
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

A COMPARISON OF EXPECTED SARSA AND CBDQ

Feature Expected SARSA Cognitive Belief-Driven Q-learning
Policy Type On-policy Off-policy
Action Selection Single policy π(a|s) for both experi-

ence generation and updates
Exploration policy for experience,
bt(a|st+1) distribution for updates

Convergence Target True action-value function of the cur-
rent policy

Optimal Q-value function (under spe-
cific conditions)

Exploration-
Exploitation

Controlled by single policy π Exploration policy and bt distribution
can be adjusted independently

Sample Utilization Only uses samples from current pol-
icy

Can utilize samples from any policy

Main Advantage Directly evaluates current policy, po-
tentially faster convergence

More flexible, potentially more stable,
can find optimal policy

Suitable Scenarios Online learning, need for quick policy
evaluation

Offline learning, need to find optimal
policy

Table 1: Comparison between Expected SARSA and Smoothed Q-learning

B MBP EXPERIMENT

Figure 1: Experimental Setup of the Maximization Bias Problem (MBP): The experiment starts
in state A. The agent has two possible actions: Right, leading to terminal state C with zero reward,
and Left, which leads to state B, also with zero reward. In state B, the agent has 8 actions, each
leading to terminal state D with a reward sampled from a Gaussian distribution with a mean of -0.1
and a variance of 1. This setup illustrates maximization bias in traditional Q-learning algorithms,
where overestimation can occur due to variance in the rewards(Sutton & Barto, 2018).

Purpose of the Experiment This setup underscores the issue of maximization bias in traditional
Q-learning, where the algorithm selects actions based on the highest Q-value. In state B, the vari-
ability in rewards amplifies this bias, as Q-learning tends to overestimate the expected reward by
favoring actions with initially higher but unreliable Q-values. Over time, this can lead the agent
to consistently choose suboptimal actions, even when more stable options offer better long-term
results.

C SMOOTHING STRATEGY

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Strategy Formula
Softmax bt =

eQ(s,a)∑
b eQ(s,b)

Clipped Max bt =

{
1− τ, if a = a∗

τ
A−1 , if a ̸= a∗

Clipped Softmax bt =

{
eβQ(s,a)∑
b∈I eβQ(s,b) , if a ∈ I

0, if a /∈ I

Bayesian Inference

Qadjusted(s, a) = Q(s, a) + µprior

bt =
eQadjusted(s

′,a)∑
b e

Qadjusted(s′,b)

σ2
posterior =

(
1

σ2
prior

+
n

σ2
observation

)−1

µposterior = σ2
posterior

(
µprior

σ2
prior

+

n∑
i=1

ri
σ2

observation

)

Table 2: Smoothing strategies with respective formulas

D CONVERGENCE PROOF

We outline a proof that builds upon the following result (Singh et al., 2000; Barber, 2023) for a
formal statement) and follows the framework provided in (Melo, 2001):

Theorem 1 The random process {∆t} taking value in R and defined as

∆t+1(x) = (1− αt(x))∆t(x) + αt(x)Ft(x) (1)

converges to 0 with probability 1 under the following assumptions:

• 0 ≤ αt ≤ 1,
∑

t αt(x) = ∞,
∑

t α
2
t (x) < ∞;

• E[∥Ft(x)∥W ] ≤ κ∥∆t∥W + ct, κ ∈ [0, 1) and ct → 0 with probability 1;
• var(Ft(x)) ≤ C(1 + ∥∆t∥W )2, C > 0

where ∥∆t∥W denotes a weighted max norm.

