
APPENDIX
This appendix is organized as follows:

• Sec A: the detailed algorithm.
• Sec B: experimental settings and additional results on the Bouncing Ball domain.
• Sec C: experimental settings and additional results on the Sepsis domain.

A RL WITH ACTIVE FEATURE ACQUISITION ALGORITHM

Algorithm 1 RL with Active Feature Acquisition
1: Input: learning rate α > 0, dataset D
2: Initialize RL policy πf , πc, VAE parameters θ, φ.
3: Train VAE on dataset D using Eq (??).
4: while Not Converge do
5: Reset the environment.
6: Initialize null observation xp1 = Ø, feature acquisition action af0 and control action ac0.
7: for i = 1 to T do
8: Compute representation with VAE: bt = qφ(xp≤t,a<t).
9: Sample a feature acquisition action aft ∼ πf (bt) and a control action act ∼ πc(bt).

10: Step the environment and receive partial features, reward and terminal: xpt+1, rt, term ∼
env(aft ,a

c
t)

11: Compute cost ct =
∑
i c · I(a

f(i)
t ).

12: Save the transitions {bt,aft ,act , rt, ct, term}.
13: if term then
14: break
15: end if
16: end for
17: Update πf , πc using the saved transitions with an RL algorithm under learning rate α.
18: end while

B BOUNCING BALL+

B.1 TASK SPECIFICATION

The task consists of a ball moving in a 2D box of size 32×32 pixels. The radius of the ball equals to 2
pixels. At each step, a binary image is returned as an observation of the MDP state. At the beginning
of every episode, the ball starts at a random position in the upper left quadrant (sampled uniformly).
The initial velocity of the ball is randomly defined as follows: ~v = [Vx, Vy] = 4 · ~̃v/‖~̃v‖, where the
x- and y-component of ~̃v are sampled uniformly from the interval [−0.5, 0.5]. There is a navigation
target set at (5, 25) pixels, which is in the lower left quadrant. The navigation is considered to be
successful if the ball reaches the specified target location within a threshold of 1 pixel along both
x/y-axis.

The action spaces is defined as follows. There are five task actions Ac:

• Increase velocity leftwards, i.e., change Vx by −0.5

• Increase velocity rightwards, i.e., change Vx by +0.5

• Increase velocity downwards, i.e., change Vy by +0.5

• Increase velocity upwards, i.e., change Vy by −0.5

• Keep velocities unchanged

The maximum velocity along the x/y-axis is 5.0. The velocity will stay unchanged if it exceeds this
threshold. The feature acquisition action af ∈ Af is specified as acquiring the observation of a subset
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of the quadrants (this also includes acquiring the observation of all 4 quadrants). Thus, the agent can
acquire 0− 4 quadrants to observe. Each episode runs up to 50 steps. The episode terminates if agent
reaches the target location.

B.2 IMPLEMENTATION DETAILS

For all the compared methods, Zero-Imputing Nazabal et al. (2018) is adopted to fill in missing
features with a fixed value of 0.5.

End-to-End The end-to-end model first processes the imputed image by 2 convolutional layers
with filter sizes of 16 and 32, respectively. Each convolutional layer is followed by a ReLU activation
function. Then the output is passed to a fully connected layer of size 1024. The weights for
the fully connected layer are initialized by orthogonal weights initialization and the biases are
initialized as zeros.

NonSeq-ZI The non-sequential VAE models first process the imputed image by 2 convolutional
layers with filter sizes of 32 and 64, respectively. Each convolutional layer is followed by a ReLU
activation function. Then the output passes through a fully connected layer of size 256, followed
by two additional fully connected layers of size 32 to generate the mean and variance of a Gaussian
distribution. To decode an image, the sampled code first passes through a fully connected layer with
size 256, followed by 3 convolutional layers with filters of 32, 32, and nc and strides of 2, 2 and 1,
respectively, where nc is the channel size that equals to 2 for the binary image. There are two variants
for NonSeq-ZI: one employs the partial loss that is only for the observed variables; the other employs
the full loss that is computed on all the variables, i.e., the ground-truth image with full observation is
employed as the target to train the model to impute the missing features. The hyperparameters for
training NonSeq-ZI are summarized in Table 1.

