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Abstract

By combining robust regression and prior information, we develop an effective
robust regression method that can resist adaptive adversarial attacks. Due to the
widespread existence of noise and data corruption, it is necessary to recover the
true regression parameters when a certain proportion of the response variables
have been corrupted. Methods to overcome this problem often involve robust
least-squares regression. However, few methods achieve good performance when
dealing with severe adaptive adversarial attacks. Based on the combination of
prior information and robust regression via hard thresholding from [1], this paper
proposes an algorithm that improves the breakdown point when facing adaptive
adversarial attacks. Furthermore, to improve the robustness and reduce the esti-
mation error caused by the inclusion of a prior, the idea of Bayesian reweighting
is used to construct a more robust algorithm. We prove the theoretical conver-
gence of proposed algorithms under mild conditions. Extensive experiments show
that, under different dataset attacks, our algorithms achieve state-of-the-art results
compared with other benchmark algorithms, demonstrating the robustness of the
proposed approach.

1 Introduction

Least-squares methods are widely used because of their simplicity and ease of operation. However,
due to the inevitable existence of outliers, least-squares methods, such as linear regression, may
cause significant bias in practical applications. Therefore, to meet the challenge of learning reliable
regression coefficients in the presence of significant corruption in the response vector, this paper
focuses on robust least-squares regression (RLSR). RLSR has excellent application value in many
fields, such as signal processing [9][13][27], economics [24], industry [22], biology [14], remote
sensing [12] and intelligent transportation [26].

Given a data matrix X = [x1, ...,xn] ∈ Rd×n, the corresponding response vector y ∈ Rn, and
a certain number k representing the number of corruptions in the data, the RLSR problem can be
described as:

(ŵ, Ŝ) = arg min
w∈Rp,S⊂[n]
|S|=n−k

∑
i∈S

(yi − xTi w)2 (1)

That is, we aim to recover the correct point set S and the regression coefficient w∗ simultaneously
to achieve the minimum regression error. However, this problem is NP hard, so it is difficult to
optimize directly [20].

To solve the above problem, a commonly used data generation model is y = XTw∗ + b∗ + ϵ,
where w∗ is the true regression coefficient we wish to recover and ϵ is a dense white noise vector
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subject to a specific distribution, that is, ∥ϵ∥0 ∼ n. The vector b∗ is k-sparse, which means that
there are only k non-zero values, representing k unbounded noise terms in the response vector. After
years of development, there are many ways to find a reasonable solution to the problem in Eq. (1).
However, these methods typically only achieve good performance under specific conditions. The
main challenge is the low breakdown point of conventional methods. The breakdown point k is
a measure of robustness, which means the number of corruptions that the RLSR algorithm can
tolerate. We can express k as the proportion of all data points: k = α · n. Many RLSR algorithms
cannot guarantee theoretical convergence as the value of k increases. For example, McWilliams
et al. [15] used weighted subsampling for linear regression, but only had a breakdown point of
α = O(1/

√
d). Prasad et al. [19] proposed a robust gradient estimator that can be applied to

linear regression, but their method only tolerates corruption up to α = O(1/ log d). Other methods
may have a higher breakdown point, but tend to assume a specific pattern of data corruption. One
representative adversary model for introducing data corruption is the oblivious adversarial attack
(OAA), in which the opponent generates k sparse vectors while completely ignoring X , w∗, and
ϵ. The work of Bhatia et al. [1] and Suggala et al. [21] reported excellent results against OAAs by
using a novel hard thresholding method; indeed, [21] suggested that α may even get close to 1 as
n→∞. The recent online fast robust regression algorithm [17] also has consistent convergence with
a mild condition by using Stochastic Gradient Decent (SGD) algorithm. However, these methods
cannot resist adaptive adversarial attack (AAA), in which opponents can view X , w∗, and ϵ before
determining b∗. Handling AAA is a challenging task, and so many methods can only guarantee a
very low breakdown point, especially when the data distribution is not normal [5][10][16]. Bhatia et
al. [2] proposed the thresholding operator-based robust regression method and their breakdown point
reach 1/65 for noiseless model i.e., ϵ ≡ 0. However, their method can give a consistent estimation
only in noiseless case. Karmalka et al. [11] had a good result in sparse robust linear regression
by applying the L1 regression and the breakdown point of their method reaches 0.239, but their
estimation is consistent only when white noise ϵ is sparse. Diakonikolas et al. [7] considered the
situation that X and y may have outliers simultaneously, and proposed a filter algorithm in which
the error bound is O(α log(1/α)σ). However, their method requires accurate data covariance of the
true data distribution or numerous unlabeled correct data to estimate the data covariance, which are
often unavailable in practice.

The limitations of the above-mentioned methods can be attributed to a lack of prior knowledge from
the real data, making it difficult to distinguish the set of correct points in the case of AAAs. Gülçehre
et al. [8] showed that prior information effectively improves the accuracy of machine learning. In
many application scenarios in industry, economics, and biology, prior knowledge such as previous
experimental data or engineering data are available. The goal of this paper is to propose a new
robust regression that can integrate available prior information, even if the prior information is not
very accurate.

The typical approach for integrating prior information is the Bayesian method. This provides a way
of formalizing the process of learning from data to update beliefs in accordance with recent notions
of knowledge synthesis [6]. However, generic Bayesian method is also sensitive to outliers. Thus
robust Bayesian method should be considered to produce more reliable estimates in the presence of
data corruption. Polson et al. [18] used the local variance to assign each point a local parameter that
makes the estimation result robust. Furthermore, Wang et al. [23] proposed a local parameterization
method and used empirical Bayesian estimation to determine the global parameters. Bhatia et al. [3]
proposed a Bayesian descent method using an unadjusted Langevin algorithm (ULA), which guar-
antees convergence in a finite number of steps. Wang et al. [25] employed Bayesian reweighting to
assign different weights to samples, thus reducing the impact of outliers.

In this paper, we combine the Bayesian method with a hard thresholding method [1] and propose
two algorithms, which we call TRIP and BRHT. Through assigning a simple normal prior on the
coefficients, TRIP can significantly increase the breakdown point when resisting AAAs. To fur-
ther improve the accuracy of estimation, we propose BRHT algorithm through applying Bayesian
reweighting method [25] to coefficient estimation. Experiments show that BRHT is even more resis-
tant to AAAs and gives lower estimation errors, demonstrating that our method achieves significantly
improved robustness.

Our Contributions: The main contribution of this paper is proposing new methods that combining
the prior and robust regression to increase the breakdown point when encountering AAAs. We derive
the theoretical guarantees given by our proposed algorithms. Compared with the consistent robust
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regression (CRR) algorithm proposed in [1], we prove that our algorithms guarantee convergence
under a weaker condition, which also shows that our methods improves the breakdown point. We
also establish an extended experiment to test the effectiveness of the algorithms. Compared with
other basic algorithms, the experimental results show that our methods significantly outperform
alternative methods under AAAs. Moreover, BRHT algorithm is also competitive against OAAs.

Paper Organization: We state the problem formulation and present some notation and tools in
Section 2. In Section 3, we describe the details of our proposed TRIP and BRHT algorithms. The
theoretical properties of these two algorithms are discussed in Section 4. Section 5 presents extensive
experimental results that demonstrate the excellent performance of our proposed algorithms. Section
6 concludes this paper.

2 Problem Formulation

In this study, we mainly focus on the problem of RLSR under AAAs. We are given a covariant
matrix X = [x1, ...,xn] ∈ Rd×n, where xi ∈ Rd. The true coefficient of the regression model is
denoted by w∗. The response vector y ∈ Rn is generated by:

y = XTw∗ + b∗ + ϵ (2)
The perturbations to the response vector consist of two parts: the adversarial corruption vector
introduced by b∗, which is a k-sparse vector, and the dense white noise ϵi ∼ N (0, σ2). Our goal is
to recover the true regression coefficient w∗ while simultaneously determining the corruption set S.
To illustrate our problem, we first pay attention to the standard robust regression problem in Eq. (1).
From the viewpoint of probability, the problem can be transformed into a log-likelihood version:

(ŵ, Ŝ) = arg max
w∈Rp,S⊂[n]
|S|=n−k

∑
i∈S

log ℓ(w | yi,xi, σ2) (3)

We will try to convert the problem in Eq. (3) into a Bayesian version. From the Bayesian viewpoint,
we consider pw(w) as the prior of the coefficients in the model. In addition, we add the localization
parameter r and its prior pr(r) to reflect the change introduced by each additional sample. For any
subset S ⊆ [n], the distribution of all parameters and data XS ,yS is:

p(yS ,w, rS | XS) = pw(w)pr(rS)
∏
i∈S

ℓ(yi | ri,w,xi, σ
2) (4)