We are interested in the convergence of Qt towards the optimal value Q∗ and therefore define

∆t = Qt(st, at)−Q∗(st, at) (2)

It is convenient to write the smoothed update as

Qt+1(st, at) = Qt(st, at) + αt(st, at) (rt + γ ⟨Q(st+1, a)⟩a −Qt(st, at)) (3)

where ⟨f(x)⟩x means the expectation of the function f(x) with respect to the distribution of x.
Using the smoothed update, we can write

∆t+1(st, at) = Qt+1(st, at)−Q∗(st, at) (4)

= (1− αt)∆t + αt (rt + γ⟨Q(st+1, a)⟩a −Q∗(st, at)) (5)
In terms of Theorem 1, we therefore define

Ft = rt + γ
∑
a

bt(a|st+1)Qt(st+1, a)−Q∗(st, at) (6)

Proof D.1 For convergence, we need to bound the norm of the expected value of Ft. We can write

1

γ
E[Ft] = EpT [Gt] (7)

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

where
Gt =

∑
a

bt(a|st+1)Qt(st+1, a)−max
a

Q∗(st+1, a) (8)

we can form the bound
1

γ
E[Ft]∞ = E[∥Gt∥∞] ≤ ∥Gt∥∞ (9)

which means that if we can bound ∥Gt∥∞ appropriately, the mean criterion will be satisfied.

Assuming that bt places (1− δt) mass in the maximal state of Q, we can write

∥Gt∥∞ ≤
∥∥∥max

a
Qt(st+1, a)−max

a
Q∗(st+1, a)

∥∥∥
∞
+δt

∥∥∥∥∥∥max
a

Qt(st+1, a)−
∑
c̸=a

bt(c|st+1)Qt(st+1, c)

∥∥∥∥∥∥
∞

(10)

≤ ∥∆t∥∞ + δt

∥∥∥∥∥∥max
a

Qt(st+1, a)−
∑
c̸=a

bt(c|st+1)Qt(st+1, c)

∥∥∥∥∥∥
∞

(11)

≤ ∥∆t∥∞ + δt

(
∥max

a
Qt(st+1, a)∥∞ + ∥Qt(st+1, c−)∥∞

)
(12)

where c− = argminc̸=a Qt(st+1, c) and the penultimate line follows from the fact that only a
maximum of δt mass can be placed in the minimal state c− (since (1 − δt) mass is placed in state
a∗). Putting this together we have

E[Ft]∞ ≤ γ∥∆t∥∞ + γδt

(
∥max

a
Qt(st+1, a)∥∞ + ∥Qt(st+1, c)∥∞

)
(13)

Since the Qt are bounded and E[Ft] converges to zero with probability 1, provided δt converges to
0 with probability 1. The mean criterion is therefore satisfied.

For the variance criterion, since the rewards are bounded, Qt and ∆t are also bounded. This means
that the variance is bounded. We can write:

∆Ft = ∆r + γ ⟨(Qt(st+1, a)− ⟨Qt(st+1, a)⟩)⟩st+1,a
(14)

= ∆r + γ ⟨(Qt(st+1, a))a − (Q∗(st+1, a))a + (Q∗(st+1, a))a − ⟨Qt(st+1, a)⟩a⟩st+1
(15)

= ∆r + γ
〈
Qt(st+1, a)−Q∗(st+1, a)− γ ⟨Qt(st+1, a)⟩st+1

〉
a

(16)

We can bound the variance using

var(Ft) = ∥⟨∆Ft⟩∥2∞ ≤ ∥∆Ft∥2∞ (17)

and use the triangle inequality,

∥∆Ft∥∞ ≤ ∥∆rt∥∞ + γ ⟨∥Qt(st+1, a)−Q∗(st+1, a)⟩a (18)

and using ∥⟨x⟩∞∥ ≤ ∥x∥∞
∥∆Ft∥∞ ≤ ∥∆rt∥∞ + γ∥∆t∥∞ + γ ⟨∥Qt(st+1, a)−Q∗(st+1, a)⟩⟩∞ (19)

We now write
⟨Qt(st+1, a)−Q∗(st+1, a)⟩∞ (20)

