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A COMPARISON OF EXPECTED SARSA AND CBDQ

Feature Expected SARSA Cognitive Belief-Driven Q-learning
Policy Type On-policy Off-policy
Action Selection Single policy π(a|s) for both experi-

ence generation and updates
Exploration policy for experience,
bt(a|st+1) distribution for updates

Convergence Target True action-value function of the cur-
rent policy

Optimal Q-value function (under spe-
cific conditions)

Exploration-
Exploitation

Controlled by single policy π Exploration policy and bt distribution
can be adjusted independently

Sample Utilization Only uses samples from current pol-
icy

Can utilize samples from any policy

Main Advantage Directly evaluates current policy, po-
tentially faster convergence

More flexible, potentially more stable,
can find optimal policy

Suitable Scenarios Online learning, need for quick policy
evaluation

Offline learning, need to find optimal
policy

Table 1: Comparison between Expected SARSA and Smoothed Q-learning

B MBP EXPERIMENT

Figure 1: Experimental Setup of the Maximization Bias Problem (MBP): The experiment starts
in state A. The agent has two possible actions: Right, leading to terminal state C with zero reward,
and Left, which leads to state B, also with zero reward. In state B, the agent has 8 actions, each
leading to terminal state D with a reward sampled from a Gaussian distribution with a mean of -0.1
and a variance of 1. This setup illustrates maximization bias in traditional Q-learning algorithms,
where overestimation can occur due to variance in the rewards(Sutton & Barto, 2018).

Purpose of the Experiment This setup underscores the issue of maximization bias in traditional
Q-learning, where the algorithm selects actions based on the highest Q-value. In state B, the vari-
ability in rewards amplifies this bias, as Q-learning tends to overestimate the expected reward by
favoring actions with initially higher but unreliable Q-values. Over time, this can lead the agent
to consistently choose suboptimal actions, even when more stable options offer better long-term
results.

C SMOOTHING STRATEGY
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Strategy Formula
Softmax bt =

eQ(s,a)∑
b eQ(s,b)

Clipped Max bt =

{
1− τ, if a = a∗

τ
A−1 , if a ̸= a∗

Clipped Softmax bt =

{
eβQ(s,a)∑
b∈I eβQ(s,b) , if a ∈ I

0, if a /∈ I

Bayesian Inference

Qadjusted(s, a) = Q(s, a) + µprior

bt =
eQadjusted(s

′,a)∑
b e

Qadjusted(s′,b)

σ2
posterior =

(
1

σ2
prior

+
n

σ2
observation

)−1

µposterior = σ2
posterior

(
µprior

σ2
prior

+

n∑
i=1

ri
σ2

observation

)

Table 2: Smoothing strategies with respective formulas

D CONVERGENCE PROOF

We outline a proof that builds upon the following result (Singh et al., 2000; Barber, 2023) for a
formal statement) and follows the framework provided in (Melo, 2001):

Theorem 1 The random process {∆t} taking value in R and defined as

∆t+1(x) = (1− αt(x))∆t(x) + αt(x)Ft(x) (1)

converges to 0 with probability 1 under the following assumptions:

• 0 ≤ αt ≤ 1,
∑

t αt(x) = ∞,
∑

t α
2
t (x) < ∞;

• E[∥Ft(x)∥W ] ≤ κ∥∆t∥W + ct, κ ∈ [0, 1) and ct → 0 with probability 1;
• var(Ft(x)) ≤ C(1 + ∥∆t∥W )2, C > 0

where ∥∆t∥W denotes a weighted max norm.

We are interested in the convergence of Qt towards the optimal value Q∗ and therefore define

∆t = Qt(st, at)−Q∗(st, at) (2)

It is convenient to write the smoothed update as

Qt+1(st, at) = Qt(st, at) + αt(st, at) (rt + γ ⟨Q(st+1, a)⟩a −Qt(st, at)) (3)

where ⟨f(x)⟩x means the expectation of the function f(x) with respect to the distribution of x.
Using the smoothed update, we can write

∆t+1(st, at) = Qt+1(st, at)−Q∗(st, at) (4)

= (1− αt)∆t + αt (rt + γ⟨Q(st+1, a)⟩a −Q∗(st, at)) (5)
In terms of Theorem 1, we therefore define

Ft = rt + γ
∑
a

bt(a|st+1)Qt(st+1, a)−Q∗(st, at) (6)

Proof D.1 For convergence, we need to bound the norm of the expected value of Ft. We can write

1

γ
E[Ft] = EpT [Gt] (7)
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where
Gt =

∑
a

bt(a|st+1)Qt(st+1, a)−max
a

Q∗(st+1, a) (8)

we can form the bound
1

γ
E[Ft]∞ = E[∥Gt∥∞] ≤ ∥Gt∥∞ (9)

which means that if we can bound ∥Gt∥∞ appropriately, the mean criterion will be satisfied.