Hyperparameter

β (KL weight) KL reduction Loss reduction learning rate epochs

NonSeq-ZI (partial) 1.0 sum sum 1e-4 1k
NonSeq-ZI (full) 1.0 sum sum 1e-4 1k

Seq-PO-VAE (ours) 1.0 sum sum 5e-4 2k

Table 1: Hyperparameter settings for training VAE models on the Bouncing Ball+ dataset.

Seq-PO-VAE (ours) At each step, the Seq-PO-VAE takes an imputed image and an action vector
of size 9 as input. The imputed image is processed by 3 convolutional layers with filter size 32
and stride 2. Each convolutional layer employs ReLU as its activation function. Then the output
passes through a fully connected layer of size 32 to generate a latent representation for the image
fx. The action vector passes through a fully connected layer of 32 to generate latent representation
for the action fa. Then the image and action features are concatenated and augmented to form a
feature vector fc = [fx, fa, fx ∗ fa], where [·] denotes concatenation of features. Then fc is fed to
fully connected projection layers of size 64 and 32, respectively. The output is then fed to an LSTM
module, with latent size of 32. The output ht of LSTM is passed to two independent fully connected
layers of size 32 for each to generate the mean and variance for the Gaussian distribution filtered from
the sequential inputs. To decode an image, the model adopts deconvolutional layers that are identical
to those for NonSeq-ZI. The hyperparameters for training Seq-PO-VAE are shown in Table 1.

LSTM-A3C We adopt LSTM-A3C Mnih et al. (2016) to train the RL policy. The policy takes the
features derived from the representation learning module as input. For the VAE-based methods, the
input features are passed through a fully connected layer of size 1024. Then the features are fed to an
LSTM with 1024 units. The output of the LSTM is fed to three independent fully connected layers to
generate the estimations for value, task policy and feature acquisition policy. We adopt normalized
column initialization for all the fully connected layers and the biases for the LSTM module are set to
be zero.
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B.3 DATA COLLECTION

To train the VAEs, we prepare a training set that consists of 2000 trajectories. Half of the trajectories
are derived from a random policy and the other half is derived from a policy learned from end-to-end
method. To train the end-to-end method, we employ a cost of 0.01 over first 2m steps and then
increase it to 0.02 for the following 0.5m steps. All the VAE models are evaluated on a test dataset
that has identical size and data distribution as the training dataset. We present the best achieved task
performance of the data collection policy (End-to-End) and our representation learning approach in
Table 4. We notice that our proposed method, by employing an advanced representation model, leads
to significantly better feature acquisition policy than End-to-End (smaller number of observations
while achieving similar or better reward).

Model

End-to-End Ours

Average # of observations per episode 17.94 8.24
Task reward 1.0 1.0

Table 2: Task performance for the data collection policy and our method on Bouncing Ball+.
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B.4 IMPUTING MISSING FEATURES VIA LEARNING MODEL DYNAMICS

We present an illustrative example to demonstrate the process of imputing missing features and the
role of learning model dynamics. To this end, we collect trajectories under an End-to-End policy (the
choice of the underlying RL policy is not that important since we just want to derive some trajectory
samples for the VAE models to reconstruct) and use different VAE models to impute the observations.

From the results presented in Figure 2, we observe that under the partially observable setting with
missing features, the latent representation derived from our proposed method provides abundant
information as compared to only using information from a single time step and thereby offers
significant benefit for the policy model to learn to acquire meaningful features/gain task reward.