= ⟨(Qt(st+1, a))a − (Q∗(st+1, a))a + (Q∗(st+1, a))a − ⟨Qt(st+1, a)⟩a⟩∞ (21)
≤ ∥∆t∥∞ + ⟨∥ (Q∗(st+1, a))a −Q∗(st+1, a)∥⟩∞ (22)

≤ ∥∆t∥∞ +B (23)
for some constant B1 since the optimal Q∗ is bounded (for γ < 1 and bounded rewards). Hence,
since the rewards are bounded, there exists B such that

∥∆Ft∥∞ ≤ 2γB + 2γ∥∆t∥∞ = 2γB(1 + ∥∆t∥W ) (24)

This shows that the variance condition is satisfied.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

E EXPERIMENT SETTING

E.1 CLASSIC CONTROL AND BOX 2D ENVIRONMENT

Figure 2: Cartpole(Top Left), Acrobot(Top Right), CarRacing(Bottom Left), and Lunar Lan-
der(Bottom Right).

1. Cartpole: A pole is attached by an unactuated joint to a cart, which moves along a friction-
less track. The pendulum is placed upright on the cart and the goal is to balance the pole
by applying forces in the left and right direction on the cart.

2. Acrobot: A two-link pendulum system with only the second joint actuated. The task is to
swing the lower link to a sufficient height in order to raise the tip of the pendulum above
a target height. The environment challenges the agent’s ability to apply precise control for
coordinating multiple linked joints.

3. CarRacing: The easiest control task to learn from pixels - a top-down racing environment.
The generated track is random in every episode.

4. Lunar Lander: It is a classic rocket trajectory optimization problem. According to Pontrya-
gin’s maximum principle, it is optimal to fire the engine at full throttle or turn off. This is
why this environment has discrete actions: engine on or off.

E.2 METADRIVE BLOCK TYPE DESCRIPTION

Table 3: Block Types Used in Experiments

ID Block Type
S Straight
C Circular
r InRamp
R OutRamp
O Roundabout
X Intersection
y Merge
Y Split
T T-Intersection

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Figure 3: Various block types used in the MetaDrive environment. These blocks represent common
road structures such as straight roads, ramps, forks, roundabouts, curves, T-intersections, and inter-
sections, used for evaluating the vehicle’s path planning and decision-making capabilities.

E.3 MAP DESIGN AND TESTING OBJECTIVES

E.3.1 MAP 1: SROYCTRYS

This map consists of straight roads, roundabouts, intersections, T-intersections, splits, and ramps.
The environment presents a highly complex combination of multiple intersections, dynamic traffic
flow, and varying road structures.

Testing Objective: The focus of this environment is to evaluate the algorithm’s smooth decision-
making and multi-intersection handling, mimicking human driving behavior. The challenges include
adjusting vehicle paths in real-time and ensuring smooth lane transitions in the presence of complex
road structures such as roundabouts and ramps.

E.3.2 MAP 2: CORXSRT

This map combines circular roads, roundabouts, straight roads, intersections, ramps, and T-
intersections. The environment is designed to assess the vehicle’s decision-making capabilities when
dealing with continuous changes in road grades and multiple intersection types.

Testing Objective: This environment tests the algorithm’s ability to dynamically adjust to grade
changes and multi-intersection interactions, replicating human-like behavior. The goal is to ob-
serve how well the algorithm adjusts vehicle speed and direction, ensuring stability in scenarios
involving ramps and complex road networks.

E.3.3 MAP 3: RXTSC

This map consists of ramps, intersections, T-intersections, straight roads, and circular roads. The
environment simulates multiple road interactions, testing the vehicle’s path selection and stability,
particularly at intersections and ramps.

Testing Objective: This environment evaluates the algorithm’s performance in handling intersec-
tions and T-junctions with real-time path selection. The challenge is to ensure human-like adaptabil-
ity when encountering multiple directional options, maintaining decision stability in dynamic traffic
situations.