The posterior distributions p(w, rS |XS ,yS) and p(yS ,w, rS |XS) differ by a regularization con-
stant. We ignore this regularization constant in the posterior distribution and only consider the main
terms of the parameters. We then formulate the Bayesian RLSR problem of searching for the subset
and coefficients by maximizing the log-posterior:

(ŵ, Ŝ) = arg max
w∈Rp,r∈Rn

+

S⊂[n],|S|=n−k

log pw(w) +
∑
i∈S

[log ℓ(yi | ri,w,xi, σ
2) + log pr(ri)] (5)

Note that we do not add any prior on σ2 and only treat this as an adjustable parameter. This is
because, in the initial stage of the algorithm described in Section 3, the estimated σ2 will be large
due to the existence of outliers, and this will make the estimation of w excessively biased to the prior
distribution. This bias will be harmful, especially when the prior is not sufficiently accurate. This
phenomenon can be observed in Section 3.1. To prove the positive effect of the prior on the RLSR
problem, we require the properties of Subset Strong Convexity (SSC) and Subset Strong Smoothness
(SSS). Given a set S ⊂ [n], XS := [xi∈S ] ∈ Rd×|S| signifies the matrix with columns in the set S.
The smallest and largest eigenvalues of a square symmetric matrix X are denoted by λmin(X) and
λmax(X).
Definition 1 (SSC Property). A matrix X ∈ Rd×n is said to satisfy the SSC property at level m with
constant λm if the following holds:

λm ≤ min
|S|=m

λmin(XSX
T
S ) (6)

Definition 2 (SSS Property). A matrix X ∈ Rd×n is said to satisfy the SSS property at level m with
constant Λm if the following holds:

max
|S|=m

λmax(XSX
T
S ) ≤ Λm (7)
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Algorithm 1 TRIP: hard Thresholding approach to Robust regression with sImple Prior
Input: Covariates X = [x1, ...,xn], responses y = [y1, ..., yn]

T , prior knowledge w0,
penalty matrix M , corruption index k, tolerance ϵ

Output: solution ŵ
1: b0 ← 0, t← 0,

PMX ← XT (XXT +M)−1X , PMM ← XT (XXT +M)−1M
2: while ∥bt − bt−1∥2 > ϵ do
3: bt+1 ← HTk(PMXbt + (I − PMX)y − PMMw0)
4: t← t+ 1;
5: end while
6: return ŵ← (XXT )−1X(y − bt)

These two properties are proposed in [2], and are intended to standardize the generation of the data
matrix so that it will not be too abnormal. They are used to prove the theorems in Section 4.

3 Methodology

We first ignore the localization parameter r in Eq. (5) and propose a simple method called TRIP in
Section 3.1. TRIP demonstrates the effect of a prior on the hard thresholding method. To improve
the robustness and the accuracy of the estimation, the BRHT algorithm is proposed in Section 3.2.

3.1 TRIP: Hard Thresholding Approach to Robust Regression with Simple Prior

We propose a robust regression algorithm called TRIP (Algorithm 1), a hard Thresholding approach
to Robust regression with sImple Prior. In this subsection, only the prior pw(w) is considered and
the localization parameter r is not added to the model. We assume the variance σ2 of ϵi can be set
by ourselves and that the prior pw(w) obeys a normal distribution N (w0,Σ0), where w0 and Σ0

are determined in advance. Through the above simple parameter settings, the problem in Eq. (5) is
transformed into the problem in Eq. (1) with an additional regularization term:

(ŵ, Ŝ) = arg min
w∈Rp,S⊂[n]
|S|=n−k

∑
i∈S

(yi − xTi w)2 + (w −w0)
TM(w −w0) (8)

where M = (Σ0/σ
2)−1. To solve this problem, we are motivated by the hard thresholding method

proposed by Bhatia [1], which concentrated on recovering the errors instead of selecting the ‘clean-
est’ set. The problem in Eq. (8) can be formulated as minw∈Rp,∥b∥0≤k∗

1
2∥X

Tw − (y − b)∥22 +
1
2 (w−w0)

TM(w−w0). Thus, if we have an estimation b̂ of the corruption vector b∗, the estima-
tion of w∗ can be easily obtained by ŵ = (XXT +M)−1[X(y− b̂)+Mw0]. By substituting this
estimation into the optimization problem, we obtain a new formulation of the problem:

min
∥b∥0≤k∗

f(b) =
1

2
∥(PMX − I)(y − b) + PMMw0∥22 (9)

where PMX = XT (XXT + M)−1X , PMM = XT (XXT + M)−1M . The hard thresholding
step in the TRIP algorithm can be viewed as bt+1 = HTk(b

t − ∇f(bt)), where k is the selected
corruption coefficient. The hard thresholding operator HTk is defined as follows.
Definition 3 (Hard Thresholding). For any vector r ∈ Rn, let δ−1

r (i) represent the position of the
ith element in r, which are arranged in descending order of magnitude. Then, for any k < n, the
hard thresholding operator is defined as r̂ = HTk(r), where r̂i = ri if δ−1

r (i) ≤ k and 0 otherwise.

The difference between the proposed TRIP algorithm and the original CRR [1] is the form of itera-
tion step. The iteration step in both TRIP and CRR can be expressed uniformly as HTk(y−XTwt),
but wt = (XXT +M)−1[X(y − bt) +Mw0] in TRIP and wt = (XXT )−1X(y − bt) in CRR.
The wt in CRR is just a simple least square estimation, while the prior added in TRIP can be re-
garded to adding a quadratic regularization in each iteration. This quadratic regularization can avoid
the candidate of iteration that is too far from the prior mean, which is also helpful to ensure the
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Algorithm 2 BRHT: robust Bayesian Reweighting regression via Hard Thresholding
Input: Covariates X = [x1, ...,xn], responses y = [y1, ..., yn]

T , prior distribution pr(r), pw(w)
, corruption index k, tolerance ϵ

Output: solution ŵ
1: b0 ← 0, t← 0,
2: while ∥bt − bt−1∥2 > ϵ do
3: wt ← V BEM(X,y − bt, pr(r), pw(w))
4: bt+1 ← HTk(y −XTwt)
5: t← t+ 1;
6: end while
7: return ŵ← (XXT )−1X(y − bt)

Algorithm 3 VBEM: Variational Bayes Expectation Maximization
Input: Covariates X = [x1, ...,xn], responses y = [y1, ..., yn]

T , prior distribution pr(r), pw(w)
Output: solution ŵ
1: repeat
2: update q(r)
3: update q(w)
4: until convergence
5: return ŵ←MAP(q(w))

numerical stability of solution. Thus, as long as the prior is not mis-specified too much, TRIP will
be more likely to identify the uncorrupted points, and the final result of TRIP will be more robust
than CRR.

Therefore, the prior plays an important role in TRIP. However, the weight of a prior in the solution
depends entirely on the matrix M = (Σ0/σ

2)−1. Therefore, if we use an estimation of σ̂2 to replace
σ2, or give σ2 a prior to calculate its posterior distribution, the overestimation of σ2 will cause a
severe increase in M in the initial iteration steps. This will mislead the iteration and cause some
deviation in the final results. To overcome this difficulty we can directly treat M as an adjustable
parameter to control by specifying the form such as M = sI , where s is a positive number, and the
suitable parameter can be chosen through 5-fold or 10-fold cross validation.

3.2 BRHT: Robust Bayesian Reweighting Regression via Hard Thresholding

In this subsection, we describe how the Bayesian reweighting method is combined with hard thresh-
olding to give a more robust algorithm, BRHT (Algorithm 2), a robust Bayesian Reweighting regres-
sion via Hard Thresholding. We first introduce the reweighted probabilistic model (RPM) proposed
in [25] for traditional linear regression. For the covariates X and the response y, the RPM model
can be formulated as follows:

p(y,w, r|X) =
1

Z
pw(w)pr(r)

n∏
i=1

ℓ(yi | w,xi, σ
2)ri (10)

where r is the local weight assigned to each sample, Z is the normalizing constant, ℓ(yi | w,xi, σ
2)

represents the likelihood of the normal distribution N (xTi w, σ2), and pw(w), pr(r) are the priors
of w and r, respectively. By ignoring the normalizing constant, the problem in Eq. (5) can be
transformed into the following form under this RPM setting:

(ŵ, Ŝ) = arg max
w∈Rp,r∈Rn

+

S⊂[n],|S|=n−k

log pw(w) +
∑
i∈S

[ri log ℓ(yi|w,xi, σ
2) + log pr(ri)] (11)

The specific form of the prior pr(ri) can be set to any nonnegative random variable distribution,
including (but not limited to) the Gamma distribution, Beta distribution, or log-normal distribution.
Here, we still use the normal distribution N (w0,Σ0) as the form of pw(w).

