SPAFormer: Sequential 3D Part Assembly with Transformers

Supplementary Material

1. Additional Quantitative Results
1.1. General-purpose Part Assembly is Beneficial

We have trained a versatile model (“ours-general”) on all
available object categories, which aims to perform part as-
sembly across a variety of categories, and category-specific
models (“ours-specific”), where each model is tailored to a
specific category.

Influence on Assembly Sequence Length. We analyze the
impact of multi-task learning on varied assembly lengths
in Tab. 1. Compared to the category-specific models, the
multi-task model continues to gain a notable improvement
of +2.77% in long-horizon assembly, and also improve by
+1.9% in short-horizon assembly.

Table 1. Average results across all categories. The numbers in
brackets denote the object number in the test set.

‘ <10 parts (3318) ‘ >10 parts (1223)
Method ‘ PA SR ‘ PA SR

ours-specific 61.74 36.20 53.25 7.59
ours-multitask | 63.64  37.46 56.02 9.31

Detailed Results on Daily Object Assembly. In Tab. 2,
we conduct comparisons between the versatile model and
category-specific models. Our versatile model demonstrates
significant improvements in categories with both abundant
(e.g., tables, storage furniture) and limited (e.g., mugs with
120 samples, bowls with 130 samples) training data. Given
these promising results, we will further explore this di-
rection, such as discovering which categories benefit most
from shared assembly knowledge, or how to effectively
manage the output categories.

1.2. More Details and Analysis on Category-
specialized Part Assembly

Unlike the less-explored general-purpose assembly men-
tioned above, the experiments presented in our main paper
follow the traditional benchmark of category-specialized
part assembly, which has been commonly adopted by previ-
ous works. In this subsection, we provide additional exper-
imental details.

Additional Implementation Details. In our approach,
each part is represented by a point cloud, consisting of
1,000 points obtained through Furthest Point Sampling [1].
We ensure these sampled point clouds are zero-centered
and aligned with the principal axes determined by Principal
Component Analysis (PCA) [2]. In our experimental re-
sults, the shape chamfer distance (SCD) metric is scaled up

by a factor of 1000, while the part accuracy (PA), connec-
tivity accuracy (CA), and success rate (SR) are expressed
as percentages. Moreover, the assembly sequences are con-
structed based on the relative positions of parts in their orig-
inal configuration.

Additional evaluation on Per-class Part Assembly. To
offer a comprehensive comparison of different object cat-
egories, we have included per-class evaluation results
in Tab. 2. Our proposed method consistently outperforms
previous works in most categories. It’s important to note
that the success rates vary among categories, We attribute
this variation more to the diversity of object structures
and fundamental geometries encountered during training,
rather than the quantity of training samples. For exam-
ple, categories with a large number of training samples,
such as faucet (with approximately 460 samples) and lamp
(with approximately 1420 samples), do not necessarily
yield higher success rates. Specifically, faucets and lamps
demonstrate success rates of only 5.3% and 17.2%, respec-
tively, when using our category-specific model. This is
largely due to the complex assembly required by the intri-
cate geometrical composition of their parts.

2. Additional Qualitative Examples

Additional visualizations, including both successful and un-
successful cases, are presented in Figs. 1 to 3. Our approach
not only excels in effectively assembling structural tables
that have small connection areas but also shows significant
improvement in assembling larger parts of storage furniture,
which typically have more extensive connection areas.

3. Limitations and Directions

First, acquiring the assembly sequence is sometimes un-
feasible, especially when predicted by assembly sequence
planning algorithms. On the other hand, while assembly
sequences can be derived from various sources such as in-
structional manuals, the goal for a truly autonomous agent
is to independently determine assembly sequences and nav-
igate the assembly process on its own, mirroring human ca-
pabilities. Therefore, combining the task of assembly se-
quence planning and 3D part assembly would significantly
benefit the object assembly problem.

Second, current methods for 3D-PA primarily focus on
point cloud processing without considering motion plan-
ning in the real world, which limits the application in
robotics. Working towards this path and deploying the mod-
els in the real world can significantly expand the scope of
this problem.