E.3.4 MAP 4: YORSX

This map includes splits, roundabouts, straight roads, circular roads, and intersections. The environ-
ment is tailored to test the vehicle’s ability to make path decisions in high-speed settings, particularly
when merging traffic and navigating through complex junctions.

Testing Objective: The map focuses on testing the vehicle’s ability to handle high-speed lane
merging and dynamic path planning. The algorithm must mimic human drivers by making real-
time adjustments in a high-speed environment, choosing optimal paths while maintaining speed
control and safety through complex intersections and roundabouts.

E.3.5 MAP 5: XTOC

This map features circular roads, T-intersections, and straight roads, creating a unique combination
of continuous curves and abrupt directional changes. The environment presents the challenge of
maintaining speed while negotiating tight turns and quick transitions at T-intersections.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Testing Objective: The focus is on testing the vehicle’s ability to handle sharp directional changes
and maintain control during high-speed maneuvers. The algorithm needs to balance speed with
precision, ensuring safe navigation through tight turns and abrupt intersections.

E.3.6 MAP 6: SSSC

This map consists of three consecutive straight roads followed by a circular roundabout. It is de-
signed to test the basic driving capabilities of the vehicle, such as lane keeping, speed control, and
smooth roundabout navigation.

Testing Objective: The main challenge is to evaluate the vehicle’s ability to maintain lane stability
and make appropriate speed adjustments while navigating long straight roads and transitioning into
a circular roundabout. The algorithm must ensure smooth control and decision-making, simulating
human-like behavior in handling both high-speed straight roads and slower, more controlled turns
in the roundabout.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

E.4 ENVIRONMENT PARAMETER & AGENT PARAMETER

Table 4: Q-family vs PPO Algorithm and Environment Parameters

Parameter Q-Family PPO
Discrete Action Space True
Policy Basic Q network Categorical AC
Representation Basic MLP
Runner DRL
Representation Hidden Size [256, 256] [512,]
Q/Actor Hidden Size [256, 256] [256, 256]
Critic Hidden Size N/A [256, 256]
Activation Function relu leaky relu
Activation for Actions N/A tanh
Seed 123 / 321 / 666
Number of Parallels 10
Buffer Size 500,000 Horizon Size * Parallels (128 * 10)
Batch Size 64 N/A
Horizon Size N/A 128
Number of Epochs N/A 4
Number of Minibatches N/A 4
Learning Rate 0.00025
Start Greedy 1.0 N/A
End Greedy 0.01 N/A
Decay Step for Greedy 50,000 N/A
Sync Frequency 50 N/A
Training Frequency 1 N/A
Start Training Step 1,000 N/A
Running Steps 2,000,000
Use Gradient Clipping N/A True
Value Function Coefficient N/A 0.25
Entropy Coefficient N/A 0.0
Target KL Divergence N/A 0.001
Clip Range N/A 0.2
Clip Gradient Norm N/A 0.5
Gamma 0.99
Use GAE N/A True
GAE Lambda N/A 0.95
Use Advantage Normalization N/A True
Use Observation Normalization False True
Use Reward Normalization False True
Observation Normalization Range 5
Reward Normalization Range 5
Test Steps 10,000
Evaluation Interval 50,000 5,000
Test Episodes 5

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

F EXPERIMENTAL SUPPLEMENTAL RESULTS

Table 5: We showcase the rewards of mean ± std for each algorithm in Box2D Environments

Environment/Method CBDDQN PPO Duel DQN DDQN DQN
Cartpole 469.98 ± 20.26 427.29 ± 16.62 92.24 ± 10.56 222.14 ± 19.71 294.79 ± 16.41
Acrobot -80.57 ± 12.63 -500.00 ± 0 -104.54 ± 40.55 -100.78 ± 21.07 -87.20 ± 14.07
CarRacing 819.08 ± 28.72 272.08 ± 27.02 -27.29 ± 6.78 788.13 ± 37.61 724.76 ± 37.17
LunarLander 158.07 ± 46.14 89.34 ± 70.44 -76.54 ± 84.85 73.04 ± 56.16 91.86 ± 70.44

