
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

X-VLA: SOFT-PROMPTED TRANSFORMER AS SCAL-
ABLE CROSS-EMBODIMENT VISION-LANGUAGE-
ACTION MODEL

Anonymous authors
Paper under double-blind review

ABSTRACT

Successful generalist Vision-Language-Action (VLA) models that rely on effec-
tive training across diverse robotic platforms with large-scale, cross-embodiment,
heterogeneous datasets. To facilitate and leverage the heterogeneity in rich,
diverse robotic data sources, we propose a novel Soft Prompt approach with
minimally added parameters, by infusing prompt learning concepts into cross-
embodiment robot learning and introducing separate sets of learnable embeddings
for each distinct data source. These embeddings serve as embodiment-specific
prompts, which in unity empower VLA models with effective exploitation of
varying cross-embodiment features. Our new X-VLA, a neat flow-matching-based
VLA architecture, relies exclusively on soft-prompted standard Transformer en-
coders with an enhanced encoding pipeline, enjoying both scalability and simplic-
ity. Evaluated across 6 simulation environments as well as 3 real-world robotics
platforms, our 0.9B instantiation-X-VLA-0.9B simultaneously achieves state-of-
the-art performance over a sweep of benchmark suites, demonstrating superior
results on a wide axes of capabilities, from flexible dexterity to quick adaptation
across embodiments, environments, and tasks. Demo videos: website.

+LoRA

Pretrained VLM

“fold cloth”

Vision Encoder

Soft Prompt 
(SP)

Proprio/
t/noisy 
action

X-VLA model architecture

Soft-prompted Self-attention Transformer Block
xN

X-VLA
A simple yet scalable cross-embodiment foundation model

Soft Prompt Library

Agibot-3 views
Agilex-3 views

Franka-2 views

Franka-1 view

UR5-1 view

…

…

Learnable Tokens

Quired by 
hardware 

type 

Scalable Cross-embodiment Pretraining Strong Adaptation Capability 

Dexterous Task Prefix Tuning EnhancementCross-task / env Adapt

Libero Calvin

VLABench Robotwin2

Cross-robot Adapt

🔥

xN

Prediction 
Error

Enhanced Pretraining Scalable Training

Model Size/Data 
Source/Data Size

Tune only 1% Parameters (9M)

Libero 93%
Simpler-Widowx 54%

One Model to Beat Them All

Adapt to new robots

Shared ViT

Training Steps

Pr
ed

ic
tio

n
Er

ro
r Stable training 

dynamics, low 
error

Figure 1: X-VLA employs distinctive learnable embeddings, referred to as soft prompt, to effectively address the
heterogeneity present in cross-embodiment datasets. Combined with stacked self-attention transformer blocks
and an enhanced encoding pipeline for multimodal inputs, this design offers a scalable framework for integrat-
ing diverse pretraining datasets and adapting to domain-specific applications. Evaluated across 6 simulation
benchmark including five manipulation benchmarks and one autonomous driving benchmark, as well as 3 real-
world robots, X-VLA achieves SOTA performance over most benchmark suites and real-world robotic tasks.
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1 INTRODUCTION

It has long been a central ambition in the robotics community (Brohan et al., 2023; 2022) to build
autonomous agents that are capable of: (1) flexibly following arbitrary human instructions, and (2)
dexterously operating across diverse environments as well as disparate embodiments. In light of
recent success of Large Language Models (LLMs) (Achiam et al., 2023; Bai et al., 2023a; Touvron
et al., 2023) and Vision-Language Models (VLMs) (Li et al., 2024a; Bai et al., 2023b), one promising
direction is to extend these advanced architectures to robotics through the incorporation of precise
action modalities, thereby giving rise to Vision-Language-Action (VLA) models (Kim et al., 2024).
The inherent expectation is that such large VLA models can marry out-of-the-box generalization
with robust manipulation capabilities, from simple pick-and-place operations to complex dexterous
tasks (Black et al., 2024a; Team et al., 2025; Bjorck et al., 2025).

The success of VLA models, particularly their ability to rapidly adapt to out-of-distribution (OOD)
domains, hinges on pretraining with large and diverse robotics datasets that encompass a broad
spectrum of robotic system architectures and a wide range of task scenarios (O’Neill et al., 2024;
Lin et al., 2025). A key challenge here is that VLA models face substantial heterogeneity from
hardware configurations to data collection strategies (Wang et al., 2024c). Such heterogeneity
manifests not only in embodiment-specific action spaces (Liu et al., 2025b), but also in setup varia-
tions such as camera settings, visual domains, and task distributions (Doshi et al., 2024b; Shi et al.,
2025b; Zhen et al., 2024). These various dimensions of diversity induce severe distributional shifts
as well as significant semantic misalignments across embodiments, confusing the model and ulti-
mately leading to unsatisfactory pretraining and adaptation performance (Zheng et al., 2025; Liu
et al., 2025b). Existing VLA methods primarily assign distinct action decoder heads to accom-
modate embodiment-specific action spaces as their main focus (Physical Intelligence et al., 2025;
Bjorck et al., 2025), with other critical sources of heterogeneity ineluctably overlooked. Reconcili-
ation among these disparate configurations, however, is crucial for proprioceptive-aware reasoning
and for distilling shared knowledge from heterogeneous, mixed-domain datasets, which persistently
remains an unsolved problem due to: (1) the inconsistency across hardware platforms, (2) the ab-
sence of standardized data collection protocols, and (3) the inherent domain shifts that arise across
embodiment and environment barriers (O’Neill et al., 2024).

We demonstrate that these obstacles can be effectively overcome with minimal human effort in-
volved, by allowing VLA models to learn domain-specific hardware configurations through a simple
Soft Prompt mechanism (Lester et al., 2021). Inspired by insights from meta-learning and multi-
task learning, we recast diverse hardware configurations and data types in robotics domain into the
mold of task-specific features, which can then be effectively captured through prompt-learning tech-
niques (Wang et al., 2023; Liu et al., 2023c; Khattak et al., 2023; Liu et al., 2023b). Specifically,
to model the varying dimensions of heterogeneity as aforementioned, we assign a set of learnable
embeddings to each data source as Soft Prompts. These embeddings provide heterogeneity-aware
guidance for structuring the VLA representation space from early stages of feature fusion, which
endows the VLA model with an enhanced capacity to exploit and consolidate cross-embodiment
variations, improving generalization across different hardware and task configurations.

Formally, we introduce X-VLA, a generalist flow-matching–based VLA framework built upon a Soft-
prompted Transformer, designed to operate seamlessly across heterogeneous platforms. Through
Soft Prompts, X-VLA can be guided by explicitly-learned individual hardware setups to accommo-
date various structures of system and data. With a versatile architecture well-equipped for simulta-
neously encoding multi-view images, language prompts and proprioceptive features, X-VLA allows
scalable VLA training, by simply stacking standard Transformer encoders (Vaswani et al., 2023) for
multimodal feature fusion and precise action generation. Extensive experiments demonstrate that
Soft Prompts outperform other state-of-the-art (SOTA) methods in handling various heterogeneity
dimensions. The X-VLA architecture exhibits a stable learning process and superior asymptotic per-
formance, offering favorable scaling capabilities towards larger model size and mixed-robot datasets.

