
Supervising the Transfer
of Reasoning Patterns in VQA

Corentin Kervadec*1,2 Christian Wolf*2 Grigory Antipov1 Moez Baccouche1
Madiha Nadri3

1Orange Innovation, France 2LIRIS, INSA-Lyon, France 3LAGEPP, Université de Lyon, France
firstname.lastname@orange.com, christian.wolf@insa-lyon.fr,

madiha.nadri@lagep.univ-lyon1.fr, *equal contribution

Supplementary Material
A Proofs of Section 4

A.1 Proof of theorem 4.2

For the unfamiliar reader, we here briefly recall the notion of sample complexity, in the context of
PAC-learning [14], which characterizes the minimum amount (=M) of samples necessary to learn a
function with sufficiently low (= ε) error with sufficiently high (= δ) probability:

Definition A.1 (Sample complexity). Given an error threshold ε>0; a threshold on error probability
δ; a training set S = {xi, yi} of M i.i.d. training samples from D, generated from some underlying
true function y

¯i
= g(xi), and a learning algorithm A, which generates a function f from training

data, e.g. f = A(S); Then g is (M, ε, δ)-learnable by A if

Px∼D [||f(x)− g(x)|| ≤ ε] ≥ 1− δ (1)

The case of scalar outputs In the lines of [11], we first define the case for a single component y(i)

of the vector y and define the following Corollary:

Corollary 0.1 (Sample complexity for multi-mode reasoning functions with a single scalar
component). Let A be an overparametrized and randomly initialized two-layer MLP trained
with gradient descent for a sufficient number of iterations. Suppose g : Rd → Rm with
g(x) =

∑
r

∑
j(γ

T
r x)αr,j(β

T
r,jx)pr,j where γr ∈ Rd, βr,j ∈ Rd, αr,j ∈ R, and pr,j = 1 or

pr,j = 2l, l ∈ N+. The sample complexity CA(g, ε, δ) is

CA(g, ε0, δ0) =

O

(∑
r

∑
j πpr,j |α|·||γr||2·||βr,j ||

pr,j
2 + log(1

δ0
)

ε20

)
,

Proof of Corollary 0.1:

Using Theorem 5.1 from [11], we know that sums of learnable functions are learnable, and can thus
focus on a single term

y = g(x) = α(γTx)(βTx)p (2)

where we dropped indices r and j and the superscript (i) for convenience.

We proceed in the lines of the proof of Theorem 5.1 in [11]. Given a set of i.i.d data samples
S = {(xs, ys)}ns=1 = (X,y) from the underlying function g(x), let w be the weights of the first

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

layer of two layer network with ReLu activations; let H∞ ∈ Rn,n be a Gram matrix defined as
follows, with elements

H∞ij = Ew∼N (0,1)

[
xTi xjI{wtxi≥0,wtxi≥0}

]
.

To provide bounds on the sample complexity of g(x), using Theorem 5.1 of [11], it suffices to show
that the following bound holds √

yT (H∞)−1y < Mg (3)

for a bound Mg independent of the number of samples n.

For first introduce some notation. For matrices A = [a1, ...,an3
] ∈ Rn1×n3 and B = [b1, ..., bn3

] ∈
Rn2×n3 , the Khatri-Rao product is defined as A�B = [a1⊗b1,a2⊗b2, ...,an3⊗bn3]. Let ◦ be the
Haddamard product (element wise multiplication) of two matrices. We also denote the corresponding
powers by A⊗l,A�l,A◦l. We denote by A† = (ATA)−1AT the Moore-Penrose pseudo-inverse,
and by PA = A

1
2A†A

1
2 the projection matrix for the subspace spanned by A.

From the proof of Theorem 5.1 in [11], we also know that

H∞ � K◦2l

2π(2l − 1)2
,

where K = XTX , and X is the data matrix of all row vectors xi.