Table 2. Comparisons of per-class results across 18 daily objects, where “ours-multitask™ and “ours-specific” denote the unified model
for multi-task assembly and the class-specific models, respectively. The abbreviations “Dish”, “Disp”, “Ear”, “Fauc” and “Frid” denote
Dishwasher, Display, Earphone, Faucet and Refrigerator, respectively.

Method Avg | Bag Bed Bottle Bowl Clock Dish Disp Door Ear Fauc Hat Knife Lamp Lap Mug Frid Trash Vase

DGL 6.57 | 237 202 6.0 20.2 31 70 14 45 166 138 3.6 2.0 8.0 09 52 58 9.1 2.4

RGL 1093 | 11.8 9.6 35 224 9.1 4.5 3.6 37 2712 172 9.6 34 158 17.1 78 42 4.7 8.7

SCD Score 638 | 1.3 198 13.6 0.6 7.1 78 29 97 136 90 16 104 127 127 14 25 3.6 1.2

ours-specific 861 | 7.6 717 3.0 233 7.1 43 33 34 245 112 92 33 117 5.1 85 28 4.7 8.9
ours-multitask | 8.60 | 85 120 3.6 10.7 8.8 3.5 4.4 65 244 124 108 33 1.6 40 70 29 2.7 8.7

DGL 36.55 | 21.7 118 804 63.0 452 113 629 267 278 13.1 367 410 328 652 13.1 165 112 233
RGL 5133 | 362 133  86.1 463 520 452 826 567 410 337 551 820 333 600 595 485 494 473
PA Score 3239 | 628 15 22 722 116 1.8 102 102 140 235 582 598 349 628 548 325 206 514

ours-specific | 54.32 | 522 28.0 87.8 426 584 525 836 47.1 520 397 622 762 342 872 370 521 594 485
ours-multitask | 59.93 | 464 110 848 778 560 62.0 822 420 505 428 551 840 369 902 559 557 656 527

DGL 40.01 | 29.8 21.8 765 643 411 147 663 581 380 297 365 425 387 313 94 287 108 274
RGL 50.52 | 234 126 765 714 369 275 760 838 422 475 500 740 474 713 113 373 207 3221
CA Score 32.16 | 16.2 194 248 50 262 109 198 19.6 241 378 558 514 414 162 113 325 98 38.5

ours-specific | 51.60 | 42.6 23.2 771 57.1 376 294 802 704 551 442 519 773 469 95 1.9 504 276 264
ours-multitask | 52.86 | 42.6 150 712 428 411 568 778 63.7 551 539 442 762 472 912 94 556 330 312

DGL 18.73 | 13.8 0 69.0 538 239 0 377 39 0 0 133 78 145 476 0 0 0 11.6
RGL 320 [ 172 0 75.0 256 477 137 675 4711 19 1.5 244 597 140 415 314 129 263 400
SR Score 1505|345 0 0 66.7 34 0 84 118 0 1.5 267 195 10.1 122 257 32 2.6 43.6

ours-specific | 37.12 | 31.0 63 78.6 256 534 157 69.7 451 17.0 53 378 506 172 780 57 162 421 422
ours-multitask | 39.06 | 24.1 0 750 718 466 255 68.0 333 170 10.6 267 62.3 157 829 314 194 395 478
Test Number 29 16 84 39 88 51 191 51 53 132 45 77 407 82 35 31 38 232

Figure 1. Qualitative results and comparisons on the chair assembly task. Distinct colors within a single shape denote various parts of the
chair, whereas consistent coloring in a row signifies identical parts. Our SPAFormer is able to identify and adhere to appropriate assembly
patterns to ensure accurate assembly of structured objects.
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Figure 2. Qualitative results and comparisons on tables.
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Figure 3. Qualitative results and comparisons on storage furniture.



References [2] Jolliffe, I.T.: Principal component analysis. Journal of

Marketing Research 87(4), 513 (2002) 1
[1] Eldar, Y., Lindenbaum, M., Porat, M.. Zeevi, Y.Y.: The arketing Research 87(4), 513 (2002)

farthest point strategy for progressive image sampling.
IEEE Transactions on Image Processing 6(9), 1305—
1315 (1997) 1



	. Additional Quantitative Results
	. General-purpose Part Assembly is Beneficial
	. More Details and Analysis on Category-specialized Part Assembly

	. Additional Qualitative Examples
	. Limitations and Directions