Assuming that bt places (1− δt) mass in the maximal state of Q, we can write

∥Gt∥∞ ≤
∥∥∥max

a
Qt(st+1, a)−max

a
Q∗(st+1, a)

∥∥∥
∞
+δt

∥∥∥∥∥∥max
a

Qt(st+1, a)−
∑
c̸=a

bt(c|st+1)Qt(st+1, c)

∥∥∥∥∥∥
∞

(10)

≤ ∥∆t∥∞ + δt

∥∥∥∥∥∥max
a

Qt(st+1, a)−
∑
c̸=a

bt(c|st+1)Qt(st+1, c)

∥∥∥∥∥∥
∞

(11)

≤ ∥∆t∥∞ + δt

(
∥max

a
Qt(st+1, a)∥∞ + ∥Qt(st+1, c−)∥∞

)
(12)

where c− = argminc̸=a Qt(st+1, c) and the penultimate line follows from the fact that only a
maximum of δt mass can be placed in the minimal state c− (since (1 − δt) mass is placed in state
a∗). Putting this together we have

E[Ft]∞ ≤ γ∥∆t∥∞ + γδt

(
∥max

a
Qt(st+1, a)∥∞ + ∥Qt(st+1, c)∥∞

)
(13)

Since the Qt are bounded and E[Ft] converges to zero with probability 1, provided δt converges to
0 with probability 1. The mean criterion is therefore satisfied.

For the variance criterion, since the rewards are bounded, Qt and ∆t are also bounded. This means
that the variance is bounded. We can write:

∆Ft = ∆r + γ ⟨(Qt(st+1, a)− ⟨Qt(st+1, a)⟩)⟩st+1,a
(14)

= ∆r + γ ⟨(Qt(st+1, a))a − (Q∗(st+1, a))a + (Q∗(st+1, a))a − ⟨Qt(st+1, a)⟩a⟩st+1
(15)

= ∆r + γ
〈
Qt(st+1, a)−Q∗(st+1, a)− γ ⟨Qt(st+1, a)⟩st+1

〉
a

(16)

We can bound the variance using

var(Ft) = ∥⟨∆Ft⟩∥2∞ ≤ ∥∆Ft∥2∞ (17)

and use the triangle inequality,

∥∆Ft∥∞ ≤ ∥∆rt∥∞ + γ ⟨∥Qt(st+1, a)−Q∗(st+1, a)⟩a (18)

and using ∥⟨x⟩∞∥ ≤ ∥x∥∞
∥∆Ft∥∞ ≤ ∥∆rt∥∞ + γ∥∆t∥∞ + γ ⟨∥Qt(st+1, a)−Q∗(st+1, a)⟩⟩∞ (19)

We now write
⟨Qt(st+1, a)−Q∗(st+1, a)⟩∞ (20)

= ⟨(Qt(st+1, a))a − (Q∗(st+1, a))a + (Q∗(st+1, a))a − ⟨Qt(st+1, a)⟩a⟩∞ (21)
≤ ∥∆t∥∞ + ⟨∥ (Q∗(st+1, a))a −Q∗(st+1, a)∥⟩∞ (22)

≤ ∥∆t∥∞ +B (23)
for some constant B1 since the optimal Q∗ is bounded (for γ < 1 and bounded rewards). Hence,
since the rewards are bounded, there exists B such that

∥∆Ft∥∞ ≤ 2γB + 2γ∥∆t∥∞ = 2γB(1 + ∥∆t∥W ) (24)

This shows that the variance condition is satisfied.
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E EXPERIMENT SETTING

E.1 CLASSIC CONTROL AND BOX 2D ENVIRONMENT

Figure 2: Cartpole(Top Left), Acrobot(Top Right), CarRacing(Bottom Left), and Lunar Lan-
der(Bottom Right).

1. Cartpole: A pole is attached by an unactuated joint to a cart, which moves along a friction-
less track. The pendulum is placed upright on the cart and the goal is to balance the pole
by applying forces in the left and right direction on the cart.

2. Acrobot: A two-link pendulum system with only the second joint actuated. The task is to
swing the lower link to a sufficient height in order to raise the tip of the pendulum above
a target height. The environment challenges the agent’s ability to apply precise control for
coordinating multiple linked joints.

3. CarRacing: The easiest control task to learn from pixels - a top-down racing environment.
The generated track is random in every episode.