Let us consider the case of p = 1. Reformulating equation (2), we get:

y = g(x) = α(γTx)(βTx) (4)

= α(xT γ)(xTβ) (5)

= α(x⊗x)T (γ⊗β) (6)

Now, taking the full set of input vectors xi arranged into the full data matrix X , we can perform
similar algebraic operations to get

y = g(X) = α(XT γ) ◦ (XTβ) (7)

= α(X�2)T (γ⊗β) (8)

Plugging (7) and (8) into (3), we need to show that the following expression is smaller than a constant
Mg:

α2((XT γ) ◦ (XTβ))T (H∞)−1(X�2)T (γ⊗β) (9)

=α2((X�2)T (γ⊗β))T (H∞)−1(X�2)T (γ⊗β) (10)

=α2(γ⊗β)T (X�2)(H∞)−1(X�2)T (γ⊗β) (11)

≤2πα2(γ⊗β)T (X�2)(K◦2)†(X�2)T (γ⊗β) (12)

=2πα2(γ⊗β)TPX�2
(X�2

)T
(γ⊗β) (13)

≤2πα2||(γ⊗β)||22 (14)

=2πα2||γ||22 · ||β||22 (15)

where we made use of ||a⊗b||22 = ||a||22||b||22 for two vectors a and b and an integer n.

This finishes the proof for the case p = 1.

Let us consider the case of p = 2l+1. Reformulating equation (2), we get:

y = g(X) = α(XT γ) ◦ (XTβ)p (16)

= α(X�2l)T (γ⊗β⊗(2l+1)) (17)

2

Plugging (17) into (3), we again need to show that the following expression is smaller than a constant
Mg:

α2((X�2l)T (γ⊗β⊗(2l+1)))T (18)

(H∞)−1(X�2l)T (γ⊗β⊗(2l+1)) (19)

=α2(γ⊗β⊗(2l+1))T (20)

(X�2l)(H∞)−1(X�2l)T (γ⊗β⊗(2l+1)) (21)

≤2π(2l − 1)2α2(γ⊗β⊗(2l+1))T (22)

(X�2l)(K◦2)†(X�2l)T (γ⊗β⊗(2l+1)) (23)

=2π(2l − 1)2α2(γ⊗β⊗(2l+1))T (24)

PX�2l
(X�2l

)T
(γ⊗β⊗(2l+1)) (25)

≤2π(2l − 1)2α2||(γ⊗β⊗(2l+1))||22 (26)

≤2πp2α2||(γ⊗β⊗(2l+1))||22 (27)

=2πp2α2||γ||22 · ||β||
2p
2 (28)

where we made use of ||a⊗b||22 = ||a||22||b||22 and therefore ||a⊗n||22 = ||a||2n2 for two vectors a and b
and an integer n.

This finishes the proof for the case p = 2l+1.

The case of vectorial outputs In the lines of [15], we consider each component of the output
vector independent and apply an union bound to Corollary 0.1. If the individual components y(i)

fail to learn with probability δ0, then the full output of dimension m fails with probability mδ0 and
with an error of at most mε0. A change of variables from (ε0, δ0) to (ε, δ) gives a complexity for the
model with vectorial output of

CA(g, ε, δ) =

O

(
maxi

∑
r

∑
j πp

(i)
r,j |α|·||γ||2·||βr,j ||

p
(i)
r,j

2 +log(m/δ)

(ε/m)2

)
,

This ends the proof of Theorem 4.2.

A.2 Proof of the inequality in Eq. (8)

Let us denote by p(x) the density of normal distribution. And to make the notation more succinct
and to avoid confusion between different usages of superscripts, in this proof we will change γir to
γi, i.e. the ith component of the vector γ, not to be confused with γr, a vector corresponding to the
embedding of the rth reasoning mode. Then,

Eγi∼N(0,1)||γ||2·||β||p2 (29)

=||β||p2Eγi∼N(0,1)

(∑
i

γ2i

) 1
2

(30)

(31)
We now perform a change of variables and introduce a new random variable

z =
∑
i

γ2i . (32)

Since each individual γi is distributed normal, z is distributed according to a χ2 distribution with m
degrees of freedom, and we get

Eγi∼N(0,1)||γ||2·||β||p2 (33)

=||β||p2 Ez∼χ2 [z
1
2] (34)

3

The expectation now corresponds to 1
2

th centered moment of the χ2 distribution with m degrees of
freedom, whose kth moments are given as

Ez∼χ2 [zk] = 2k
Γ(m2 + k)

Γ(m2)
(35)

This ends the proof of the equality.