We implement X-VLA-0.9B, a 0.9B instantiation of X-VLA, trained with a carefully designed data
processing and learning recipe. The overall training pipeline consists of two phases: Phase I:
Pretraining. We pretrain X-VLA-0.9B on a curated heterogeneous data mixture comprising 290K
episodes (Khazatsky et al., 2024; Wu et al., 2025; Bu et al., 2025), spanning seven platforms across
five types of robotic arms, ranging from single-arm to bi-manual setups. By leveraging soft prompts
to absorb embodiment-specific variations, the model learns an embodiment-agnostic generalist pol-
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icy. Phase II: Domain adaptation. X-VLA-0.9B is adapted into a deployable policy for a target
domain. A new set of soft prompts is introduced and optimized to encode the hardware configu-
ration of the novel domain, while the pretrained backbone remains frozen. With these prompts in
place, the policy is then effectively specialized to the new embodiment through finetuning.

We conduct extensive experiments to evaluate the adaptation capabilities of the proposed X-VLA-
0.9B across diverse embodiments, environments, and tasks. Remarkably, X-VLA-0.9B achieves
new state-of-the-art results on six simulation benchmarks, including five robotics benchmarks and
one autonomous driving benchmark, as well as on three real-world robot platforms. Furthermore,
with only 1,200 demonstrations, the model excels at dexterous cloth-folding manipulation in the
real world, achieving an average throughput of folding a cloth in under two minutes—comparable
to closed-source models with substantially more parameters trained on larger datasets. In addition,
we demonstrate that Phase II adaptation can be efficiently realized through parameter-efficient fine-
tuning (Hu et al., 2022) at minimal training cost. Specifically, with the aid of previously learned
prompts, X-VLA-0.9B achieves a 93% success rate on LIBERO and 54% on Simpler-WidowX by
tuning only 1% of the model parameters (9M). These results are comparable to π0 (Physical Intelli-
gence et al., 2025), despite requiring 300× fewer parameters (9M vs. 3B).

2 PRELIMINARY

VLA models. VLA models are a class of models that unify multi-modal understanding and action
generation for robotic control (Physical Intelligence et al., 2025; NVIDIA et al., 2025). Typically,
VLA models are initialized from VLMs pretrained on large-scale image-text corpora, and then fine-
tuned on robotics dataset containing expert trajectories: D = {τj}Mj=1, τj = {(on, an)}

Nj

n=1, where
on denotes multimodal observation at step n (e.g., visual input, language instruction, proprioceptive
states), and an is its corresponding expert action. The training objective is typically framed as be-
havior cloning, where the policy πθ(on) parameterized by θ is optimized to predict the demonstrated
action chunk An := [an, an+1, ..., an+T ] where T denotes the chunk size, by minimizing a suitable
supervised loss ℓ(·) as: LBC(θ) = E(on,An)∼D

[
ℓ
(
πθ(on), An

)]
.

Flow-matching policy. Instead of directly predicting the expert action chunk A from observation
o, flow-matching policies commonly learns a velocity field (Lipman et al., 2023) that transports a
noise sample to the target action chunk. For instance, one can generate an action A by starting
from an Gaussian noise A0 ∼ N (0, I) and iteratively refining it through a velocity field vθ(A

t, o, t)
parameterized by a neural network using ODE solvers such as Euler-Maruyama method: At+∆t =
At + vθ(A

t, o, t)∆t. Here, t ∈ [0, 1] is a continuous time variable. To train the velocity field, we
use the OT (optimal transport) path (Lipman et al., 2024; 2023), which aligns the velocity with the
linear interpolated path between noise and expert data:

LFM
BC (θ) = Et∼U(0,1), (o,A)∼D

[ ∥∥vθ(At, o, t)− (A−A0)
∥∥2 ],

where At = (1 − t)A0 + tA, U is uniform distribution. By minimizing LFM
BC , the policy learns to

progressively transport random noise toward expert chunks conditioned on observations.

Heterogeneity in cross-embodiment training. Training on mixed data recipes composed of H
heterogeneous datasets, DH = {Di}Hi=1, is essential for developing generalist VLA models (Doshi
et al., 2024a; O’Neill et al., 2024). Such training enables the aggregation of knowledge across
diverse robots, facilitating fast cross-embodiment transfer and out-of-the-box deployment on unseen
platforms. Each dataset, Di, is collected under a specific hardware configuration, hi ∈ H, where
H represents the space of possible hardware setups, such as arm kinetics, control interfaces, camera
setups, and deployment scenarios. These introduce significant heterogeneity, not only in low-level
action signals and distributions, but also in high-level visual understanding, which can result in poor
pretraining and adaptation if not effectively addressed (Wang et al., 2024c; Zheng et al., 2025).

3 HETEROGENEOUS SOFT PROMPT LEARNING

To address heterogeneity, we conduct a comprehensive empirical study to explore potential design
choices, as shown in Fig. 2. We follow Reuss et al. (2025); Bjorck et al. (2025) to establish a standard
dual-system architecture as our starting point, which leverages VLMs for multimodal perception and
a DiT-style decoder for action generation. In Fig. 3, we construct a heterogeneous data mixture from
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Figure 2: Comparison among four methods in handling heterogeneity in cross-embodiment training.

290K
High-Quality

Episodes

Embodiment

AGIBOT(48.8%)

Franka(15.8%)

Franka(15.8%)

Franka(6.7%)

Dual-Franka(0.8%)

UR-5(8.7%)

Agilex(3.7%)

Freq

30Hz

15Hz

15Hz

30Hz

30Hz

30Hz

30Hz

Source

AGIBOT-Beta

Droid

Droid

RoboMind

RoboMind

RoboMind

RoboMind

Camera Setup

Head/Wrist

Left/Wrist

Right/Wrist

Top

Front/Wrist

Top

Front/Wrist

48.8%

15.8%

15.8%

6.7%

3.7%
8.7%

0.6%

Figure 3: The recipe for mixed data used in pretraining experiments. Figure 4: Training curves for various
methods of handling heterogeneity.

recent high-quality sources, including AGIBOT-beta (Bu et al., 2025), RoboMind (Wu et al., 2025),
and Droid (Khazatsky et al., 2024). This dataset spans seven hardware setups across five robots,
ranging from single-arm to bi-manual setups, providing sufficient scale and diversity necessary for
generalist policy training. We evaluate all methods using a fully aligned training recipe to ensure a
fair comparison. See Appendix I for more training details.

(a) Domain-specific action projection. This strategy addresses heterogeneity by assigning separate
projection heads at the model output to map action tokens into embodiment-specific action spaces.
While this approach is widely used in prior embodied foundation models (Physical Intelligence
et al., 2025; Bjorck et al., 2025; Team et al., 2025; Zheng et al., 2025; Liu et al., 2025b), its effect
is limited to the final action generation stage. Consequently, it fails to encourage embodiment-
aware reasoning earlier in the pipeline and overlooks other critical sources of heterogeneity, such
as variations in different camera setups and task distributions. To circumvent these limitations, we
identify three representative strategies that improve pretraining stability on heterogeneous datasets,
as summarized in Fig. 2. We analyze these strategies in the following discussion, with additional
experimental attempts reported in Appendix E.

(b) HPT-style projection. Inspired by Wang et al. (2024c), this approach aims to mitigate domain
discrepancies in observation inputs and promote generalist reasoning by mapping observations from
distinct domains into a shared representation space. Specifically, domain-specific projection layers
are also applied on top of multi-modal inputs to align them before being fed into the backbone.

(c) Language prompts. Another strategy leverages the language reasoning capabilities of pretrained
VLMs. In this case, natural language descriptions of hardware configurations hi are provided as
additional inputs, enabling the model to attend to embodiment-specific variations through textual
descriptions explicitly. The language template used are summarized in Tab. 10.