Figure 1: Imputation results for different VAE models. We select 9 trajectories obtained from the
trained End-to-End policy. Each block corresponds to the results for one trajectory (better to view
enlarged). The five rows in one block are (top-down): (1) partial observations acquired by the agent;
(2) ground-truth image with full observation; (3) Imputation by NoSeq-ZI (partial); (4) Imputation by
NoSeq-ZI (full); (5) Imputation by Seq-PO-VAE (ours). Our model can often successfully predict the
balls location even if it is not present in the acquired observation. Hence it successfully employs its
learned knowledge of the dynamics. In contrast, the non-sequential model (obviously) fails to predict
the balls location when the ball is not present in the observation.
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B.5 INVESTIGATION ON COST-PERFORMANCE TRADE-OFF

We perform a case study on investigating the cost-performance trade-off for each representation
learning method, presented in Figure 2. Apparently, as we increase the cost, the exploration-
exploitation task becomes more challenging and each compared method has its own upper bound on
the cost above which it fails to learn an effective task policy while acquiring minimum observation.
First, we notice that the End-to-End model takes a long time to progress in learning task skills, while
the VAE-based models can progress much faster. Among the VAE-based methods, we notice that our
proposed method (Figure 2(d)) can achieve as low as 8 observations whereas the baselines NonSeq-ZI
(Full) (Figure 2(b)) and NonSeq-ZI (partial) (Figure 2(c)) achieve a standard of ∼20 (lowest point
among the solid lines). Thus, we could conclude that our proposed approach can significantly benefit
the cost-sensitive policy training and lead to a policy which acquires much fewer observations while
still succeeding in terms of task performance.
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(d) Seq-PO-VAE (ours)

Figure 2: Cost-performance trade-off investigation. Each row corresponds to the performance in
terms of task reward and episodic number of acquisitions obtained for a specific method (see legends).
Each curve is derived from 3 independent runs. We use dotted lines to indicate those instances when
the task learning does not always succeed. Thus, the best achievable number of observations should
be referred to as the lowest curve among the solid lines.
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C SEPSIS MEDICAL SIMULATOR

C.1 TASK SPECIFICATIONS

For this task we employ a Sepsis simulator proposed in previous work Oberst & Sontag (2019).
The task is to learn to apply three treatment actions for Sepsis patients in intensive care units, i.e.,
Ac = {antibiotic, ventilation, vasopressors}. At each time step, the agent selects a subset of the
treatment actions to apply. The state space consists of 8 features: 3 of them specify the current
treatment status; 4 of them specify the measurement status in terms of heart rate, sysBP rate,
percoxyg stage and glucose level; the remaining one is a categorical feature indicating the patent’s
antibiotic status. The feature acquisition actively selects a subset among the measurement features
for observation, i.e., Af = {heart rate, sysBP rate, percoxyg state, glucose level}. The objective
for learning a active feature acquisition strategy is to help the decision making system to reduce
measurement cost at a significant scale.

C.2 IMPLEMENTATION DETAILS

For all the compared methods, we adopt Zero-Imputing Nazabal et al. (2018) to fill in missing features.
In particular, a fixed value of -10 which is outside the range of feature values is used to impute
missing values.

End-to-End The end-to-end model first processes the imputed state by 3 fully connected layers of
size 32, 64 and 32, respectively. Each fully connected layer is followed by a ReLU activation.

NonSeq-ZI The VAE model first processes the imputed state by 2 fully connected layers with size
32 and 64, with the first fully connected layer being followed by ReLU activation functions. Then the
output is fed into two independent fully connected layers of size 10 for each, to generate the mean
and variance for the Gaussian distribution. To decode the state, the latent code is first processed by a
fully connected layer of size 64, then fed into three fully connected layers of size 64, 32, and 8. The
intermediate fully connected layers employ ReLU activation functions. Also, we adopt two variants
for NonSeq-ZI, trained under either full loss or partial loss. The details of the hyperparameter settings
used for training are presented in Table 3.

Hyperparameter

β (KL weight) KL reduction Loss reduction learning rate epochs

NonSeq-ZI (partial) 0.01 sum sum 1e-4 1k
NonSeq-ZI (full) 0.01 sum sum 1e-4 1k

Seq-PO-VAE (ours) 0.01 sum sum 1e-3 1k

Table 3: Hyperparameter settings for training VAE models on the Sepsis dataset.

