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1 THE DETAILED INFERENCE FOR SPE

We denote patch embedding as x;€ R€ for the patch P; at scale i.
Here, we ignore the superscript label j of x; for a general patch

embedding representation. Each value xl.(k), k €{1,..., ¢} in the
vector x; is computed by:
k
' = Grw®)) = F(P) TR(w®)), (1)

where w(k) ¢ RWixhiXC are the patch embedding weights, (-,-)
denotes the dot product, and F is the flatten operation turning the
multi-dimensional array into a vector.

If the patch region is resized to a different scale P;+, its flattened
result can be represented by a linear transformation:

F(Pi) = Bf F(Py), @)
where B;:* € RWihixwihir js the parameter of the linear mapping
from scale i to i*. We ignore the channel C because we resize each
channel independently.

We expect to find a “resized” patch embedding weights w, so the
patch representations before and after resizing remain the same,
i.e., (xj,w) = (xj*, w). The problem can be formulated as the opti-
mization function:

W = arg min Ey,-p [ ((xi, w) = (Bxi, W)’

=argmin Ey,p[(x] (w - BT#))?]
w

©)

=argmin Ey,.p[((w = BT#) x;) (x] (w - B'))]

=arg min(w — BTW)TExi~D [xixiT] (w— BTW),
w

B= Bf and D is the distribution over the patches.

We use the symbol X to represent Ey,~p [xixiT], which is the
covariance matrix of D. The minimization of Eq. (3) could be further
transformed to:

W = argmin(VE(w — BTw))T (VS (w — BTw)). (4)

Then, we have w=(VEBT)*VZw. (M)* is the pseudo-inverse of
matrix M. When the patch distribution D ~ N(0, I), w is equal to
(BT)*w. We can observe that the matrix to transform the patch
embedding weights w for a certain scale i corresponds to the in-
verse of the bilinear resize operation B. Therefore, we calculate the
normalized patch embedding at any scale i* as:

) = () BT E(w ). )
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Figure 1: Attention of incorrect recognized text in different
streams of PD3. The image of “m” is recognized as “inn”, and
“CA” is recognized as “cat”.
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Figure 2: Attention of horizontal text in different prophet
decoders.
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Figure 3: Attention of rotated text in different prophet decoders.
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Figure 4: Attention of curve text in different prophet decoders.

2 MORE VISUALIZED ATTENTION OF
PROPHET DECODER

We visualize more characters’ attention by using different predic-
tion streams in the decoder. Firstly, we visualize the character atten-
tion in each stream of PD3 for incorrectly recognized text in Fig. 1.
The t;; row displays the attention at time step t-1. As analyzed
in Section 4.3.2, the gap between models with PDy and PD3 is not
large. It is mainly caused by the wrong attention on the short text
with the increasing streams in PD.

Then, we fix the single-scale encoder and connect it with single
stream prophet decoder (i.e., PD1) and two-stream prophet decoder
(i.e., PDg) to get the character’s attention in the two decoders at
each time step respectively. The detailed Visualization results are
shown in Fig. 2. The character attention in the first stream of PD2
is more accurate than that of PD1 which only has one prediction
stream. The second stream of PD2 could also pay high attention
correctly to the next character during prediction. It could promote

the concentration of character attention for the first stream. This
can be observed for both horizontal text, rotated text, and curved
text in Fig. 2, 3 and 4 respectively.

3 CORRECTED RESULTS BY MVM

We present the models with MVM and without MVM in Table 5
of Section 4.3.3. It boosts the average performance on benchmark
datasets by 1.58%. We further evaluate the models w and w/o MVM
module on WordArt and Union14M-Benchmark respectively. MVM
could improve the averaged accuracy by 2.2% for the WordArt
dataset and 1.3% for the Union14M-Benchmark. The inference time
of MVM is about 3ms, which illustrates its significant performance
with meager computational cost. More corrected results by MVM
on low contrast text (15; row), artistic text (2,4 row), rotated text
(374 row), curved text (4,5, row), text with complex background (5,4,
row) and multi-linguistic text (last row) are displayed in Fig. 5.
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Figure 5: The character recognition results of different streams in prophet decoder and MVM.
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