To solve the optimization problem in Eq. (11), we use the two-step BRHT algorithm. The key
iteration step in BRHT is bt+1 ← HTk(y − XTwt), where wt is calculated by maximizing the
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log-posterior of the RPM model:

(wt, rt) = arg max
w∈Rd,r∈Rn

+

log pw(w) + log pr(r) +

n∑
i=1

ri log ℓ(yi − bti | w,xi, σ
2) (12)

However, the direct inference of Eq. (12) is hard because of the nonconvexity of this problem.
In general, the parameters in this RPM model can be divided into two parts: the global variable
w and the local latent variable r. To solve the inference problem of RPM, a feasible method is
to use variational Bayesian expectation maximization (VBEM). We set q(w, r) = q(w)q(r) to
approximate the true posterior after several iterations of VBEM (Algorithm 3), and replace the
estimation of w by the maximum a posteriori (MAP) estimation from the final approximate posterior.
Full details of the VBEM method are given in Appendix A. It is reasonable to ask why we are using
Bayesian reweighting. Note that the iteration step in the TRIP algorithm is bt+1 ← HTk(PMXbt+
(I −PMX)y−PMMw0) = HTk(y−XTwt), where wt = (XXT +M)−1[X(y−bt) +Mw0].
Although we can show that TRIP already guarantees theoretical convergence, the estimation of w∗ in
every iteration still uses least-squares with a penalty term, which is easily affected by the corrupted
points. This disadvantage forces us to assign a higher weight to the prior to resist severe data
corruption in the case of AAAs. However, a higher weight on the prior means a larger estimation
bias. When applying the Bayesian reweighting method, the estimation in each step is more robust
than the least-squares result, and thus the weight on the prior can be reduced to guide the iteration.
Therefore, the estimation bias is relatively small and the results are more robust. This is reflected in
the experimental results presented in Section 5.

We should also explain why we only use a prior for a few parameters. It is important to ensure that
the prior weights are neither too high nor too low. As mentioned earlier, if we treat σ2 as the param-
eter to be estimated, this places too much weight on the prior. We also ensure that pw(w) does not
create more uncertainty, such as setting pw(w) to p(w, α) = N (w0, α

−1Σ0)Gam(α|aα, bα). Data
corruption means that the subset of the training data may vary greatly from the prior information.
Thus, when calculating the posterior, the variance of w controlled by α will be very large to fit the
data, and so the prior information w0 will have lower weights in the inference step. The above prob-
lems also mislead the estimation and the selection of subsets, so we do not consider the uncertainty
of these quantities and simply treat them as model parameters to be set in advance. An adjustment
method for all the parameters in BRHT is described in Appendix D.

4 Theoretical Convergence Analysis

In this section, we establish the convergence theory for the TRIP algorithm, and clearly explain how
the prior effectively enhances the convergence of the RLSR model. Theorems 1 and 2 summarize
the results. We also show the theoretical guarantee of the BRHT algorithm in Theorems 3–5, which
further demonstrate the special properties achieved by using Bayesian reweighting. Before present-
ing the convergence result, we first introduce some notation. Let λt := (XXT +M)−1X(bt−b∗),
g := (I − PMX)ϵ, and f := PMM (w∗ −w0). Let St := [n]\supp(bt) be the chosen subset that is
considered to be uncorrupted, and It := supp(bt) ∪ supp(b∗).

Theorem 1. Let X = [x1, . . . ,xn] ∈ Rd×n be the given data matrix and y = XTw∗ + b∗ + ϵ
be the corrupted output with sparse corruption of ∥b∗∥0 ≤ k · n. For a specific positive semi-
definite matrix M , X satisfies the SSC and SSS properties such that 2 Λk+k∗

λmin(XXT+M)
< 1. Then, if

k > k∗, it is guaranteed with a probability of at least 1 − δ that, for any ε, δ > 0, ∥bT0 − b∗∥2 ≤
ε+ O(e0) + O(

√
Λk+k∗λmax(M)

λmin(XXT+M)
)∥w∗ −w0∥2 after T0 = O(log( ∥b

∗∥2

ε )) iterations of TRIP, where

e0 = O(σ
√
(k + k∗) log n

δ(k+k∗) ) under the normal design.

Theorem 2. Under the conditions of Theorem 1, and assuming that xi ∈ Rd are generated from
the standard normal distribution, if k > k∗, it is guaranteed with a probability of at least 1− δ that,
for any ε, δ > 0, the current estimation coefficient wT0 satisfies ∥wT0 −w∗∥2 ≤ O( 1√

n
)(ε+ e0) +

O(
√
k+k∗λmax(M)

n3/2 )∥w∗ −w0∥2 after T0 = O(log( ∥b
∗∥2

ε )) steps.

For positive semi-definite matrices XXT and M , λmin(XXT +M) ≥ λmin(XXT ) + λmin(M).
Thus, the condition 2

Λk+k∗

λmin(XXT+M)
< 1 in Theorem 1 is weaker than the condition 2

Λk+k∗

λmin(XXT )
<
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1 of Lemma 5 of Bhatia [1], which shows that a prior can effectively improve the convergence of
the algorithm. Assigning a higher weight to a prior means that M has larger eigenvalues, so that the
convergence condition will be more easily satisfied. As a result, the TRIP algorithm can tolerate a
higher proportion of outliers than the CRR method of Bhatia [1] and achieves a higher breakdown
point. In fact, under the condition limn→∞

λmin(M)
n = ξ, we can give an approximate expression of

the breakdown point for TRIP when ξ is not too large: k∗ ≤ k ≤ (0.3023−
√
0.0887− 0.0040ξ)n.

Details can be found in Appendix C.2. However, the improved convergence comes at the cost of
an unavoidable reduction in precision. This can be seen from Theorem 2. If the data corruption is
such that k∗ is O(n) and the maximum eigenvalue of M is also O(n), then the bias of ŵ cannot be
decreased by adding more samples, which shows that there is a trade-off between convergence and
accuracy. A reliable prior improves both accuracy and convergence because it has a higher weight.
However, an inaccurate prior can also be helpful as long as it is quite different from the distribution
of outliers, and the convergence can be improved through a prior with a low weight.

To prove the properties of our BRHT algorithm, we define the following two intermediate variables
to simplify the description:

U(w, r, S) = log pw(w) +
∑
i∈S

[log pr(ri) + ri log ℓ(yi | w,xi, σ
2)] (13)

M(w, r,b) = log pw(w) +
∑
i

[log pr(ri) + ri log ℓ(yi − bi | w,xi, σ
2)] (14)

Theorem 5. Suppose that the prior of ri is independently and identically distributed (iid). We con-
sider the tth iteration step of the BRHT algorithm, where wt, rt = argmaxw∈Rd,r∈Rn

+
M(w, r,bt)

and bt = HTk(y − XTwt−1) is obtained from the hard thresholding step. Then, we have that
U(wt, rt, St+1) ≥ U(wt−1, rt−1, St).

Theorem 6. Consider a data matrix X and a specific positive semi-definite matrix M satisfying
the SSC and SSS properties such that 2 Λk+k∗

λmin(XXT+M)
< 1. Then, there exist α > 0 and 0 <

γ ≤ 1 + ϵ, where ϵ is a small number, such that if k > k∗ and Σ in the prior pw(w) is ασ2M−1,
it is guaranteed with a probability of at least 1 − δ that, for any ε, δ > 0, ∥bT0 − b∗∥2 ≤ ε +

O(e0) + O(

√
Λk+k∗λmax(M)

λmin(XXT+M)
)γ∥w∗ −w0∥2 after T0 = O(log(γ∥b

∗∥2

ε )) iterations of BRHT, where

e0 = O(σ
√
(k + k∗) log n

δ(k+k∗) ) under the normal design.

Theorem 7. Under the conditions of Theorem 4 and with xi ∈ Rd generated from the standard
normal distribution, there exist α > 0 and 0 < γ ≤ 1 + ϵ, where ϵ is a small number, such that
if k > k∗ and Σ in the prior pw(w) is ασ2M−1, it can be guaranteed with a probability of at
least 1 − δ that, for any ε, δ > 0, the current estimation coefficient wT0 satisfies ∥wT0 −w∗∥2 ≤
O( 1√

n
)(ε+ e0) + O(

√
k+k∗λmax(M)

n3/2 )γ∥w∗ −w0∥2 after T0 = O(log(γ∥b
∗∥2

ε )) steps.