4. Lunar Lander: It is a classic rocket trajectory optimization problem. According to Pontrya-
gin’s maximum principle, it is optimal to fire the engine at full throttle or turn off. This is
why this environment has discrete actions: engine on or off.

E.2 METADRIVE BLOCK TYPE DESCRIPTION

Table 3: Block Types Used in Experiments

ID Block Type
S Straight
C Circular
r InRamp
R OutRamp
O Roundabout
X Intersection
y Merge
Y Split
T T-Intersection

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Figure 3: Various block types used in the MetaDrive environment. These blocks represent common
road structures such as straight roads, ramps, forks, roundabouts, curves, T-intersections, and inter-
sections, used for evaluating the vehicle’s path planning and decision-making capabilities.

E.3 MAP DESIGN AND TESTING OBJECTIVES

E.3.1 MAP 1: SROYCTRYS

This map consists of straight roads, roundabouts, intersections, T-intersections, splits, and ramps.
The environment presents a highly complex combination of multiple intersections, dynamic traffic
flow, and varying road structures.

Testing Objective: The focus of this environment is to evaluate the algorithm’s smooth decision-
making and multi-intersection handling, mimicking human driving behavior. The challenges include
adjusting vehicle paths in real-time and ensuring smooth lane transitions in the presence of complex
road structures such as roundabouts and ramps.

E.3.2 MAP 2: CORXSRT

This map combines circular roads, roundabouts, straight roads, intersections, ramps, and T-
intersections. The environment is designed to assess the vehicle’s decision-making capabilities when
dealing with continuous changes in road grades and multiple intersection types.

Testing Objective: This environment tests the algorithm’s ability to dynamically adjust to grade
changes and multi-intersection interactions, replicating human-like behavior. The goal is to ob-
serve how well the algorithm adjusts vehicle speed and direction, ensuring stability in scenarios
involving ramps and complex road networks.

E.3.3 MAP 3: RXTSC

This map consists of ramps, intersections, T-intersections, straight roads, and circular roads. The
environment simulates multiple road interactions, testing the vehicle’s path selection and stability,
particularly at intersections and ramps.

Testing Objective: This environment evaluates the algorithm’s performance in handling intersec-
tions and T-junctions with real-time path selection. The challenge is to ensure human-like adaptabil-
ity when encountering multiple directional options, maintaining decision stability in dynamic traffic
situations.

E.3.4 MAP 4: YORSX

This map includes splits, roundabouts, straight roads, circular roads, and intersections. The environ-
ment is tailored to test the vehicle’s ability to make path decisions in high-speed settings, particularly
when merging traffic and navigating through complex junctions.

Testing Objective: The map focuses on testing the vehicle’s ability to handle high-speed lane
merging and dynamic path planning. The algorithm must mimic human drivers by making real-
time adjustments in a high-speed environment, choosing optimal paths while maintaining speed
control and safety through complex intersections and roundabouts.

E.3.5 MAP 5: XTOC

This map features circular roads, T-intersections, and straight roads, creating a unique combination
of continuous curves and abrupt directional changes. The environment presents the challenge of
maintaining speed while negotiating tight turns and quick transitions at T-intersections.
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Testing Objective: The focus is on testing the vehicle’s ability to handle sharp directional changes
and maintain control during high-speed maneuvers. The algorithm needs to balance speed with
precision, ensuring safe navigation through tight turns and abrupt intersections.

E.3.6 MAP 6: SSSC

This map consists of three consecutive straight roads followed by a circular roundabout. It is de-
signed to test the basic driving capabilities of the vehicle, such as lane keeping, speed control, and
smooth roundabout navigation.

Testing Objective: The main challenge is to evaluate the vehicle’s ability to maintain lane stability
and make appropriate speed adjustments while navigating long straight roads and transitioning into
a circular roundabout. The algorithm must ensure smooth control and decision-making, simulating
human-like behavior in handling both high-speed straight roads and slower, more controlled turns
in the roundabout.
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E.4 ENVIRONMENT PARAMETER & AGENT PARAMETER