(d) Soft prompts. Finally, we investigate a soft-prompt method that follows the meta-learning and
multi-task learning philosophy (Finn et al., 2017; Liu et al., 2023c) by introducing domain-specific
learnable parameters PH = {pi}Hi=1 to absorb heterogeneity across data sources. pi is expected
to encode the underlying hardware configuration: pi ≈ Φ(hi), where Φ : H → Rk denotes a
latent mapping from hardware configurations to the prompt space. Notably, Φ is not predefined as
in language prompts (c) but is randomly initialized and then implicitly optimized through end-to-
end training. These soft prompts are injected into the model at the early stage of action generation,
automatically guiding the backbone toward embodiment-aware learning.

While (b) and (c) are conceptually appealing, they suffer from notable limitations. HPT-style pro-
jection introduces different projection layers in the middle of the observation processing, which
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frequently alter feature distributions and are prone to corrupting pretrained VLM representations,
often resulting in unstable training dynamics. Language prompts, on the other hand, rely on care-
fully scripted textual descriptions of hardware configurations, which greatly hinder adaptability and
scalability in practice. In contrast, soft prompts offer a flexible and scalable solution for encoding
domain-specific hardware configurations. They marry the advantages of both (b) and (c), integrating
smoothly with the backbone while preserving pretrained representations and eliminating the need
for handcrafted annotations. The empirical results in Fig. 4 confirm that Soft Prompts consistently
achieve much more robust and stable training across heterogeneous datasets. We further discuss
additional unsuccessful attempts to address heterogeneity in Appendix E; while these approaches
did not succeed, we report them to inform and inspire future research.

4 X-VLA: SOFT-PROMPTED TRANSFORMER ENHANCED VLA MODEL

Building on Soft Prompts, we introduce X-VLA, a neat VLA architecture designed for stable pre-
training on heterogeneous datasets and efficient adaptation on new domains. In this section, we first
present the overall architectural design, followed by several key techniques for large-scale pretrain-
ing. The complete ablation path is provided in Tab. 1, which highlights the contributions of the
components introduced in this section.

4.1 ARCHITECTURE

We aim to build a streamlined encoding pipeline for complex multimodal inputs. Beyond Soft
Prompts, X-VLA handles (1) high-dimensional inputs (multi-view visuals and languages), and (2)
low-dimensional states (proprioception and action tokens). Due to substantial discrepancies in both
semantics and dimensionality across these modalities, we employ dedicated encoding strategies to
align them effectively, after which vanilla transformer stacks suffice for scalable policy learning.
Below, we detail the encoding pipeline with the complete architecture and additional design explo-
rations are provided in Appendix C and D.

1) High-dimensional observation stream. High-dimensional inputs include multi-view images
Img = {imgi}, together with languages L specifying task objectives. Unlike most prior ap-
proaches (Physical Intelligence et al., 2025) that directly feed all views and instructions into VLMs,
we disentangle the streams by assigning distinct encoders. A pretrained VLM encoder (Florence-
Large (Xiao et al., 2024) in X-VLA) is used for the main vision-language stream (fixed-view and
instruction), while auxiliary views such as wrist-views are processed with a shared vision backbone.
This design alleviates the semantic gap between generic vision-language reasoning and embodied
reasoning: fixed-camera views provide stable, informative context for high-level task reasoning;
whereas wrist-camera inputs, though noisy and fast-changing, offer critical cues for fine-grained
manipulation and are thus encoded separately from the language stream.

2) Low-dimensional proprioceptive–action stream. The proprioceptive states Rt, such as joint
positions and end-effector poses, provide embodiment-specific grounding for reasoning and control.
The action-related tokens At consist of noisy action samples used for flow-matching generation.
Since both Rt and At are compact vectors with closely related physical semantics, we concatenate
them along with their corresponding time embeddings t within the flow-matching pipeline. The
fused representation is then projected into a high-dimensional feature space through a lightweight
linear layer, enabling early fusion with other modalities and ensuring robust proprioceptive–temporal
grounding during both training and inference.

4.2 CUSTOMIZED TRAINING RECIPE

To fully incentivize the potential of X-VLA, we introduce a carefully designed learning engineering to
enhance both stability and effectiveness for X-VLA training. We provide an overview of our training
recipe and outline several key techniques that are crucial for the stable and efficient training.

4.2.1 PRETRAINING AND FINETUNING PIPELINE

For pretraining, the backbone πθ and the soft prompts PH are jointly optimized under the flow-
matching objective LFM

BC . Please refer to Appendix G for detailed pretraining hyperparameters. After
pretraining, the backbone becomes an embodiment-agnostic foundation capable of rapid adaptation
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Table 1: The ablation path for each components in Section 4. We evaluate the pretraining (PT) validation error
and adaptation (AD) success rates on Simpler-WidowX benchmark (Li et al., 2025). Green, Red and Gray
denote positive, negative, moderate effects, respectively. Bold scores are SOTA results. We can see that naively
training on heterogeneous data leads to degradation. Also, as validation error decreases during pretraining, the
adaptation success rate increases progressively, demonstrating a strong correlation between the two. Therefore,
we use the validation error as a proxy for pretraining performance throughout this paper. It is evident that each
components in Section 4 contributes to positive improvements for pretraining.

Type Improvements Val Error (PT) Acc (AD)

Baseline Model (w/o PT) Florence-base + Standard DiT-base - 4.1

Pretraining Technique (Section 4.2.1) +Custom LR (w/o PT) - 39.6 (+35.5)
+Heterogeneous PT 0.11 25.0 (-14.6)

Data Processing (Section 4.2.2)
+Action alignment

+Intension abstraction 0.077 (-0.033) 50.0 (+25.0)
+Balanced data sampling

Architecture Design (Section 4.1)
+Replace DiT with Transformer encoder 0.071 (-0.006) 47.9 (-2.1)

+Encoding pipeline 0.053 (-0.018) 64.6 (+16.7)
+Soft-prompt 0.041 (-0.012) 73.8 (+9.2)

+Scaling up 0.032 (-0.009) 89.6 (+15.8)

Finetuning Technique (Section 4.2.1) +Two-step adaptation 0.032 95.8 (+6.2)

across heterogeneous robots. To deploy this model on novel domains with new hardware configura-
tions hnew, we propose a lightweight two-step adaptation procedure:

(1) Prompt warm-up. We introduce new sets of learnable prompt pnew ∈ Rk for hnew. The prompt is
first warmed up while keeping the pretrained weights frozen. By doing so, prompts are projected to
exploit pretrained embodiment-agnostic features, offering good starts for next-round joint training.

(2) Joint policy adaptation. Then, we jointly optimize both the backbone and the warmed-up
prompt, jointly adapt to new domains. This two-stage process first lets pnew encode the hardware-
specific setups of hnew, and then finetunes the full policy for effective specialization, sharing the
same philosophy used to adapt LLMs to VLMs (Liu et al., 2023a; Li et al., a).

Custom learning rate (LR). A key stabilization technique in both pretraining and adaptation is the
use of a reduced learning rate for the soft prompts as well as for the vision–language modules that
respond for encoding visual and linguistic inputs. This adjustment reduces the risk of catastrophic
drift from pretrained representations, an issue also noted by (Reuss et al., 2025; Driess et al., 2025),
leading to smoother optimization during pretraining and more reliable specialization when adapting
to novel embodiments. It effectively bridges the general knowledge encoded in vision–language
models with the fine-grained spatial localization and action grounding required by VLA models.