Theorem 5 shows that our BRHT algorithm is reasonable because it optimizes the problem in Eq.
(11) in each step. Theorems 6 and 7 guarantee the convergence of the parameter, which means that
if we introduce a prior pw(w) = N (w0,Σ0) to the TRIP algorithm, it is convergent. There then
exists some α > 0 such that the prior pw(w) = N (w0, αΣ0) in the BRHT algorithm guarantees
convergent parameters and the bias of the estimation of w∗ will be γ times that of TRIP. Note that
α is usually relatively large in practice, which causes a lower prior weight in BRHT. Thus, when
the convergence can be guaranteed, the bias of the estimator ŵ can be significantly reduced because
BRHT assigns a lower weight to the prior. Even if the data are seriously corrupted, BRHT can
ensure good results without significant error. All proofs of these theorems are given in Appendix C.

5 Experiments

In this section, we first consider how to effectively ‘corrupt’ the dataset using two different attacks:
OAA and AAA. We then report an extensive experimental evaluation to verify the robustness of the
proposed methods.
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Algorithm 4 ADCA: Adaptive Data Corruption Algorithm
Input: Covariates X = [x1, ...,xn], responses y = [y1, ..., yn]

T , true parameter w∗

penalty coefficient δ, corruption index k, tolerance ϵ
Output: solution ŵ
1: b0 ← 0, t← 0,

PδX ← XT (XXT − δI)−1X , Pδ ← XT (XXT − δI)−1δI
2: while ∥bt − bt−1∥2 > ϵ do
3: bt+1 ← HTk(PδXbt + (I − PδX)y + Pδw

∗)
4: t← t+ 1;
5: end while
6: ŵ← (XXT )−1X(y − bt)
7: C ← supp(bt)
8: return yC = XT

C ŵ

5.1 Data and Metrics

In our experiments, the data generation can be divided into two steps. First, we generate the basic
model. The true coefficient w∗ is chosen to be a random unit norm vector. The covariant xi are iid
inN (0, Id). The data are generated by yi = xTi w

∗ + ϵi, where ϵi are iid inN (0, σ2). We set σ = 1
in the experiments. The second step is to generate the corrupted data using two kinds of attacks:
OAA and AAA, as described in Section 5.2. The aim is to produce k∗ corrupted responses in the
whole dataset. The prior coefficient w0 is generated by w∗ + νu, where u is a random unit norm
vector and ν is a non-negative number (ν is set to 0.5 unless otherwise stated). Σ0 takes the form sI ,
where s takes a different value for each method. All parameters are fixed in each experiment.

Following the setting in [1], we measured the performance of the regression coefficients by the
standard L2 error: rŵ = ∥ŵ −w∗∥2. To judge whether the algorithm had converged, we used the
termination criterion ∥wt+1 −wt∥2 ≤ 10−4. All results were averaged over 10 runs.

5.2 Corruption Methods

To demonstrate the efficiency of our proposed methods, we apply two different attacks to the dataset:
OAA and AAA. The details of these two attacks are shown as follows.

OAA: The set of corrupted points S is selected as a uniformly random k-sized subset of [n], and
the corresponding response variables are set as yi = xTi w

∗+ bi+ ϵi, where bi are sampled from the
uniform distribution U [0, 10] and the white noise ϵi ∼ N (0, σ2).

AAA: We use all information from the true data distribution to corrupt the data, and propose an
adaptive data corruption algorithm (ADCA). This algorithm is quite similar to TRIP; full details of
ADCA (Algorithm 4) are given in Appendix B. δ is set to 0.1n for n = 1000, p = 200, and to 0.2n
for n = 2000, p = 100.

Both TRIP and BRHT employ the prior pw(w) while the variance Σ0 of pw(w) in OAA is set to be
four times higher than that in AAA, which means that the prior has a higher weight in AAA. Other
parameters for these two algorithms are fixed. The prior distribution pr(r) is set to the Gamma
distribution unless otherwise stated.

We also design another leverage point attack (LPA) to test the robustness of our methods. More
results can be seen in Appendix E.

5.3 Methods Comparison

Our methods are compared with three baselines: 1) CRR [1] is an effective robust regression method
in cases where there are large numbers of random outliers; 2) Reweighted robust Bayesian regression
(RRBR) [25] allows us to judge whether our proposed methods are better than the original method;
3) Rob-ULA [3] is an effective robust Bayesian inference method that approximately converges to
the real posterior distribution in a finite number of steps in the presence of outliers. The parameters
of RRBR are the same as in the BRHT algorithm, except for the hard thresholding part. For more
comparisons of other methods, please see Appendix E.
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(a) (b) (c) (d)

Figure 1: Recovery of parameters with respect to the number of data points n, dimensionality d, and
corruption ratio α. TRIP and BRHT are more robust under AAAs than CRR, and BRHT exhibits the
best performance in all experiments. RRBR and Rob-ULA show some robustness, but offer slightly
worse recovery in some experiments.

(a) (b) (c) (d)

Figure 2: (a), (b) show the convergence characteristics of TRIP and BRHT. Both algorithms exhibit
an estimation bias as the price of adding a prior in OAA, but BRHT is more accurate and behaves
significantly better in AAA, while TRIP stalls during the iterative process. (c), (d) show the conver-
gence under different weights of the prior pr(r) and the coefficient prior pw(w).

5.4 Recovery Properties of Coefficients and Uncorrupted Sets

CRR, RRBR, and Rob-ULA are excellent robust regression methods or Bayesian inference methods,
but they all show their limitations in the face of different kinds of attacks. CRR achieves the best
performance in the face of OAAs because it is theoretically unbiased, but it collapses rapidly when
facing AAAs, as shown in Figures 1(c) and 1(d). RRBR and Rob-ULA take priors into consider-
ation, but RRBR cannot resist AAAs and Rob-ULA produces poor results under OAAs, as shown
in Figures 1(a)–1(d). TRIP produces a good effect against AAAs, while BRHT is not only optimal
against AAAs, but also displays a similar effect to CRR in the case of OAAs. This shows that BRHT
is the most robust algorithm among those compared in this experiment.

The TRIP and BRHT algorithms are compared in Figures 2(a) and 2(b). The TRIP method incor-
porates too much prior information in the case of OAAs, resulting in a greater estimation error than
those of BRHT and CRR as shown in Figure 2(a). However, under AAAs, the prior information of
TRIP and BRHT is enhanced by a factor of four, as described in Section 5.2. BRHT converges under
a weaker prior, while TRIP becomes trapped around a local optimum. This shows that BRHT only
needs to integrate weak prior information to ensure convergence. Figures 2(c) and 2(d) illustrate
the convergence properties under different weights of the prior pr(r) and coefficient prior pw(w).
Figure 2(c) shows that BRHT is not especially sensitive to the weight prior pr(r) when this prior is
relatively reliable. A log-normal distribution is the best choice when the prior pw(w) is relatively
close to the real parameters and a Gamma distribution is more robust when the prior is imprecise, as
shown in Figure 2(d).

6 Conclusion

This paper has described a novel robust regression algorithm named TRIP that achieves strong results
in terms of resisting AAAs. By adding a prior to the robust regression via hard thresholding, the
recovery of coefficients is significantly improved. Another algorithm, named BRHT, was designed
to improve the robustness of TRIP and reduce the estimation error through the use of Bayesian
reweighting regression. We prove that both algorithms have strong theoretical guarantees and that
the algorithms converge linearly under a mild condition. Extensive experiments have illustrated that
our algorithms outperform benchmark methods in terms of both robustness and efficiency.
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There are several interesting future directions to extend current work. Firstly, in this article, we only
consider the case when y is corrupted. One would consider using the prior information to better
deal with the problem where both y and X are corrupted. Secondly, it would be also interesting to
further reduce the effect of a prior on the estimation to make it consistent.
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A Details of Variational Bayesian EM Method

For the RPM model and the given covariates X = [x1, ...,xn], responses y = [y1, ..., yn]
T , and

prior distributions pr(r), pw(w), the posterior of this RPM model is formulated as

log pw(w) + log pr(r) +

n∑
i=1

ri log ℓ(yi | w,xi, σ
2)

where ℓ(yi | w,xi, σ
2) represent the likelihood of the normal distribution N (xTi w, σ2). pw(w),

pr(r) are the priors of w and r. p(w) is the density of the normal distribution N (w0,Σ0). We now
use variational Bayesian EM to approximate the true posterior.

q(w)
∏
i

q(ri) ≈ p(w, r|y, X, σ2)

In the following, we derive update equations for these variational parameters.