Seq-PO-VAE (ours) At each time step, the inputs for state and action are first processed by their
corresponding projection layers. The projection layers for the state consists of 3 fully connected
layers of size 32, 16 and 10, where the intermediate fully connected layers are followed by a ReLU
activation function. The projection layer for the action input is a fully connected layer of size 10.
Then the projected state feature fc and action feature fa are combined in the following manner:
fc = [fx, fa, fx ∗ fa]. fc is passed to 2 fully connected layers of size 64 and 32 to form the input to the
LSTM module. The output ht of the LSTM is fed to two independent fully connected layers of size
10 to generate the mean and variance for the Gaussian distribution. The decoder for Seq-PO-VAE has
identical architecture as NonSeq-ZI. The details for training Seq-PO-VAE are presented in Table 3.

LSTM-A3C The LSTM-A3C Mnih et al. (2016) takes encoded state features derived from the
corresponding representation model as its input. The encoded featuresare fed into an LSTM with size
256. Then the ht for the LSTM is fed to three independent fully connected layers, to predict the state
value, feature acquisition policy and task policy. Normalized column initialization is applied to all
fully connected layers. The biases for the LSTM and fully connected layers are initialized as zero.

6



C.3 DATA COLLECTION

To train the VAEs, we prepare a training set that consists of 2000 trajectories. Half of the trajectories
are derived from a random policy and the other half is derived from a policy learned from the
End-to-End method with cost 0.0. All the VAE models are evaluated on a test dataset that consists of
identical size and data distribution as the the training dataset. We present the task treatment reward
obtained by our data collection policy derived from the End-to-End method and that obtained by our
proposed method in Table 4. Noticeably, by performing representation learning, we obtained much
better treatment reward as compared to the data collection policy, which demonstrates the necessity
of performing representation learning.

Model

End-to-End Ours

Treatment Reward 0.35 0.45

Table 4: Task performance for the data collection policy and our proposed method on Sepsis.

C.4 MORE COMPARISON RESULT UNDER DIFFERENT VALUES FOR COST

We present additional experiment results that compare our proposed method and the non-sequential
baselines under the cost values {0, 0.025}. The results for cost value of 0.01 are shown in the main
paper. Overall, under all the cost settings, our method leads to significantly better discharge ratio and
task reward compared to the baselines.
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Figure 3: Comparison result between our proposed method and the non-sequential VAE baseline
models under different values for cost. Each curve is derived from 3 independent runs.
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Also, we demonstrate the cost-performance trade-off on Sepsis domain. By increasing the value
of cost, we could obtain feature acquisition policy that acquires substantially decreased amount of
features within each episode.
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Figure 4: Average number of observations acquired in each episode when training our proposed
model under different cost values.

C.5 ILLUSTRATIVE EXAMPLES FOR MISSING FEATURE IMPUTATION IN Sepsis

We present two illustrative examples in Figure 5 to demonstrate how imputing missing features via
learning model dynamics would help the decision making with partial observability in Sepsis domain.
The policy training process with partial observability could only access very limited information, due
to the employment of active feature acquisition. Under such circumstances, imputing the missing
features would offer much more abundant information to the decision making process. From the
results shown in Figure 5, our model demonstrates considerable accuracy in imputing the missing
features, even though it is extremely challenging to perform the missing feature imputation task given
the distribution shift from the data collection policy and the online policy. The imputed missing
information would be greatly beneficial for training the task policy and feature acquisition policy.
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Figure 5: Two example trajectories for illustrating how our method works on the Sepsis medical
domain. The acquisition policy is trained with a cost of 0. Each block corresponds to one trajectory
and the four rows correspond to the four measurement features being considered for active feature
acquisition. Each dot indicates the employment of feature acquisition on the corresponding measure-
ment feature at the presented time point. In each trajectory, we demonstrate the ground-truth signal
over time as well as the imputed signal over time predicted by our proposed Seq-PO-VAE model.
By imputing the missing features via learning model dynamics, our proposed method could offer
much more informative representation for the policy training compared to the non-sequential VAE
baselines, and thus significantly benefit the policy training with partial observability.
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