4.2.2 ENHANCED DATA PROCESSING

Aligned action representation. Actions are the core supervision signals for VLA models, with
their quality directly shaping training outcomes. Therefore, we standardize the action space into
end-effector (EEF) pose representation comprising: (1) the Cartesian EEF xyz position, (2) the
absolute EEF rotation encoded using the Rotate6D representation (Zhou et al., 2019) to avoid the
discontinuities inherent in Euler angles and quaternion representations, and (3) the discretized binary
state of the gripper. The position and rotation are optimized using mean-squared-error (MSE) loss,
while the gripper state is optimized with binary-cross-entropy (BCE) loss. This ensures consistency
across embodiments, providing robust supervision for generalizable policy learning.

Intention abstraction through temporal downsampling. While low-level action trajectories pro-
vide the precise manipulation signals required for deployment, they are often too fine-grained and
may contain lots of noisy movements due to human randomness, thus are not suitable for achieving
high-level grounding and intention modeling for pretraining. To mitigate this issue, we temporally
downsample demonstrations to construct abstract representations of action intentions. Concretely,
rather than predicting the full end-effector pose at every time step, the pipeline is designed to gener-
ate a sequence of 30 anchor points that summarize the intended trajectory over the next 4 seconds.
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R2=-0.925

Scaling Behavior Across Model Size

Figure 5: With increased compute, data diversity, and data volume, X-VLA can output reduced validation
prediction error, which can lead to enhanced adaptation performance as discussed by Tab. 1.

Balanced data sampling strategy. In contrast to the common round-robin data sampling strat-
egy (Wang et al., 2024c), we observe that stable training requires a carefully designed data shuffling
pipeline. We shuffle samples not only across different domains but also across trajectories within
each domain, ensuring exposure to a diverse and balanced data mixture at every iteration. This
effectively mitigates distributional bias and reduces overfitting to dominant domains, facilitating
smoother convergence during large-scale pretraining.

5 EXPERIMENTS

In this section, we conduct extensive experiments to investigate 1. Does X-VLA exhibit scaling
properties along model size, data diversity, and data scale? 2. Can X-VLA specialize to novel
domains with varied characteristics? 3. Do the soft prompts capture meaningful representations that
reflect the heterogeneity of mixed data sources?

5.1 SCALING EXPERIMENTS

First, we study the scaling behavior of X-VLA along three axes: (1) model capacity, (2) data diversity,
and (3) data volume. As shown in Tab. 1, prediction errors observed during pretraining are strongly
correlated with downstream adaptation performance. Therefore, we adopt the ℓ1 error between pre-
dicted actions (after flow-matching denoising) and ground-truth actions on held-out validation sets
as our primary evaluation metric. The results are summarized in Fig. 5, with additional training de-
tails presented in Appendix G. Notably, even at the largest tested configuration, X-VLA-0.9B (hidden
size 1024, 24 Transformer blocks), trained on 290K episodes from 7 data sources, the scaling trend
shows no sign of saturation. This indicates that further increases along these three axes could yield
additional performance gains. Due to resource constraints, we adopt the largest configuration, as the
default model for subsequent experiments.

5.2 ADAPTATION EXPERIMENTS

We present one of the most comprehensive validation studies to date, evaluating X-VLA-0.9B across
6 simulation environments and 3 real-world robotic platforms. See Appendix D for more results.

Simulation benchmarks. We evaluate on Libero (Liu et al., 2024), Simpler (Li et al., 2025),
VLABench (Zhang et al., 2024a), RoboTwin-2.0 (Chen et al., 2025), Calvin (Mees et al., 2022)
and NAVSIM (Dauner et al., 2024). These 6 benchmarks encompass hundreds of evaluation setups,
spanning single-arm, bi-manual robotic systems, autonomous driving and assessing diverse axes of
generalization, including cross-embodiment, cross-environment, and cross-task adaptation. Across
FIVE benchmarks, we establish a new SOTA, achieving substantial improvements over aggregated
prior models. Remarkably, it attains over 90% success rates on several benchmarks, e.g., Simpler-
WidowX (96%), Libero (98%), and Calvin-1st stage. To the best of our knowledge, no prior model
has reported such comprehensive evaluation paired with consistently significant gains, underscoring
the superior performance of X-VLA-0.9B, which can become a strong baseline for future research to
develop advanced models (please refer to Appendix H for details).
Real-world experiments. We also evaluate X-VLA-0.9B on physical robotic platforms follow the
BridgeData-v2 benchmark (Walke et al., 2023), the evaluation details can be found in Appendix J
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LiberoSimpler-WidowX Simpler-Fractal RoboTwin-2.0 Calvin VLABench Cloth-FoldingBridge AIRBOT

Cross-embodiment Adaptation Cross-environment and -task Adaptation Dexterous Task PEFT

NAVSIM

Figure 6: The evaluated setups in adaptation experiments, to evaluate different axes of adaptation capabilities.

Table 2: Comparison of specialize and generalize models on simulation benchmarks

Methods Size Simpler LIBERO Calvin RoboTwin-2.0 VLABench NAVSIM
VM VA WidowX Spatial Object Goal Long Avg ABC → D Easy Hard Avg. PS PDMS

LBP (Liu et al., 2025a) 0.2B - - - - - - 88.6 - - - - - -
MoDE (Reuss et al., 2024) 0.4B - - - - - - 94.0 - 4.01 - - - -
SuSIE (Black et al., 2024b) 1B - - - - - - 76.3 - 2.69 - - - -
GHIL-Glue (Hatch et al., 2025) 1B - - - - - - - - 3.69 - - - -
SpatialVLA (Qu et al., 2025) 4B 75.1 70.7 42.7 88.2 89.9 78.6 55.5 78.1 - - - - -
TraceVLA (Zheng et al., 2024b) 7B 46.2 49.1 - 84.6 85.2 75.1 54.1 74.8 - - - - -
ThinkAct (Huang et al., 2025) 7B 71.5 65.1 43.8 88.3 91.4 87.1 70.9 84.4 - - - - -
FPC-VLA (Yang et al., 2025) 7B 78.0 65.8 64.6 86.2 87.0 92.0 82.2 86.9 - - - - -
MemoryVLA (Shi et al., 2025a) 7B 77.7 72.7 71.9 98.4 98.4 96.4 93.4 96.7 - - - - -

Octo (Octo Model Team et al., 2024) 0.1B 16.8 1.10 23.4 78.9 85.7 84.6 51.1 75.1 - - - - -
GR-1 (Wu et al., 2023) 0.2B - - - - - - - - 3.06 - - - -
Seer (Tian et al., 2025) 0.3B - - - - - - 87.7 - 4.28 - - - -
UniAct (Zheng et al., 2025) 0.5B - - - 77.0 87.0 77.0 70.0 77.8 - - - - -
RDT (Liu et al., 2025b) 1B - - - - - - - - - 34.5 13.7 - -
FLOWER (Reuss et al., 2025) 1B - - 40.0 97.1 96.7 95.6 93.5 95.7 4.53 - - - -
SmolVLA (Shukor et al., 2025) 2B - - - 93.0 94.0 91.0 77.0 88.8 - - - - -
GR00T-N1 (Bjorck et al., 2025) 3B 45.0 48.4 - 94.4 97.6 93.0 90.6 93.9 - - - 39.7 -
π0 (Black et al., 2024a) 3B 58.8 56.8 27.8 96.8 98.8 95.8 85.2 94.1 - 46.4 16.4 37.8 -
π0+FAST (Pertsch et al., 2025) 3B 61.9 60.5 39.5 96.4 96.8 88.6 60.2 85.5 - - - 34.1 -
OpenVLA (Kim et al., 2024) 7B - - 8.30 84.7 88.4 79.2 53.7 76.5 - - - - -
OpenVLA-OFT (Kim et al., 2025) 7B 63.0 54.3 31.3 97.6 98.4 97.9 94.5 97.1 - - - - -
DD-VLA (Liang et al., 2025) 7B 71.2 64.1 49.3 97.2 98.6 97.4 92.0 96.3 - - - - -
UniVLA (Wang et al., 2025) 9B - - 69.8 95.4 98.8 93.6 94.0 95.4 4.41 - - - 81.7

Maximum of Existing SOTA - 78.0 72.7 71.9 98.4 98.8 97.9 94.5 97.1 4.53 46.4 16.4 39.7 81.7

X-VLA (Ours) 0.9B 80.4 75.7 95.8 98.2 98.6 97.8 97.6 98.1 4.43 70.0 39.0 51.1 87.3

and the results are reported in Fig. 7. Our X-VLA surpass other baselines across all five tasks, each
for testing distinct axis of capability, demonstrating the superior adaptability of our X-VLA.