A.1 Derivation of q(r) (variational E step)

Ignoring terms that do not involve r, we take the expectations of over the remaining terms. We have
log q(r) = Eq(w)[log p(y,w, r|X)] + const

= log pr(r) +
∑
i

riEq(w)[log ℓ(yi|w,xi, σ
2)] + const

where q(w) is the form of the normal distribution N (wN , VN ), as will be shown in the derivation
of q(w). Using this fact, we have

Eq(w)[log ℓ(yi|w,xi, σ
2)] = Eq(w)[−

1

2σ2
(yi −wTxi)

2 − 1

2
log(2πσ2)]

= − 1

2σ2
[(yi −wT

Nxi)
2 + xTi VNxi]−

1

2
log(2πσ2)

When the priors pr(ri) are independent of each other, then

q(ri) ∝ exp{log pr(ri) + riEq(w)[log ℓ(yi | w,xi, σ
2)]}

If the distribution of q(ri) is complex, we use a Markov chain Monte Carlo method to simulate the
distribution. An easy example for pr(ri) is the Gamma distribution Gam(ri|ar, br). Then,

q(ri) = Gam(ri|aiN , biN )

aiN = ar

biN = br − Eq(w)[log ℓ(yi | w,xi, σ
2)]

Eq(w)[log ℓ(yi | w,xi, σ
2)] = − 1

2σ2
[(yi −wT

Nxi)
2 + xTi VNxi]−

1

2
log(2πσ2)

for which the expectation of ri under the distribution of q(ri) can be easily obtained by aiN/biN .

A.2 Derivation of q(w) (variational M step)

log q(w) = Eq(r)[log p(y,w, r|X)] + const

= log pw(w) +
∑
i

Eq(r)(ri) log ℓ(yi | w,xi, σ
2) + const

= −1

2
(w −w0)

TΣ−1(w −w0)−
1

2σ2
(y −XTw)TEr(y −XTw) + const

= −1

2
(w −wN )TV −1

N (w −wN ) + const

where Er is a matrix with diagonal entries of Eq(r)(r) and off-diagonal elements of 0. V −1
N =

1
σ2XErX

T +Σ−1, wN = VN ( 1
σ2XEry +Σ−1w0), and q(w) = N (wN , VN ).

After several iterations, we use q(w)
∏
i q(ri) to approximate the true posterior and take wN as the

MAP estimate of q(w).
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B Adaptive Data Corruption Method

As the original CRR algorithm can tolerate OAAs to a significant degree, we must use all information
contained in the data to fool the estimator. To achieve this goal, we need to find the most suitable
subset to corrupt such that the rest of the data can more likely be generated from a completely
different distribution. This problem can be formulated as follows:

(ŵ, Ŝ) = arg min
w∈Rp,S⊂[n]
|S|=n−k

∑
i∈S

(yi − xTi w)2 − δ∥w −w∗∥22 (15)

where δ is the penalty coefficient that determines the extent to which the parameter leaves the
standard value. Ŝ is the chosen subset that cannot be corrupted. If δ is not very large, then∑
i∈Ŝ(yi − xTi w

∗)2 will be similar to
∑
i∈Ŝ(yi − xTi ŵ)2, and so ŵ can fool the regression model

into thinking that ŵ is the true parameter. From this analysis, we find that ŵ can be used to construct
the corrupted data. After getting the covariates of the corrupted data, we can define the response of
the corrupted data as yci = xTciŵ, where xci is the ith covariate of the corrupted data.

The problem in Eq. (15) is very similar to that in Eq. (8), where M is replaced by −δI and w0 is
replaced by w∗. Hence, these two problems can be solved by the same method. Similar to TRIP,
we proposed an adaptive data corruption algorithm (ADCA) to solve the corruption problem by
replacing some parameters in TRIP. ADCA seriously destroys the data, and when the corruption
ratio increases, the solution of Eq. (1) may not be close to the true parameter. However, we will see
that, even in this situation, TRIP and BRHT achieve good performance, as shown in Section 5.

C Supplementary Material for Proofs of TRIP and BRHT Algorithms

C.1 SSC/SSS guarantees

In this section, we introduce some theoretical properties of SSC and SSS from [2], which will be
used for the convergence analysis of the proposed algorithms.
Definition 4. A random variable x ∈ R is called sub-Gaussian if the following quantity is finite

sup
p≥1

p−1/2(E[|x|p])1/p

Moreover, the smallest upper bound on this quantity is referred to as the sub-Gaussian norm of x
and denoted as ∥x∥ψ2

Definition 5. A vector-valued random variable x ∈ Rd is called sub-Gaussian if its unidimensional
marginals ⟨x,v⟩ are sub-Gaussian for all v ∈ Sd−1. Moreover, its sub-Gaussian norm is defined
as follows

∥x∥ψ2
= sup

v∈Sd−1

∥⟨x,v⟩∥ψ2

Lemma 8. Let X ∈ Rd×n be a matrix whose columns are sampled i.i.d from a standard Gaussian
distribution i.e. xi ∼ N (0, I). Then for any ϵ > 0, with probability at least 1− δ, X satisfies

λmax(XXT ) ≤ n+ (1− 2ϵ)−1

√
cnd+ c′n log

2

δ

λmin(XXT ) ≥ n− (1− 2ϵ)−1

√
cnd+ c′n log

2

δ

where c = 24e2log 3
ϵ and c′ = 24e2.

Theorem 9. Let X ∈ Rd×n be a matrix whose columns are sampled i.i.d from a standard Gaussian
distribution i.e. xi ∼ N (0, I). Then for any k > 0, with probability at least 1 − δ, the matrix X
satisfies the SSC and SSS properties with constants

Λk ≤ k(1 + 3e

√
6 log

en

k
) + O(

√
nd+ n log

1

δ
)

λk ≥ n− (n− k)(1 + 3e

√
6 log

en

n− k
)− Ω(

√
nd+ n log

1

δ
)
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Lemma 10. Let X ∈ Rd×n be a matrix with columns sampled from some sub-Gaussian distribution
with sub-Gaussian norm K and convariance Σ. Then for any δ > 0, with probability at least 1− δ,
each of the following statements holds true:

λmax(XXT ) ≤ λmax(Σ) · n+ CK ·
√
dn+ t

√
n

λmin(XXT ) ≥ λmin(Σ) · n− CK ·
√
dn− t

√
n

where t =
√

1
cK

log 2
δ and cK , CK are absolute constants that depend only on the sub-Gaussian

norm K of the distribution.

C.2 Convergence Proof for TRIP

Theorem 1. Let X = [x1, . . . ,xn] ∈ Rd×n be the given data matrix and y = XTw∗ + b∗ + ϵ be
the corrupted output with sparse corruptions of ∥b∗∥0 ≤ k · n. For a specific positive semi-definite
matrix M , the data matrix X satisfies the SSC and SSS properties such that 2 Λk+k∗

λmin(XXT+M)
<

1. Then, if k > k∗, it is guaranteed with a probability of at least 1 − δ that, for any ε, δ > 0,

∥bT0 −b∗∥2 ≤ ε+O(e0)+O(

√
Λk+k∗λmax(M)

λmin(XXT+M)
)∥w∗−w0∥2 after T0 = O(log( ∥b

∗∥2

ε )) iterations

of TRIP, where e0 = O(σ
√
(k + k∗) log n

δ(k+k∗) ) under the normal design.

Proof. First, we consider the iteration of the TRIP algorithm:

bt+1 ← HTk(PMXbt + (I − PMX)y − PMMw0)

After considering y = XTw∗ + b∗ + ϵ, the iteration step can be rewritten as:

bt+1 ← HTk(b
∗ +XTλt + g + f)

where

λt = (XXT +M)−1X(bt − b∗)

g = (I − PMX)ϵ

f = PMM (w∗ −w0)

Because k > k∗, we use the property of the hard thresholding step:

∥bt+1
It+1 − (b∗

It+1 +XT
It+1λ

t + gIt+1 + fIt+1)∥2 ≤ ∥b∗
It+1 − (b∗

It+1 +XT
It+1λ

t + gIt+1 + fIt+1)∥2
= ∥XT

It+1λ
t + gIt+1 + fIt+1∥2

Using the trigonometric inequality:

∥bt+1
It+1 − b∗

It+1∥2 ≤ 2∥XT
It+1λ

t + gIt+1 + fIt+1∥2 ≤ 2∥XT
It+1λ

t∥2 + 2∥gIt+1∥2 + 2∥fIt+1∥2

Through the SSS and SSC properties of X , we obtain:

∥XT
It+1λ

t∥2 = ∥XT
It+1(XXT +M)−1X(bt+1 − b∗)∥2

= ∥XT
It+1(XXT +M)−1XIt(b

t+1
It − b∗

It)∥2

≤ Λk+k∗

λmin(XXT +M)
∥bt+1

It − b∗
It∥2

=
Λk+k∗

λmin(XXT +M)
∥bt+1 − b∗∥2

According to Bhatia [1], there is a probability of at least 1− δ that, for any set S of size up to k+k∗,
we can find a uniform bound:

∥ϵS∥2 ≤ σ
√
k + k∗

√
1 + 2e

√
6 log

en

δ(k + k∗)