Table 4: Q-family vs PPO Algorithm and Environment Parameters

Parameter Q-Family PPO
Discrete Action Space True
Policy Basic Q network Categorical AC
Representation Basic MLP
Runner DRL
Representation Hidden Size [256, 256] [512,]
Q/Actor Hidden Size [256, 256] [256, 256]
Critic Hidden Size N/A [256, 256]
Activation Function relu leaky relu
Activation for Actions N/A tanh
Seed 123 / 321 / 666
Number of Parallels 10
Buffer Size 500,000 Horizon Size * Parallels (128 * 10)
Batch Size 64 N/A
Horizon Size N/A 128
Number of Epochs N/A 4
Number of Minibatches N/A 4
Learning Rate 0.00025
Start Greedy 1.0 N/A
End Greedy 0.01 N/A
Decay Step for Greedy 50,000 N/A
Sync Frequency 50 N/A
Training Frequency 1 N/A
Start Training Step 1,000 N/A
Running Steps 2,000,000
Use Gradient Clipping N/A True
Value Function Coefficient N/A 0.25
Entropy Coefficient N/A 0.0
Target KL Divergence N/A 0.001
Clip Range N/A 0.2
Clip Gradient Norm N/A 0.5
Gamma 0.99
Use GAE N/A True
GAE Lambda N/A 0.95
Use Advantage Normalization N/A True
Use Observation Normalization False True
Use Reward Normalization False True
Observation Normalization Range 5
Reward Normalization Range 5
Test Steps 10,000
Evaluation Interval 50,000 5,000
Test Episodes 5
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F EXPERIMENTAL SUPPLEMENTAL RESULTS

Table 5: We showcase the rewards of mean ± std for each algorithm in Box2D Environments

Environment/Method CBDDQN PPO Duel DQN DDQN DQN
Cartpole 469.98 ± 20.26 427.29 ± 16.62 92.24 ± 10.56 222.14 ± 19.71 294.79 ± 16.41
Acrobot -80.57 ± 12.63 -500.00 ± 0 -104.54 ± 40.55 -100.78 ± 21.07 -87.20 ± 14.07
CarRacing 819.08 ± 28.72 272.08 ± 27.02 -27.29 ± 6.78 788.13 ± 37.61 724.76 ± 37.17
LunarLander 158.07 ± 46.14 89.34 ± 70.44 -76.54 ± 84.85 73.04 ± 56.16 91.86 ± 70.44

Table 6: We present the rewards of mean ± std for each algorithm in Metadrive Environments

Map/Method CBDDQN PPO Duel DQN DDQN DQN
SrOYCTRyS 130.27 ± 52.43 75.38 ± 17.80 39.20 ± 3.87 100.72 ± 39.01 105.02 ± 41.69
COrXSrT 117.90 ± 22.62 89.27 ± 19.99 53.02 ± 1.95 29.15 ± 7.03 117.18 ± 15.34
rXTSC 189.22 ± 59.94 156.74 ± 47.77 39.62 ± 3.00 185.55 ± 56.03 82.05 ± 30.27
YOrSX 232.55 ± 83.76 165.46 ± 52.43 77.65 ± 14.21 81.03 ± 24.40 221.44 ± 40.26

Table 7: We present the rewards of mean ± std for different traffic density in Metadrive XTOC map

Traffic Density/Method CBDDQN PPO Duel DQN DDQN DQN
0.1 443.14 ± 59.63 73.90 ± 2.00 65.85 ± 8.43 151.42 ± 47.66 272.57 ± 91.25
0.3 303.15 ± 38.20 293.72 ± 56.28 67.58 ± 7.49 156.52 ± 39.27 170.73 ± 42.62
0.5 303.07 ± 40.61 256.18 ± 26.69 139.46 ± 39.78 164.34 ± 58.03 176.83 ± 56.12
0.8 161.91 ± 34.52 67.91 ± 3.42 60.71 ± 10.58 150.06 ± 36.45 147.92 ± 35.21
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Table 8: We present the rewards of mean ± std for different accident probabilities in Metadrive SSSC
map

Traffic Density/Method CBDDQN PPO Duel DQN DDQN DQN
0.1 64.62 ± 10.41 -1.72 ± 0.55 40.32 ± 4.60 45.63 ± 4.56 46.73 ± 7.38
0.3 69.23 ± 6.46 45.31 ± 12.04 40.99 ± 1.83 43.42 ± 10.48 55.14 ± 9.41
0.5 69.23 ± 6.46 45.60 ± 10.24 41.12 ± 1.71 43.42 ± 10.48 55.14 ± 9.41
0.8 73.25 ± 6.78 -5.29 ± 0.16 43.78 ± 4.27 9.10 ± 3.22 55.17 ± 11.03

G RUNNING SETTING

For the Cartpole and Lunar Lander environments, the training process utilizes 1 RTX 3060 and
typically runs less than 30 minutes. For the Carracing environment, we require 1 RTX 3060 and
2 hours of running. For the Metadrive environments, the training process utilizes 1 RTX 3060 and
typically runs around 3-6 hours according to different complexity.
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