Dexterous cloth-folding task. We introduce a challenging dexterous cloth-folding task that requires
smoothing highly disordered cloth and folding it neatly. To support this effort, we build a high-
quality cloth-folding dataset on the bi-manual Agilex platform, termed Soft-Fold, which consists of
1,200 trajectories collected through a carefully designed pipeline. A detailed description of both
the task and the dataset is provided in Appendix F. Importantly, we will release the dataset to
facilitate future research in dexterous manipulation. Leveraging this dataset for adaptation, our X-
VLA-0.9B model achieves a throughput of nearly 100% success rate and 33 completed folds per
hour—comparable to the closed-source π0-folding model (Physical Intelligence et al., 2025), which
is presumably trained on substantially larger and higher-quality datasets. For a fair comparison,
we finetuned π0-base and ACT model on Soft-Fold, but it failed to match the throughput of X-
VLA-0.9B, underscoring the strong dexterous manipulation capabilities of our model. Additional
qualitative results are provided in Appendix F and showcased in our web demos: website.

Parameter efficient finetuning (PEFT) experiments. To evaluate whether the pretrained X-VLA-
0.9B backbone encodes embodiment-agnostic features and can be efficiently adapted to new settings,
we adopt PEFT techniques such as Low-Rank Adaptation (LoRA) (Hu et al., 2022). We test adapta-
tion on three benchmarks: Libero, Simpler-WidowX, and a cloth-pick task on AIRBOT, a real-world
embodiment unseen during pretraining. Tab. 3 and Tab. 7 show that with only 9M tunable param-
eters (about 1% of the full model), the backbone can be steered into a strong domain-specialized
model, achieving 93% and 54% success rates on Libero and Simpler-WidowX benchmarks, respec-
tively. These scores are comparable to fully finetuned models, e.g., π0 (Black et al., 2025) achieve
94.2% and 55.7% on Libero and Simpler-WidowX, respectively.

5.3 IN-DEPTH ANALYSIS

We further demystify the effects of soft prompts through both qualitative and quantitative results,
examining whether the proposed soft-prompt mechanism can effectively absorb meaningful domain-
specific knowledge from heterogeneous datasets.
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Simple Manipulation (WidowX) Dex Manipulation (Agilex) PEFT (AIRBOT)

Figure 7: Real-World Evaluation Results. We evaluate our X-VLA model on three distinct real-world em-
bodiments, each under specific task setups, including simple manipulation, dexterous manipulation, and fast
adaptation experiments using PEFT techniques. See Appendix J for for details.

Single arm + 1 view

Bimanual + 3 viewsFranka + 2 views

Franka cluster

T-SNE visualization of soft prompts

Figure 8: T-SNE visualization of soft
prompts on 7 data sources.

Figure 9: Comparison of dif-
ferent prompts on PEFT.

Methods π0 Ours-Lora

#Param 3B 9M

Libero-Spatial 96.8 95.4
Libero-Object 98.8 96.6
Libero-Goal 95.8 96.0
Libero-Long 85.2 84.2

Simpler-WidowX 55.7 54.2

Table 3: PEFT performance com-
parison across benchmarks.

Qualitative experiments. We visualize the soft prompts learned after pretraining on the mixed
data recipe (Fig. 3) using T-SNE (Maaten & Hinton, 2008). Fig. 8 reveals that the prompts form
well-structured clusters that align closely with different hardware configurations, indicating that
they successfully capture embodiment-specific information. More excitingly, the two Franka setups
(with left and right views) derived from Droid data are intermingled rather than separated, as they
only differ in their designated main view. This observation suggests that soft prompts do not merely
partition data sources in a brute-force manner but instead leverage cross-embodiment similarities.

Quantitative experiments. Further, we evaluate how pretrained soft prompts facilitate efficient
adaptation to WidowX, an single-arm robot unseen in pretraining. We conduct PEFT experiments on
Simpler, comparing three settings: (1) randomly initialized soft prompts kept frozen, (2) pretrained
prompts from another single-arm platform (e.g., UR5) kept frozen, and (3) soft prompts adapted
with our two-step adaptation mechanism. In Fig. 9, it’s not surprise that learned prompts converge
faster and finally reach higher success rates, whereas random prompts lead to slower adaptation and
degraded performance. However, it’s good to see that the frozen pretrained prompts offer strong
transfer benefits in early stage due to the partial similarity between UR5 and WidowX, although the
inevitable domain gap limits the final performance. This highlights a promising avenue for cross-
embodiment transfer: with pretraining on more diverse robotic platforms, soft prompts may enable
zero-shot/few-shot generalization by retrieving prompts aligned with the closest hardware setups.

6 CONCLUSION

In this paper, we introduce X-VLA, a generalist Vision-Language-Action framework capable of op-
erateing across heterogeneous robotic platforms. Through a carefully designed training pipeline,
adaptation methods, and enhanced data processing, our largest model X-VLA-0.9B achieves SOTA
performance across a broad spectrum of benchmarks, setting new records with substantial gains over
hundreds of evaluation setups. Remarkably, even with minimal tunable parameters, X-VLA-0.9B
delivers results competitive with fully finetuned SOTA models. Importantly, empowered by Soft
Prompt mechanism, X-VLA exhibits scalable training trends along all three axes including model
size, data diversity and data volume without sighs of saturation even at our largest test configuration
(0.9B parameters, 290K episodes, 7 data sources). This highlights its potential for further scaling
to larger models and datasets, paving the way toward more powerful VLA models. Limitations and
future works are discussed in Appendix N.
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A LLM USAGE AND ETHICS STATEMENT

In this paper, we employed Large Language Models (LLMs) solely for polishing the writing. No
parts of the technical content, experimental results, or conclusions were generated by LLMs.

A potential ethical concern is the use of large-scale pretraining data, which may contain privacy-
sensitive information or embedded biases. To mitigate this, we use exclusively open-sourced
robotics datasets (Bu et al., 2025; Wu et al., 2025; Khazatsky et al., 2024; O’Neill et al., 2024),
all of which have undergone peer review and are widely adopted in the research community. We
believe this substantially reduces the risk of privacy violations or biased data influencing our results.

Nevertheless, we encourage future researchers to exercise caution when curating data for training
large-scale robotics models, particularly by filtering privacy-sensitive content and addressing poten-
tial biases to ensure responsible and fair deployments of embodied AI systems.