.
= e0
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As for ∥Xϵ∥2, Bhatia [1] gives a consistent bound of ∥Xϵ∥22 ≤ 2σ2∥X∥2F log(dδ ) ≤ 2σ2dΛn log(
d
δ ),

and so:

∥gIt+1∥2 = ∥ϵIt+1 −XT
It+1(XXT +M)−1XϵIt+1∥2 ≤ ∥ϵIt+1∥2 + ∥XT

It+1(XXT +M)−1XϵIt+1∥2

≤ e0 + σ

√
Λk+k∗Λn

λmin(XXT +M)

√
2d log(

d

δ
) ≤ e0 + σ

√
Λk+k∗Λn

λn

√
2d log(

d

δ
)

≤ (1 +

√
2d

n
log(

d

δ
))e0

The last inequality holds when n is sufficiently large. Then, we consider fIt+1 :

∥fIt+1∥2 = ∥XT
It+1(XXT +M)−1M(w∗ −w0)∥2

≤
√
Λk+k∗λmax(M)

λmin(XXT +M)
∥w∗ −w0∥2

We substitute the three calculated terms into the original result to obtain:

∥bt+1 − b∗∥2 ≤ 2
Λk+k∗

λmin(XXT +M)
∥bt − b∗∥2 + 2(1 +

√
2d

n
log(

d

δ
))e0

+ 2

√
Λk+k∗λmax(M)

λmin(XXT +M)
∥w∗ −w0∥2

We let η = 2
Λk+k∗

λmin(XXT+M)
. Because b0 = 0:

∥bt+1 − b∗∥2 ≤ ηt∥b∗∥2 +
2

1− η
(1 +

√
2d

n
log(

d

δ
))e0

+
2

1− η

√
Λk+k∗λmax(M)

λmin(XXT +M)
∥w∗ −w0∥2

Suppose that n > d log(d). Then, 1 +
√

2d
n log(dδ ) = O(1). From the expression of e0, we have

that e0 = O(σ
√
(k + k∗) log n

δ(k+k∗) ). Then, after T0 = O(log( ∥b
∗∥2

ε )), we obtain:

∥bT0 − b∗∥2 ≤ ε+ O(e0) + O(

√
Λk+k∗λmax(M)

λmin(XXT +M)
)∥w∗ −w0∥2

Theorem 2. Under the conditions of Theorem 1 and assuming that xi ∈ Rd are generated from the
standard normal distribution, for k > k∗, it is guaranteed with a probability of at least 1 − δ that,
for any ε, δ > 0, the current estimation coefficient wT0

satisfies ∥wT0
−w∗∥2 ≤ O( 1√

n
)(ε+ e0) +

O(
√
k+k∗λmax(M)

n3/2 )∥w∗ −w0∥2 after T0 = O(log( ∥b
∗∥2

ε )) steps.

Proof.

wt = (XXT )−1X(y−bt) = (XXT )−1X(XTw∗+b∗+ϵ−bt) = w∗+(XXT )−1X(ϵ+b∗−bt)

∥wt −w∗∥2 = ∥(XXT )−1X(ϵ+ b∗ − bt)∥2 ≤
1

λn
(∥Xϵ∥2 + ∥X(b∗ − bt)∥2)

≤
√
Λn
λn

σ

√
2d log(

d

δ
) +

1

λn
∥X(b∗ − bt)∥2)

≤
√
Λn
λn

σ

√
2d log(

d

δ
) +

√
Λn
λn

[
ηt∥b∗∥2 +

2

1− η
(1 +

√
2d

n
log(

d

δ
))e0

+
2

1− η

√
Λk+k∗λmax(M)

λmin(XXT +M)
∥w∗ −w0∥2

]
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when n is sufficiently large. By Lemma 8 and Theorem 9,
√
Λn/λn can then be approximated as

O(1/
√
n) and

√
Λk+k∗ can be approximated as O(

√
k + k∗). Then, we have:

∥wt −w∗∥2 ≤ O(
1√
n
)(ε+ e0) + O(

√
k + k∗λmax(M)

n3/2
)∥w∗ −w0∥2

Theorem 3. Let X = [x1, ...,xn] ∈ Rd×n be the given matrix with each xi ∼ N (0,Σ). Let
y = XTw∗ + b+ ϵ and ∥b∥0 ≤ k∗. Also, let k∗ ≤ k and suppose limn→∞

λmin(M)
n = ξ. Then if

the following equation holds

2
k + k∗

n
(1 + 3e

√
6 log

en

k + k∗
) < 1 + ξ

and n ≥ Ω(d+ log 1
δ ). Then, with probability at least 1− δ, the data satisfies 2 Λk+k∗

λmin(XXT+M)
< 1,

More specifically, after T0 = O(log( ∥b
∗∥2

ε )) steps in TRIP algorithm, the estimation coefficient wT0

satisfies ∥wT0 −w∗∥2 ≤ O( 1√
n
)(ε+ e0) + O(

√
k+k∗λmax(M)

n3/2 )∥w∗ −w0∥2.

Proof. We notice that if x ∼ N (0,Σ), then Σ−1/2x ∼ N (0, I). Thus by Theorem 9 and Lemma
8, with the probability at least 1− δ, the data matrix X̃ = Σ1/2X satisfies SSC and SSS properties
with the following constants

Λk ≤ k(1 + 3e

√
6 log

en

k
) + O(

√
nd+ n log

1

δ
),

λmin(XXT ) ≥ n− (1− 2ϵ)−1

√
cnd+ c′n log

2

δ
.

As seen in Theorem 1, the convergence of TRIP needs to satisfies 2 Λk+k∗

λmin(XXT+M)
< 1. We notice

that λmin(XXT +M) ≥ λmin(XXT ) + λmin(M), so the convergence condition can be scaled to
2Λk+k∗ ≤ λmin(XXT ) + λmin(M). Using the above bounds, the condition is translated into

2
k + k∗

n
(1 + 3e

√
6 log

en

k + k∗
)︸ ︷︷ ︸

(A)

+O(

√
d

n
+

1

n
log

1

δ
)︸ ︷︷ ︸

(B)

< 1 +
λmin(M)

n
.

For n = Ω(d + 1
δ ) and suppose n is large enough, the part (B) goes to 0. Also because

limn→∞
λmin(M)

n = ξ, so the condition becomes

2
k + k∗

n
(1 + 3e

√
6 log

en

k + k∗
) < 1 + ξ.

The condition 2k+k
∗

n (1 + 3e
√
6 log en

k+k∗ ) < 1 + ξ seems quite abstract. By approximating f(t) =

2t(1+3e
√
6 log e

t ) using its second order Taylor’s expansion at t = 1/10, which is shown in Figure
3. We can give an approximated breakdown point of TRIP algorithm when ξ is not too large, i.e.,

k∗ ≤ k ≤ (0.3023−
√
0.0887− 0.0040ξ)n. (16)

C.3 Convergence Proof for BRHT

C.3.1 Proof of Theorem 5

Lemma 4. For any real function f(x):

sup
x≥0

[f(x) + ax] ≤ sup
x≥0

[f(x) + bx] (17)

for any b ≥ a ≥ 0.
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Proof. Suppose the lemma does not hold, that is, a ≥ 0, b ≥ a, but

sup
x≥0

[f(x) + ax] > sup
x≥0

[f(x) + bx]

We select the array {xn} = {x1, x2, . . . } such that limi→∞[f(xi) + axi] = supx≥0[f(x) + ax].
Then, we consider the set S

.
= {f(xi) + bxi|xi ∈ {xn}}. It is easy to see that supS ≥

supx≥0[f(x) + ax] and supS ≤ supx≥0[f(x) + bx]. As shown above, however, supx≥0[f(x) +
ax] > supx≥0[f(x) + bx]. This is a contradiction, and Lemma 4 is proved.

Theorem 5. Suppose the prior of ri is independently and identically distributed (iid). We consider
the tth iteration step of the BRHT algorithm, in which wt, rt = argmaxw∈Rd,r∈Rn

+
M(w, r,bt),

where bt = HTk(y − XTwt−1) is obtained from the hard thresholding step. Then, we have that
U(wt, rt, St+1) ≥ U(wt−1, rt−1, St).