B Program decoder

We provide more details on the program decoder architecture. The hidden size is set to 128 (same as
in the VL-Transformer). We use GeLU [3] as non linearity, along with layernorm [1].

Operations The maximum number of operations in one program is set to Nmaxop = 9. The
total number of operation’s labels is Nop = 212. We use a one layer GRU [2] with hidden size
equals to 128, to infer the operation’s hidden embedding hi. It is followed by a two layers MLP
(128→ 64→ Nop, projecting hi into a one-hot vector oi.

Arguments Affinity scores aqij between each operation’s hidden embedding hi and each token
embedding qj (or vj) are computed with a 2-layer feed-forward network (256 → 64 → 1) from
concatenated embeddings. The op arguments are predicted from hi using another one layer GRU
with hidden size equals to 128 followed by a nonlinear projection (128→ Nmaxop).

Hyper-parameters are set to α = 1, β = 1, γ = 1 and δ = 100.

C Training details

Architecture: Our VQA architecture is a compact version of the VL-Transformer introduced in
[13]1. In particular, it has 9 language only layers, 5 vision only layers, and 5 cross modal layers.
The hidden size is set to 128. In total, this compact version has 26M parameters, allowing to reduce
computation time and memory overhead.

Optimizer: All models were trained with the Adam optimizer [7], a learning rate of 10−4 with
warm starting and learning rate decay.

Oracle transfer: is performed following [6]. First, the oracle model is trained during at most 40
epochs on the GQA balanced training set with ground-truth image representation. Then we continue
the training during 10 epochs, with visual features extracted using an object detector. We use a batch
size equals to 196 (96 when using VinVL features).

BERT/LXMERT [13] pretraining is performed during 20 epochs with a batch size of 320 (256
when using VinVL features). All pretraining losses are added from the beginning, including the VQA
one. Note that LXMERT [13] is originally pre-trained on a corpus gathering images and sentences
from MSCOCO [10] and VisualGenome [8]. In this work, we only train on the GQA [4] unbalanced
set, with VisualGenome images. After pre-trainning, we finetune on the GQA [4] balanced set during
4 epochs, with a batch size of 32 and a learning rate equal to 10−5.

D Computing resources

Training and evaluation has been performed on several compute infrastructures, which include an
Nvidia DGX-A100 with 8× A100 GPUs and a cluster with P100 and RTX 2080 GPUs. After design
and development, the final training and evaluation runs have been performed on Geforce RTX 2080
GPUs. We provide an estimate for the amount of compute in Table 1 — the number of GPUs and
approximate execution times for different models and experimental settings (train, validation and
test).

1We use the code publicly available at https://github.com/airsplay/lxmert

4

https://github.com/airsplay/lxmert

Table 1: Training and execution time for one run. Ours corresponds to oracle transfer plus program
prediction. We also provide the approximated amount of runs done during this work (hyper parameters
search, abblation, etc.)

Run Model #GPUs # hours Total number of runs

train Oracle 1 30 ≈ 5
train+test ours 36 RCNN 1 9 ≈ 100
train+test ours 100 RCNN 2 10 ≈ 5
train+test ours VinVL 2 10 ≈ 5

train+test ours 36 RCNN + LXMERT pretrain 2 100 ≈ 20
train+test ours 36 RCNN + LXMERT finetune 1 4 ≈ 50

train+test ours VinVL + LXMERT pretrain 3 180 2
train+test ours VinVL + LXMERT finetune 1 6 2

Figure 1: Example of program prediction. The question is: "Does the boat to the left of the flag looks
small or large?". Our model (ours+lxmert with VinVL) correctly answers "small".

C02 Emission The RTX infrastructure has a carbon efficiency of 0.035 kgCO2eq/kWh. A cu-
mulative of 6500 hours of computation was performed on hardware of type RTX 2080 (TDP of
215W). Total emissions are estimated to be 48.9 kgCO2eq . Estimations were conducted using the
https://mlco2.github.io/impact#compute presented in [9].