B RELATED WORK

Vision-Language-Action Models. Developing agents that can interact with the physical world
requires integrating three essential modalities: visual perception to understand the environment,
language comprehension to interpret task instructions, and action generation to produce executable
control signals. Research on Vision-Language-Action (VLA) models (Physical Intelligence et al.,
2025; Bjorck et al., 2025; Zheng et al., 2025; Kim et al., 2024) has focused on unifying these
modalities to enable embodied agents to perform complex tasks conditioned on natural language
commands and visual observations. These models are typically built upon Vision-Language Mod-
els (VLMs) (Team et al., 2024; Achiam et al., 2023; Li et al., 2024a; Xiao et al., 2024), which
are pretrained on large-scale vision–language corpora. By inheriting strong visual grounding and
generalist reasoning capabilities from VLMs, VLA models achieve impressive results on diverse
manipulation tasks. More recently, researchers have recognized the inherent gap between general-
purpose vision–language reasoning and embodied task requirements (Qu et al., 2025; Black et al.,
2025; Mu et al., 2023). To address this, various approaches have been explored, such as incorpo-
rating embodiment-specific priors (e.g., 3D spatial grounding (Qu et al., 2025; Shi et al., 2025a),
instruction-following (Zheng et al., 2024a), historical reasoning (Shi et al., 2025a)) via modality in-
jection (Qu et al., 2025), scaling up domain-relevant datasets (Black et al., 2025; Li et al., b), adding
extra supervision, or designing specialized models (Shi et al., 2025a). Nevertheless, due to the inher-
ent limitations of current VLMs, these strategies often fall short of achieving the level of generalized
reasoning required for embodied tasks with complex visual inputs. In this paper, we demonstrate
that a simple yet effective modification of the input streams can better harness the generalization
potential of VLMs, leading to significant performance gains.

Heterogeneous Pretraining. Training on large-scale datasets has been a key factor of recent
progress in embodied foundation models (Black et al., 2024a; Kim et al., 2024). However, robotics
data available for large-scale pretraining often exhibit strong heterogeneity, not only in action spaces
but also in hardware setups (O’Neill et al., 2024). To address this, Wang et al. (2024c) proposed
pretraining a standard Transformer on heterogeneous data mixtures with carefully designed archi-
tectural modifications, demonstrating promising scaling behavior and transferability. More recently,
researchers have observed that pretrained VLMs already possess strong generalization ability in han-
dling diverse vision–language inputs across domains. Consequently, the focus has shifted toward
resolving heterogeneity in action spaces (Zheng et al., 2025; NVIDIA et al., 2025; Zawalski et al.,
2024). Beyond manually reshaping action spaces (Liu et al., 2025b) or modifying model architec-
tures to accommodate heterogeneous action labels, several approaches have been proposed to align
actions at the semantic level through latent action modeling or representation learning (Ye et al.,
2024; Zheng et al., 2025; Li et al., 2024c;b). Nevertheless, learning policies from heterogeneous
data sources requires more than aligning action labels, but embodiment-specific and proprioceptive-
aware reasoning, since variations in hardware setups directly affect how observations map to ac-
tions. Simply feeding heterogeneous data into a shared backbone without explicitly modeling these
embodiment-specific factors often leads to unstable training and poor cross-domain generalization.
In this paper, we introduce a soft-prompt mechanism that explicitly absorbs embodiment-specific
variability while preserving a shared backbone for general reasoning. By associating each hardware
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configuration with learnable prompt embeddings, the model can flexibly capture domain-specific
knowledge, thus enabling stable large-scale pretraining.

Soft Prompt Learning. The concept of soft prompts was originally introduced in the NLP commu-
nity as a parameter-efficient alternative to full model finetuning. Instead of updating all parameters
of a pretrained model, a small set of learnable embeddings are prepended to the input sequence and
optimized for downstream tasks (Lester et al., 2021). This approach has proven highly effective in
adapting large language models to diverse tasks with minimal additional parameters, inspiring ex-
tensive research on prompt-based transfer learning across modalities (Li & Liang, 2021; Wang et al.,
2022). Building on this foundation, soft prompts have been extended to multi-modal and multi-task
learning settings (Liu et al., 2023c). When combined with the philosophy of meta-learning (Park
et al., 2024; Gordon et al., 2019), soft prompts can serve as lightweight carriers of domain- or
task-specific information. By injecting learnable embeddings that guide the backbone without over-
writing its pretrained representations, they provide a flexible and scalable mechanism to handle
domain heterogeneity (Wang et al., 2023). In this work, we adopt the soft prompt paradigm for
robotics, where heterogeneity arises from embodiment differences such as hardware configurations
and action spaces. We demonstrate that soft prompts can effectively absorb embodiment-specific
variability, enabling the backbone to focus on learning an embodiment-agnostic generalist policy.

C ARCHITECTURE DESIGN

We provide further details on our proposed X-VLA architecture (Fig. 10). Specifically, we adopt
Florence-Large (Xiao et al., 2024) as the vision–language encoder and employ a standard Trans-
former backbone with 24 layers and a hidden size of 1024 for action generation. Our design in-
troduces a streamlined encoding pipeline that integrates soft prompts and explicitly disentangles
high- and low-dimensional input streams. This architecture yields improved training stability and
consistently stronger validation performance.

D MORE RESULTS

In this section, we present additional results that highlight the strengths of our approach. Specifically,
we report: (1) comparisons between our model and alternative architectural designs, (2) evaluations
under cross-embodiment joint training, and (3) evaluations in data-constrained settings.

D.1 ALTERNATIVE ARCHITECTURAL DESIGNS

In this section, we present additional results from alternative architectural designs explored during
development. While our final model adopts the X-VLA pipeline, we also implemented several com-
monly used backbone architectures for comparison. These baselines were evaluated under identical
experimental settings, consistent with the preliminary experiments described in Appendix I.

Standard DiT Decoder. A direct application of the Diffusion Transformer (DiT) decoder (Peebles
& Xie, 2023) that generates actions conditioned on multimodal features extracted by pretrained
vision–language encoders. This is the most straightforward extension of DiT to embodied settings.

Standard MM-DiT Decoder. A multimodal variant of DiT that allocates separate parameters for
different input modalities and integrates them through attention (Esser et al., 2024). We isolate the
action modality from visual–language inputs. Although this design attempts to reduce the semantic
gap across modalities, it often destabilizes training and leads to inferior results on heterogeneous
datasets and downstream adaptation.

π0-Style Decoder. Following (Black et al., 2024a), this design employs a parallel MLP-Mixer (Tol-
stikhin et al., 2021)–based action module alongside a pretrained VLM for vision–language process-
ing. This leverages the compact nature of action inputs, which can be effectively represented with
dense feed-forward networks, but comes at the cost of added architectural complexity.

The comparative results across these backbones are summarized in Tab. 4, where our X-VLA consis-
tently achieves the best validation performance while maintaining stable optimization dynamics.
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Figure 10: Illustration of the detailed architecture of our model. Most parameters are shared across different
embodiments, with the exception of the soft prompt and input/output linear projections for action-related to-
kens. These unshared parameters account for only a small fraction of the total parameters (0.04%). For each
dataset, the corresponding domain-specific parameters are queried. The image inputs and language instruc-
tions are processed by pretrained Vision-Language Models (VLMs). Notably, only the main view is passed
through the entire VLM, while additional views, such as the wrist view, are directed only to the vision encoder.
This approach helps preserve the pretrained VLM’s capability, as current VLMs have limited multi-view per-
ception. The proprioception and flow-matching time variables are repeated and concatenated with the noise
action chunk, which is then projected using its specific projections. These features, along with the soft prompt
and multi-modal tokens, are processed by stacking standard self-attention transformer blocks, enabling bi-
directional information flow and effective fusion of all modalities. Finally, the control tokens are projected
back to action chunks using domain-specific output projections.