Proof. After obtaining bt by bt = HTk(y −XTwt−1), we consider M(wt−1, rt−1,bt), that is:

M(wt−1, rt−1,bt) = log pw(wt−1) +
∑
i∈St

[log pr(r
t−1
i ) + rt−1

i log ℓ(yi | wt−1,xi, σ
2)]

+
∑

j∈[n]\St

[pr(r
t−1
j ) + rt−1

j ℓ(0)]

where ℓ(0) is the value of the likelihood of N (0, σ2). This is because, after the hard thresholding
step and if i is not chosen from the clean set,’ yi − bti = yi − (yi −XTwt−1) = XTwt−1. Thus,
it can be seen that ℓ(yi − bti | wt−1,xi, σ

2) = ℓ(xTi wt−1 | wt−1,xi, σ
2) = ℓ(0). We consider

a pseudo-reweighting process (this is just for the convenience of the proof and does not appear in
the algorithm, but does not affect the result of the algorithm). We try to maximize M(wt−1, r,bt)
by varying r. Because of the independence of pr(ri) and the definition of M(wt−1, rt−1,bt), the
value of r in St is unchanged.

M̃t−1 = max
r∈Rn

M(wt−1, r,bt)

= log pw(wt−1) +
∑
i∈St

[log pr(r
t−1
i ) + rt−1

i log ℓ(yi | wt−1,xi, σ
2)] + kg(0)

= U(wt−1, rt−1, St) + kg(0)

where g(0) is defined as maxri [pr(ri) + riℓ(0)]. Next, we consider the update of w. Because:

wt, rt = arg max
w∈Rd,r∈Rn

+

M(w, r,bt)

it is easy to see that:
M(wt, rt,bt) ≥ max

r∈Rn
+

M(wt−1, r,bt) = M̃t−1

Finally, we examine M̃t = maxr∈Rn M(wt, r,bt+1). The explicit form of M̃t can be given by
M̃t−1. We compare the M̃t and M(wt, rt,bt):

M̃t −M(wt, rt,bt) = log pw(wt) +
∑
i∈St+1

[log pr(r
t
i) + rti log ℓ(yi | wt,xi, σ

2)] + kg(0)

− {log pw(wt) +
∑
j∈St

[log pr(r
t
j) + rtj log ℓ(yj | wt,xj , σ

2)]

+
∑

j∈[n]\St

[pr(r
t
j) + rtj log ℓ(yj − btj | wt,xj , σ

2)]}

=
∑

i∈St+1\St

[log pr(r
t
i) + rti log ℓ(yi | wt,xi, σ

2)]−
∑

j∈St\St+1

[log pr(r
t
j) + rtj log ℓ(yj | wt,xj , σ

2)]

+ kg(0)−
∑

j∈[n]\St

[pr(r
t
j) + rtj log ℓ(yj − btj | wt,xj , σ

2)]
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Following the hard thresholding step, ∀i ∈ St+1\St and ∀j ∈ St\St+1, |yi−xTi wt| ≤ |yj−xTj wt|,
and so log ℓ(yi | wt,xi, σ

2) ≥ log ℓ(yj | wt,xj , σ
2). By Lemma 4, we have that:

log pr(r
t
i) + rti log ℓ(yi | wt,xi, σ

2) ≥ log pr(r
t
j) + rtj log ℓ(yj | wt,xj , σ

2)

and because ∀j ∈ [n]\St, log ℓ(yj − btj | wt,xj , σ
2) ≤ ℓ(0), we have:

log pr(r
t
j) + rtj log ℓ(yj − btj | wt,xj , σ

2) ≤ g(0)

This proves that:
M̃t ≥M(wt, rt,bt)

Note that M(wt, rt,bt) ≥ M̃t−1. Using the expressions for M̃t and M̃t−1:

U(wt, rt, St+1) + kg(0) ≥U(wt−1, rt−1, St) + kg(0)

U(wt, rt, St+1) ≥U(wt−1, rt−1, St)

C.3.2 Proof of Theorems 6 and 7

To prove Theorem 4, we require a certain assumption. We will show that this assumption is reason-
able through a brief description in Appendix C.2.3.
Assumption 1. Let X be the given data matrix and y = XTw∗ + b∗ + ϵ be the output. For any
specific positive semi-definite matrix M , there exist α > 0 and 0 < γ ≤ 1 + ϵ, where ϵ is a small
positive number, that for any estimation b̂ of b∗, and let Ib̂ = supp(b̂) ∪ supp(b∗), it holds that

u1 = ∥ϵIb̂ +XT
Ib̂
(w∗ −w1)∥2 ≤ γ∥ϵIb̂ +XT

Ib̂
(w∗ −w2)∥2 = γu2

where w1 and w2 are obtained from:

w1 = V BEM(X,y − b̂, pr(r), pw(w))

w2 = arg min
w∈Rd

n∑
i=1

∥yi − b̂i − xTi w∥2 + (w −w0)
TM(w −w0)

and pw(w) = N (w0, ασ
2M−1)

This assumption can be easily understood as making the Bayesian reweighting regression more
robust and accurate than simple regression, thus providing a more reliable solution in each iteration
step of the BRHT algorithm. This can be explained from the following two aspects: 1) the Bayesian
reweighting regression adds smaller weights to points with large deviations, so the regression is less
affected by outliers, especially when the estimation b̂ is not very accurate. 2) By considering the
robustness of the Bayesian reweighting regression, smaller prior weights are required to recover the
true coefficient. Thus, w2 is closer to the true coefficient w∗ than w1, which is reflected in the prior
shrinkage coefficient α and the error shrinkage coefficient γ.
Theorem 6. Consider a data matrix X and a specific positive semi-definite matrix M satisfying
the SSC and SSS properties such that 2 Λk+k∗

λmin(XXT+M)
< 1. Then, there exist α > 0 and 0 < γ ≤

1 + ϵ, where ϵ is a small number, such that if k > k∗ and Σ0 in the prior pw(w) is ασ2M−1,
it is guaranteed with a probability of at least 1 − δ that, for any ε, δ > 0, ∥bT0 − b∗∥2 ≤ ε +

O(e0) + O(

√
Λk+k∗λmax(M)

λmin(XXT+M)
)γ∥w∗ −w0∥2 after T0 = O(log(γ∥b

∗∥2

ε )) iterations of BRHT, where

e0 = O(σ
√
(k + k∗) log n

δ(k+k∗) ) under the normal design.

Proof. The iteration step of the BRHT algorithm is:

bt+1 ← HTk(y −XTwt)
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where wt = V BEM(X,y − bt, pr(r), pw(w)) and:

∥bt+1
It+1 − (yIt+1 −XT

It+1wt)∥2 ≤ ∥b∗
It+1 − (yIt+1 −XT

It+1wt)∥2
= ∥b∗

It+1 − (b∗
It+1 + ϵIt+1 +XT

It+1
(w∗ −wt))∥2

= ∥ϵIt+1
+XT

It+1
(w∗ −wt)∥2

By defining ŵt = (XXT +M)−1(X(y−bt) +Mw0) and using the trigonometric inequality, we
obtain:

∥bt+1
It+1 − b∗

It+1∥2 ≤ 2∥ϵIt+1 +XT
It+1

(w∗ −wt)∥2
≤ 2γ∥ϵIt+1

+XT
It+1

(w∗ − ŵt)∥2
= 2γ∥XT

It+1λt + gIt+1 + fIt+1∥2

The second inequality holds because of assumption 1. λt, g, f have the same meaning as in Theorem
1. Therefore, through the same proof procedure as for Theorem 1, the above inequality can be finally
transformed into the following formula:

∥bt+1 − b∗∥2 ≤ 2γ
Λk+k∗

λmin(XXT +M)
∥bt − b∗∥2 + 2γ(1 +

√
2d

n
log(

d

δ
))e0

+ 2γ

√
Λk+k∗λmax(M)

λmin(XXT +M)
∥w∗ −w0∥2

We let η = 2γ
Λk+k∗

λmin(XXT+M)
, and because b0 = 0, we can write:

∥bt+1 − b∗∥2 ≤ ηt∥b∗∥2 +
2γ

1− η
(1 +

√
2d

n
log(

d

δ
))e0

+
2γ

1− η

√
Λk+k∗λmax(M)

λmin(XXT +M)
∥w∗ −w0∥2

Suppose that n > d log(d). Then, 1 +
√

2d
n log(dδ ) = O(1). From the expression for e0, we have

that e0 = O(σ
√
(k + k∗) log n

δ(k+k∗) ). Then, after T0 = O(log( ∥b
∗∥2

ε )), we have:

∥bT0 − b∗∥2 ≤ ε+ O(e0) + O(

√
Λk+k∗λmax(M)

λmin(XXT +M)
)γ∥w∗ −w0∥2

Theorem 7. Under the conditions of Theorem 4 and assuming that xi ∈ Rd are generated from
the standard normal distribution, there exist α > 0 and 0 < γ ≤ 1 + ϵ, where ϵ is a small
number, such that if k > k∗ and Σ0 in the prior pw(w) is ασ2M−1, it is guaranteed with a
probability of at least 1 − δ that, for any ε, δ > 0, the current estimation coefficient wT0 satisfies
∥wT0

− w∗∥2 ≤ O( 1√
n
)(ε + e0) + O(

√
k+k∗λmax(M)

n3/2 )γ∥w∗ − w0∥2 after T0 = O(log(γ∥b
∗∥2

ε ))
steps.