Table 6: We present the rewards of mean ± std for each algorithm in Metadrive Environments

Map/Method CBDDQN PPO Duel DQN DDQN DQN
SrOYCTRyS 130.27 ± 52.43 75.38 ± 17.80 39.20 ± 3.87 100.72 ± 39.01 105.02 ± 41.69
COrXSrT 117.90 ± 22.62 89.27 ± 19.99 53.02 ± 1.95 29.15 ± 7.03 117.18 ± 15.34
rXTSC 189.22 ± 59.94 156.74 ± 47.77 39.62 ± 3.00 185.55 ± 56.03 82.05 ± 30.27
YOrSX 232.55 ± 83.76 165.46 ± 52.43 77.65 ± 14.21 81.03 ± 24.40 221.44 ± 40.26

Table 7: We present the rewards of mean ± std for different traffic density in Metadrive XTOC map

Traffic Density/Method CBDDQN PPO Duel DQN DDQN DQN
0.1 443.14 ± 59.63 73.90 ± 2.00 65.85 ± 8.43 151.42 ± 47.66 272.57 ± 91.25
0.3 303.15 ± 38.20 293.72 ± 56.28 67.58 ± 7.49 156.52 ± 39.27 170.73 ± 42.62
0.5 303.07 ± 40.61 256.18 ± 26.69 139.46 ± 39.78 164.34 ± 58.03 176.83 ± 56.12
0.8 161.91 ± 34.52 67.91 ± 3.42 60.71 ± 10.58 150.06 ± 36.45 147.92 ± 35.21

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Table 8: We present the rewards of mean ± std for different accident probabilities in Metadrive SSSC
map

Traffic Density/Method CBDDQN PPO Duel DQN DDQN DQN
0.1 64.62 ± 10.41 -1.72 ± 0.55 40.32 ± 4.60 45.63 ± 4.56 46.73 ± 7.38
0.3 69.23 ± 6.46 45.31 ± 12.04 40.99 ± 1.83 43.42 ± 10.48 55.14 ± 9.41
0.5 69.23 ± 6.46 45.60 ± 10.24 41.12 ± 1.71 43.42 ± 10.48 55.14 ± 9.41
0.8 73.25 ± 6.78 -5.29 ± 0.16 43.78 ± 4.27 9.10 ± 3.22 55.17 ± 11.03

G RUNNING SETTING

For the Cartpole and Lunar Lander environments, the training process utilizes 1 RTX 3060 and
typically runs less than 30 minutes. For the Carracing environment, we require 1 RTX 3060 and
2 hours of running. For the Metadrive environments, the training process utilizes 1 RTX 3060 and
typically runs around 3-6 hours according to different complexity.

REFERENCES

David Barber. Smoothed q-learning. arXiv preprint arXiv:2303.08631, 2023.

Francisco S Melo. Convergence of q-learning: A simple proof. Institute Of Systems and Robotics,
Tech. Rep, pp. 1–4, 2001.

Satinder Singh, Tommi Jaakkola, Michael L Littman, and Csaba Szepesvári. Convergence results for
single-step on-policy reinforcement-learning algorithms. Machine learning, 38:287–308, 2000.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

9


	Comparison of Expected SARSA and CBDQ
	MBP Experiment
	Smoothing Strategy
	Convergence Proof
	Experiment Setting
	Classic Control and Box 2D Environment
	MetaDrive Block Type Description
	Map Design and Testing Objectives
	Map 1: SrOYCTRyS
	Map 2: COrXSrT
	Map 3: rXTSC
	Map 4: YOrSX
	Map 5: XTOC
	Map 6: SSSC

	Environment Parameter & Agent Parameter

	Experimental supplemental results
	Running Setting