DiT MM-DiT π0-Style Ours
Validation Error 0.077 0.140 0.056 0.041

Table 4: Comparison of backbone architectures on
validation error. X-VLA achieves the lowest error
while maintaining stable training.

Libero-Long Simpler-WidowX Calvin
Single-domain FT 97.6 96.0 4.42
Multi-domain FT 98.1 93.8 4.32

Table 5: Joint adaptation to multiple embodiments.
Multi-domain finetuning achieves performance com-
parable to, and in some cases exceeding, single-
domain finetuning, demonstrating the scalability of
X-VLA to heterogeneous deployment settings.

D.2 POTENTIAL TO BUILD CROSS-EMBODIMENT GENERALIZED POLICY

Empowered by soft prompts, X-VLA enables efficient and stable training on heterogeneous datasets,
effectively absorbing domain variations and fostering embodiment-agnostic policy learning. Build-
ing on this capability, we show that X-VLA can be adapted not only to a single novel embodiment but
also to multiple embodiments simultaneously through joint finetuning on demonstrations from di-
verse data sources. Concretely, we conduct joint finetuning experiments on a mixture of downstream
datasets including Libero, BridgeData, and Calvin-ABC, which include two distinct embodiments
and three hardware setups for both data collection and deployment. After joint finetuning using the
same training recipe as other finetuning experiments in Appendix H, we report the results in Table 5.

Table 5 shows the multi-domain adaptation results. X-VLA maintains consistently strong perfor-
mance across all evaluated embodiments when adapted jointly, demonstrating its ability to scale
beyond single-domain specialization. Interestingly, joint adaptation not only preserves performance
within each domain but in some cases even improves success rates compared to single-domain fine-
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tuning, suggesting positive cross-domain transfer. This indicates that the soft-prompt mechanism
not only absorbs embodiment-specific variations but also enables complementary knowledge shar-
ing across heterogeneous embodiments.

D.3 DATA-EFFICIENT ADAPTATION

# demos Libero-Spatial Libero-Object Libero-Goal Libero-Long Libero-Avg
50 (Full & Default) 96.6 95.4 95 84.2 92.8

10 95.2 94.2 93.6 81.5 91.1

Table 6: Data-efficient adaptation performance of PEFT finetuned X-VLA-0.9B on Libero under limited demon-
strations. Even with only 10 demonstrations, the model maintains strong performance.

In this section, we investigate whether the learned embodiment-agnostic backbone can be efficiently
adapted to novel embodiments under limited supervision. To this end, we finetune X-VLA-0.9B in a
PEFT setup on Libero-Goal using only a small number of demonstrations. As shown in Table 6, the
model achieves a 92.8% success rate with 50 demonstrations, and remarkably still retains a strong
91.1% success rate with only 10 demonstrations. These results highlight the data efficiency of our
two-step adaptation procedure, showing that the pretrained backbone, together with soft prompts,
serves as a strong prior that enables effective specialization even under extreme data scarcity.

E FAILURE ATTEMPTS FOR ABSORBING HETEROGENEITY

The core motivation of this paper is to explore strategies for mitigating heterogeneity across mixed
data sources and to develop a generalist, embodiment-agnostic policy. Inspired by the philosophy
of meta-learning (Gordon et al., 2019), we initially approached this problem from the perspective of
heterogeneous parameter learning. Concretely, we assigned distinct parameter sets for each domain,
with the expectation that these domain-specific parameters could absorb domain variations while the
shared backbone distilled generalizable knowledge across domains. Ultimately, we found that our
proposed soft-prompt mechanism provides an effective solution to this challenge. In this section, we
present two of our unsuccessful attempts, with the aim of highlighting practical pitfalls and inspiring
future work in this direction.

Heterogeneous Low-rank Adapter. Beyond soft prompts, we explored the integration of other
parameter-efficient learning methods into heterogeneous pretraining. Specifically, we experimented
with Low-Rank Adaptation (LoRA)-style modules (Hu et al., 2022), where domain-specific adapters
were introduced in parallel with the shared backbone. Our intuition was that these adapters
could capture embodiment-specific variations with efficient parameterization, and meanwhile the
main backbone encodes embodiment-agnostic features. However, we observed that the additional
adapters often conflicted with the optimization dynamics of the backbone, leading to instability and
degraded generalization across domains.

Heterogeneity-guided MoE framework. We also experimented with a mixture-of-experts (MoE)
approach, which has been widely used for scaling model capacity while controlling inference cost.
MoE’s sparse activation mechanism (Shazeer et al., 2017) has proven effective in multi-task learn-
ing (Pham et al., 2023), cross-domain learning (Zhang et al., 2024b), and multi-modal robotics
behavior cloning (Reuss et al., 2024). Motivated by these successes, we designed a heterogeneity-
guided routing strategy that aimed to activate experts based on embodiment-specific cues. Despite
its theoretical appeal, we found that the router tended to collapse, consistently routing most in-
puts to only a few experts while leaving others underutilized, leading to wasted capacity and only
marginal performance gains. To mitigate this, we give another try to introduce load-balancing reg-
ularization (Wang et al., 2024a), but the resulting rapid switching across experts often destabilized
optimization and degraded overall training dynamics.
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Soft-FOLD
The first open-source high-quality cloth-folding dataset

1.2K episode📊
2M samples
24H Time Cost ⏰

Carefully Designed Folding Pipeline: Daggle-Style Data Collection

XXLXLM
Varied Cloth Color and Size

Agilex

Stage I: Smooth-out Stage II: Fold

Figure 11: The illustration of our proposed Soft-Fold datasets.

F SOFT-FOLD: SUPERIOR DEXTEROUS MANIPULATION MODEL WITH A
HIGH-QUALITY CLOTH FOLDING DATASET

We provide qualitative results about our finetuned dexterous manipulation model from the pretrained
X-VLA-0.9B and introduce a high-quality cloth folding dataset: Soft-FOLD, as illustrated in Fig 11.

Demonstration collecting strategy. Humans can fold clothes casually and quickly, often using a
wide variety of methods in a seemingly random manner. However, this variability poses significant
challenges for robotic policy learning, since different folding strategies often correspond to distinct
behavioral modes, and not all strategies are equally suitable for training. To reduce the inconsis-
tency in human demonstrations, we decompose the folding task into two stages: (1) smoothing out
the cloth from a highly disordered state, and (2) folding the smoothed cloth neatly. We find that
the first stage is particularly challenging, as the disordered cloth exhibits highly random dynamics,
requiring the policy to capture a universal strategy for unfolding. To address this, we collect demon-
strations for stage I in a repetitive manner until meaningful keypoints, such as the two corners or
two ends of the cloth emerge clearly. At that point, we employ swinging motions to complete the
smoothing stage and then transition to stage II. This is critical for cloth folding, as unstructured or
randomly collected demonstrations in stage I can entangle policies in inconsistent behaviors, leading
to unstable learning dynamics and hindering progression to stage II. For stage II, the data collection
becomes far more easier, as the cloth behaves less randomly after smooth-out. On average, one full
folding episode takes about 1.5 minutes, with one hour of collection yielding 20–25 episodes, in-
cluding time for resetting and discarding failed attempts. The final dataset includes 1,200 episodes,
as shown in Fig. 11.

DAgger-style data collection. To train long-horizon dexterous tasks such as cloth folding with
limited episodes, we find it essential to adopt a DAgger-style data collection strategy (Ross et al.,
2011), a practice also noted by Hu et al. (2025). Concretely, we train ACT (Zhao et al., 2023) after
every 100 collected episodes, identify its failure modes, and then collect targeted demonstrations
to address these failures. This iterative refinement enables us to achieve cloth-folding performance
comparable to that of closed-source models that are likely trained on substantially larger datasets,
using only 1,200 episodes.