The proof of Theorem 7 is the same as that for Theorem 2, so it is omitted here.

C.3.3 Rationality of Assumption 1

In this section, we use some simulations to check whether assumption 1 is true in the iteration of the
BRHT algorithm. For this problem, we choose some special M under AAA to make our description
more representative. For each corruption ratio, we choose M so as to achieve the minimum fitting
error ∥wt − w∗∥2 in the TRIP algorithm. We then find a prior shrinkage coefficient α for this M
and simulate the BRHT algorithm to show that there exists an error shrinkage coefficient γ such that
the following formula holds in all iterative steps:

u1t = ∥ϵIt +XT
It(w

∗ −w1t)∥2 ≤ γ∥ϵIt +XT
It(w

∗ −w2t)∥2 = γu2t
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Corruption
rate

γ

0.2 1.007
0.25 0.937
0.3 0.917

0.35 0.876
0.4 0.879

0.45 0.958
0.5 1.000

0.55 1.008
Table 1: Calculated γ for each corruption rate

Corruption
rate

mean(u1t/u2t)

0.2 0.989
0.25 0.917
0.3 0.892

0.35 0.857
0.4 0.806

0.45 0.827
0.5 0.772

0.55 0.758
Table 2: Average error ratio for each corruption rate

where w1t and w2t are obtained from:

w1t = V BEM(X,y − bt, pr(r), pw(w))

w2t = arg min
w∈Rd

n∑
i=1

∥yi − bti − xTi w∥2 + (w −w0)
TM(w −w0)

and pw(w) = N (w0, ασ
2M−1). For the chosen corruption ratio, we take eight evenly spaced

points from 0.2 to 0.55. This is because the CRR method collapses when the corruption ratio exceeds
0.2, so including the prior become very important at this time. By selecting an appropriate prior
shrinkage coefficient α for different M , the overall result is as shown in Figure 4.

We can find γ for each M by calculating max(u1t/u2t), where t = 1, ... are the iterative steps until
convergence. The results are presented in Table 1. For most corruption rates, γ < 1. However, there
are still some cases where γ is greater than 1. This is because, in the iteration process, there are few
steps in which u1t and u2t are very close, while in most cases they are well separated. We use another
criterion, mean(u1t/u2t), to show this phenomenon; the results are presented in Table 2. We can
see that, as the corruption ratio increases, mean(u1t/u2t) basically exhibits a downward trend and
all values are less than 1. This indicates that the performance of BRHT is usually better than that
suggested by the theory. This experiment can be used to explain why BRHT usually outperforms
TRIP, even when TRIP uses the optimal parameters.

D Choice of Hyperparameters in BRHT

In the BRHT algorithm, the most important parameter for model performance is the parameter in
the weight prior pr(r). According to assumption 1, we must ensure that the Bayesian reweighting
regression provides a more robust and accurate solution than traditional least-squares regression.
This requires the weight Eq(r)(r) in the variational M step of the VBEM algorithm to be relatively
insensitive to Eq(w)[log ℓ(yi | w,xi, σ

2)], or very few points will have large weights and others will
have little impact on the estimates. A relatively sensitive weight will lead to bias, as only a few
points of information will be used, and the effects will be even worse when some outliers have not
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been detected. Additionally, the weight cannot be too stable, or BRHT will have almost the same
performance as TRIP. Here, we present a useful way to determine the hyperparameters so that all
uncorrupted points have relatively large weights when the regression result is correct.

Consider the variational E step in the VBEM method. We have:

q(ri) ∝ exp{log pr(ri) + riEq(w)[log ℓ(yi | w,xi, σ
2)]}

We use the true likelihood log ℓ(yi | w∗,xi, σ
2) to replace Eq(w)[log ℓ(yi | w,xi, σ

2)], and we find
that:

log ℓ(yi | w∗,xi, σ
2) = − 1

2σ2
(yi − xTi w

∗)2 − 1

2
log(2πσ2)

If yi is not corrupted, then 1
σ2 (yi−xTi w

∗)2 = 1
σ2 ϵ

2
i ≤ χ2(0.95) holds with at least 95% probability,

where χ2(0.95) is the 95% quantile of the χ2 distribution with 1 degree of freedom. Under the above
condition, with at least 95% probability, it is easy to see that:

−1

2
χ2(0.95)− 1

2
log(2πσ2) ≤ log ℓ(yi | w∗,xi, σ

2) ≤ −1

2
log(2πσ2)

Here, we define two posterior distributions of weights in the extreme case where all points fit well
or deviate greatly in the true regression model:

q1(ri) ∝ exp[log pr(ri) + ri(−
1

2
log(2πσ2))]

q2(ri) ∝ exp[log pr(ri) + ri(−
1

2
χ2(0.95)− 1

2
log(2πσ2))]

Then, the hyperparameter in the weight prior pr(r) is determined by the following rule:

Eq2(ri)(ri) ≥ βEq1(ri)(ri)

In this paper, β = 1
2 . The parameter σ2 can be replaced by a robust estimate such as the M estimator.

After the weight prior pr(r) has been determined, the hyperparameter Σ in prior pw(w) can be
selected by cross-validation using Σ in the specific form Σ = sI .

E Additional Experimental Results

In this section, we give more experimental results of TRIP and BRHT in comparison with alternative
methods. We also show the robustness of our methods under other attacks. First, We compare TRIP
and BRHT with the TORRENT method proposed by Bhatia et al. [2] on both OAA and AAA.
TORRENT can resist AAA when the white noise ϵ is not considered in the model. In order to
evaluate the influence of white noise on robust regression, the true data are generated in two ways,
one with white noise (yi = xTi w

∗ + ϵi) and the other without white noise (yi = xTi w
∗). Other

settings are the same as those in Section 5. The experimental results are shown in Figure 5. Under
these two attacks, the performance of TORRENT algorithm is very consistent with that of CRR in
both noisy and noiseless settings. TORRENT performs slightly better than CRR in the absence of
white noise, as shown in Figure 5(e). However, both CRR and TORRENT perform poorly under
AAA. It can be seen that the TRIP and BRHT algorithms are very robust in all cases.

We also consider another leverage point attack (LPA) on data sets. For a point (xi, yi), the leverage
value is defined as hii = xTi (XXT )−1xi. In the linear regression, the regression result can be
strongly affected by high leverage points[4]. Therefore, if we corrupt those high leverage points, the
regression result is more likely to be unstable. If we set the covariant xi as iid in N (0, Id), then
the high leverage points are roughly those points with large norms ∥xi∥2 since 1

nXXT converges
to Id as n→∞. According to the above analysis, we set the LPA as follows: choose k points with
the largest covariant norm ∥xi∥2 and set their corresponding yi to 0. In this experiment, the true
coefficient w∗ is chosen to be a random unit norm vector and the covariant xi are iid in N (0, Id).
The true data (before attack) are also generated in two ways, one with white noise yi = xTi w

∗ + ϵi
and the other without white noise yi = xTi w

∗, where ϵi are iid in N (0, σ2). We set σ = 1 in the
experiments. The experimental results are shown in Figure 6. Under LPA, CRR performs poorly and
usually collapses first among these methods. Rob-ULA has relatively better performance when the
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(a) (b)

Figure 3: (a) The approximation of the second order Taylor’s expansion on [0, 1]. (b) Approximation
on the interval [0, 0.2].

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4: Variation trends of u1t and u2t during the iteration process.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5: Recovery of parameters with respect to the number of data points n, dimensionality d, and
corruption ratio α. (a),(b),(c),(d) consider the case with white noise ϵ, while (e),(f),(g),(h) do not
consider white noise. The performance of TORRENT and CRR is similar, and TRIP and BRHT are
still more robust under AAAs than CRR and TORRENT.
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(a) (b) (c) (d)

Figure 6: Recovery of parameters with respect to the number of data points n, dimensionality d,
and corruption ratio α under LPA. TRIP and BRHT perform significantly better than CRR. BRHT
is more robust in all cases. TORRENT and Rob-ULA show robustness in some cases, but still have
limitations.

proportion of outliers is high, but there will be relatively large errors in the case of low proportion of
outliers. TORRENT is very robust under LPA, especially in the absence of white noise. However,
if the data dimension is high and the sample size is small, TORRENT is easier to collapse. The
proposed TRIP and BRHT are still better than CRR, and will maintain a robust result even there are
lots of outliers. The estimation errors of BRHT are smaller than TRIP, which shows BRHT is the
most robust algorithm in this experiment.
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