the incorrect arrow. This issue appears to be a challenge of
autoregressive decoding, once the number is decoded, the
VLM must justify it, even if incorrect, and thus hallucinates
an otherwise reasonable thought process. Many of these
errors are remedied through the optimization process of
PIVOT, but we believe further improvements could be made
with tools from robust optimization.

S,I,T prompt I,S,T prompt
1.0

0.5

0.0

0.5

1.0

2D
 C

os
in

e
Si

m
ila

rit
y

0.43 0.41

Average 2D Cosine Similarity

Fig. 14: Ablation of order of preamble, image, and task on mobile
manipulation domain. We found it is beneficial to put the image
closer to the end of the prompt, though the effect is marginal. P, I,
T means preamble, followed by image and task description, and I,
P, T means image followed by preamble and task description.

Fig. 15: RAVENS evaluations. Each column shows a different task instance. Title: pick object followed by place object. Top row: initial
image with pick and place locations predicted by VLM indicated by white arrow. Middle row: result after executing action. Bottom row:
L2 distance between predicted and ground truth locations (averaged for both pick location and place location), over iterations.

Task: Grasp the red ketchup bottle

Iteration 0:
Arrows [5]

Iteration 1:
Arrows [4]

Task: Place peppershaker on the pink plate

Iteration 0:
Arrows [1]

Iteration 1:
Arrows [1]

Fig. 16: Rollouts on the Franka environment.

Fig. 17: Examples of procedurally generated datasets study-
ing the robustness of VLMs for understanding visual an-
notation arrow styles. (a) focuses on absolute direction
understanding of single arrows on blank backgrounds. (b)
focuses on object-relative arrow understanding in realistic
scenes.

M. Prompts

RefCOCO prompt
Your goal is to find the OBJECT in this scene. I
have annotated the image with numbered circles.
Choose the 3 numbers that have the most overlap
with the OBJECT. If there are no points with
overlap, then don’t choose any points. You are a
five-time world champion in this game. Give a one
sentence analysis of why you chose those points.
Provide your answer at the end in a json file of
this format:
{"points": [] }

Navigation prompt
I am a wheeled robot that cannot go over objects.
This is the image I’m seeing right now. I have
annotated it with numbered circles. Each number
represent a general direction I can follow. Now
you are a five-time world-champion navigation
agent and your task is to tell me which circle
I should pick for the task of: {INSTRUCTION}?
Choose {K} best candidate numbers. Do NOT choose
routes that goes through objects. Skip analysis
and provide your answer at the end in a json file
of this form: {"points": [] }

RAVENS prompt
which number markers are closest to the {OBJECT}?
Reason and express the final answer as ’final
answer‘ followed by a list of the closest marker
numbers.

Manipulation online eval prompt
Direct

What number arrow should the robot follow to
task?

Rules: - You are looking at an image of a robot
in front of a desk trying to arrange objects.
The robot has an arm and a gripper with yellow
fingers. - The arrows in the image represent
actions the robot can take. - Red arrows move
the arm farther away from the camera, blue arrows
move the arm closer towards the camera. - Smaller
circles are further from the camera and thus
move the arm farther, larger circles are closer
and thus move the arm backwards. - The robot can
only grasp or move objects if the robot gripper
is close to the object and the gripper fingers
would stably enclose the object - Your answer
must end with a list of candidate arrows which
represent the immediate next action to take
(0.3 seconds). Do not consider future actions
between the immediate next step. - If multiple
arrows represent good immediate actions to
take, return all candidates ranked from worst to
best. - A general rule of thumb is to return 1-4
candidates. Instruction: Reason through the task
first and at the end summarize the correct action
choice(s) with the format, ‘‘Arrow: [<number>,
<number>, etc.].‘‘ Task: task

Manipulation offline eval prompt

Direct

Summary: The arrows are actions the robot can
take. Red means move the arm forward (away from
the camera), blue means move the arm backwards
(towards the camera). Smaller circles are further
from the camera and thus move the arm forward,
larger circles are closer and thus move the
arm backwards. Do not output anything else,
direct answer ith the format, Arrow: [<number>,
<number>, etc.]. IMG, Task: What are the best
arrows for the robot follow to pick white coat
hanger?

CoT
Summary: The arrows are actions the robot can
take. Reason through the task first and at the
end summarize the correct action choice(s) with
the format, Arrow: [<number>, <number>, etc.].
Description: The robot can only grasp or move
objects if the gripper is around the object and
closed on the object. Red means move the arm
forward (away from the camera), blue means move
the arm backwards (towards the camera). Smaller
circles are further from the camera and thus move
the arm forward, larger circles are closer and
thus move the arm backwards. You must include
this summarization. IMG, Task: What are the best
arrows for the robot follow to pick catnip toy?

Few-shot Direct
Summary: (same as above) IMG, Task: Erase the
writing on the whiteboard. Arrow: [5, 10], IMG,
Task: Pick up the iced coffee can. Arrow: [1],
IMG, Task: Pick up the string cheese. Arrow: [8,
15, 3, 13], IMG, Task: pick white coat hanger.

Few-shot CoT
Summary: (same as above) IMG, Task: Erase the
writing on the whiteboard. The robot is holding
an eraser, so it should move it over the marker
on the whiteboard. The following arrows look
promising: 5. This arrow moves the eraser over
the writing and away from the camera and thus
towards the whiteboard. 10. This arrow too
moves the eraser over the writing and has an
even smaller circle (and more red) and thus more
towards the whiteboard. Arrow: [5, 10], IMG,
Task: ... Arrow: [5, 10], IMG, Task: ... Arrow:
[8, 15, 3, 13], IMG, Task: pick oreo.