E Visualisation of predictions

We provide example of program prediction in Fig. 1 and 2. In Fig. 1, the question is ‘does the boat
to the left of the flag look small or large?’. The program decoder successfully infers the correct
program. It first predicts the coarse operations – select, relate, choose size –, then adds the
arguments taken from the image or the question – boat, flag, small, large –. Finally, the VQA model
predicts the correct answer ‘small’. In Fig. 2, the question is ‘who is wearing goggles?’. Similarly
to the first example, the program decoder generates coarse operations – select, relate, query
name – and visual/textual arguments – woman, who, goggles, wearing–. In these two examples, the
decoder correctly predicts that the programs are chains of operations (special case of a tree). At
contrary, a question like ‘are there nuts or vegetables?’ is a not a chain because of the presence of
exist and or operations.

5

https://mlco2.github.io/impact#compute

Figure 2: Example of program prediction. The question is: "Who is wearing goggles?". Our model
(ours+lxmert with VinVL) correctly answers "woman".

Ablations GQA-OOD [5] GQA [4]
acc-tail (val.) val.

(1) VQA only 46.9 62.2
(2) Random prog. 45.7 61.4
(3) ours 49.9 66.2

Table 2: Comparison with the random prog baseline, where we randomly replace the ground truth
program with a program picked from another question (compact model, no LXMERT/BERT pre-
training, no Oracle), on GQA val.

F Sanity check

As a sanity check, and to avoid the unfortunate result pinpointed in [12], we compare our model with
a random baseline random prog. in Tab. 2. In random prog., we randomly replace the ground truth
program with a program picked from another question, during the training. As expected, this random
baseline achieves low performances.

References
[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint

arXiv:1607.06450, 2016.

[2] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder for statistical
machine translation. In EMNLP, 2014.

[3] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint arXiv:1606.08415,
2016.

[4] Drew A Hudson and Christopher D Manning. Gqa: A new dataset for real-world visual reasoning and
compositional question answering. In CVPR, pages 6700–6709, 2019.

[5] C. Kervadec, G. Antipov, M. Baccouche, and C. Wolf. Roses Are Red, Violets Are Blue... but Should
VQA Expect Them To? Pre-print: arxiv:2006.05121, 2020.

[6] Corentin Kervadec, Theo Jaunet, Grigory Antipov, Moez Baccouche, Romain Vuillemot, and Christian
Wolf. How transferable are reasoning patterns in vqa? In CVPR, 2021.

[7] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. 2014.

6

[8] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz, Stephanie Chen,
Yannis Kalantidis, Li-Jia Li, David A Shamma, et al. Visual genome: Connecting language and vision
using crowdsourced dense image annotations. IJCV, 123(1):32–73, 2017.

[9] Alexandre Lacoste, Alexandra Luccioni, Victor Schmidt, and Thomas Dandres. Quantifying the carbon
emissions of machine learning. arXiv preprint arXiv:1910.09700, 2019.

[10] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
and C Lawrence Zitnick. Microsoft coco: Common objects in context. In ECCV, 2014.

[11] S.S. Du S. Arora, W. Hu, Z. Li, and R. Wang. Fine-grained Analysis of optimization and generalization for
overparametrized two-layer neural networks. In ICML, 2019.

[12] Robik Shrestha, Kushal Kafle, and Christopher Kanan. A negative case analysis of visual grounding
methods for vqa. In Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, 2020.

[13] Hao Tan and Mohit Bansal. Lxmert: Learning cross-modality encoder representations from transformers.
In EMNLP, pages 5103–5114, 2019.

[14] L.G. Valiant. A theory of the learnable. In Communications of the ACM, volume 27(11), 1984.

[15] K. Xu, J. Li, M. Zhang, S.S. Du, K.-I. K., and S. Jegelka. What can Neural Networks Reason About. In
ICLR, 2020.

7

	Proofs of Section 4
	Proof of theorem 4.2
	Proof of the inequality in Eq. (8)

	Program decoder
	Training details
	Computing resources
	Visualisation of predictions
	Sanity check