Qualitative results of X-VLA-0.9B. Here, we visualize a complete folding progress of our X-VLA-
0.9B in Fig. 12. One complete folding covers diverse skills, such as the simple Localization,
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Figure 12: The folding progress of X-VLA-0.9B.

Pick, Place and high-dynamical Swing motion, demonstrating the challenging of the cloth-
folding tasks.

G PRETRAINING DETAILS

The pretraining of X-VLA-0.9B was carried out on 64 NVIDIA A100 GPUs with a global batch size
of 1024, costing approximately 4 days. The training followed a carefully tuned recipe to ensure
stability and efficient convergence across heterogeneous datasets.

Tab. 7 summarizes the core hyperparameters used during pretraining. We adopt the AdamW op-
timizer with momentum parameters β1 = 0.9 and β2 = 0.95, a learning rate of 1 × 10−4, and a
weight decay of 0.01. Training was performed for 200K iterations with mixed-precision (bfloat16).
For visual inputs, images are resized to 224 × 224 and augmented with mild perturbations using
ColorJitter to improve generalization.

In addition to the optimizer configuration, a critical aspect of pretraining is balancing the het-
erogeneous datasets. Since different sources vary greatly in both scale and quality, we adopt a
weighted sampling strategy combined with a carefully designed shuffling pipeline. As highlighted in
Sec 4.2.1, this includes cross-domain and cross-trajectory shuffling, ensuring that the model is con-
sistently exposed to a diverse and balanced mixture of samples at every iteration. We find this design
crucial for stabilizing optimization and preventing domain overfitting during large-scale pretraining.
Tab. 8 summarizes the data sources, available trajectories, and the sampling weights applied.

Validation set construction. We conduct open-loop validation experiments to monitor pretraining
convergence and ensure fair comparisons across different architectures and methods. To guarantee
that the validation loss serves as a clear and reliable proxy for downstream task performance, we
carefully construct a dedicated validation set. Specifically, we sample trajectories from AGIBOT-
beta (Bu et al., 2025) that are excluded from the training split, allowing us to better evaluate cross-
embodiment knowledge sharing and generalization. The validation set spans 189 tasks, with three
trajectories sampled per task. For evaluation, we report the average ℓ1 error between the predicted
and ground-truth trajectories.

Configuration Value

Optimizer AdamW
Batch size 1024
Learning rate 1× 10−4

Weight decay 0.01
Optimizer momentum β1, β2 = 0.9, 0.95
Training iterations 200K
Model precision bfloat16

Image Resize 224x224
Image Augmentation ColorJitter(0.2, 0.2, 0.2, 0)

Table 7: Hyperparameters for pretraining.

Data source Num. traj Sampling weight

AGIBOT 141K 0.4
Droid-Left 45K 0.15
Droid-Left 45K 0.15
RoboMind-Franka 19K 0.1
RoboMind-Dual-Franka 2K 0.03
RoboMind-UR 25K 0.1
RoboMind-Agilex 11K 0.07

Table 8: Sampling weights for heterogeneous data sources
during pretraining.
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H FINETUNING DETAILS

In this section, we provide additional training details for the adaptation experiments. Unless oth-
erwise specified, the optimizer settings (AdamW with β1 = 0.9, β2 = 0.95), weight decay (0.01),
model precision (bfloat16), and learning rate (1 × 10−4) are kept consistent with the pretraining
stage. All models are adapted using our proposed two-step procedure: during the first 1,000 itera-
tions, only the soft prompts and action heads are updated while all other parameters remain frozen;
this is followed by a 1,000-iteration warm-up phase that gradually restores the learning rate to its
default value for joint training.

Table 9 summarizes the benchmark-specific hyperparameters. For clarity, Abs EEF denotes the ab-
solute end-effector position control interface, while Rel XYZ + Abs Rotation refers to rela-
tive Cartesian translation combined with absolute rotation. All rotations are parameterized using the
6D representation, and the gripper state is binarized and predicted via a sigmoid activation. To max-
imize knowledge transfer from the pretrained backbone, we adopt aligned action representations
(Abs EEF) across most downstream benchmarks. However, in the Simpler-Google benchmark,
where the camera setup is deliberately altered to test robustness against visual variation, we adopt
the Rel XYZ + Abs Rotation control interface due to the sensitivity of absolute parameteri-
zations to domain shifts in perception.

Benchmark Control Interface Batch Size Training Steps Data Augmentation

CALVIN-ABC Abs EEF 128 60K ColorJitter
LIBERO Abs EEF 128 60K -
RobotWin-2.0 Abs EEF 128 60K ColorJitter
VLA-Bench Abs EEF 128 60K ColorJitter

BridgeData Abs EEF 128 60K ColorJitter
FactalData Rel XYZ + Abs Rotation 256 50K RandomResizeCrop + ColorJitter
SoftFold Abs EEF 256 400K ColorJitter

PEFT experiments Abs EEF 128 40K ColorJitter

Table 9: Finetuning hyperparameters for each downstream benchmark. Settings follow pretraining defaults
unless otherwise specified.

I TRAINING DETAILS FOR PRELIMINARY EXPERIMENTS

In this section, we provide additional details on the preliminary experiments. We adopt Florence-
Base (Xiao et al., 2024) as the vision–language encoder and configure the backbone as a standard
DiT-Base (12 Transformer layers, hidden size 768, with AdaLN conditioning) to ensure compa-
rability. Training is conducted on the curated heterogeneous data mixture using 8 NVIDIA A100
GPUs with a global batch size of 256 for 200K iterations. Unless otherwise specified, all remaining
settings (optimizer, weight decay, augmentation, and shuffling strategy) are kept consistent with the
pretraining setup described in Section G. Following we provide more implementation details about
baseline methods.

HPT-style Methods. Following (Wang et al., 2024b), we implement a cross-attention–based resam-
pler that maps domain-specific observations into a shared representation space before feeding them
into the DiT decoder. Each domain is assigned its own resampler and a dedicated action head, while
the core Transformer backbone remains shared across all domains. This design aims to mitigate
observation heterogeneity while keeping the reasoning backbone general.

Language Prompts. In this setting, we provide embodiment-aware textual descriptions that encode
hardware configurations and camera setups for each domain. These descriptions are concatenated
with the task instruction and processed by the Florence-Base encoder, enabling the model to ex-
plicitly attend to embodiment-specific variations. Table 10 lists the language prompt templates used
across domains.
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Domain Language Prompts
RoboMind-Franka Embodiment: Single Franka, Camera Setup: Top View, Freq: 30Hz

RoboMind-UR Embodiment: Single UR, Camera Setup: Top View, Freq: 30Hz

Droid-Left Embodiment: Single Franka, Camera Setup: Left View / Wrist View, Freq: 15Hz

Droid-Right Embodiment: Single Franka, Camera Setup: Right View / Wrist View, Freq: 15Hz

AGIBOT Embodiment: AGIBOT, Camera Setup: Head View / Wrist View, Freq: 30Hz

RoboMind-Agilex Embodiment: AgileX, Camera Setup: Head View / Wrist View, Freq: 30Hz

RoboMind-Dual-Franka Embodiment: Dual Franka, Camera Setup: Front View / Wrist View, Freq: 30Hz

Table 10: Language prompts designed to provide embodiment- and camera-specific descriptions for each do-
main in the preliminary experiments.

J EVALUATION DETAILS IN REAL-WORLD EXPERIMENTS

In this section, we provide detailed descriptions of our real-world evaluation setups. We adapt X-
VLA-0.9B to three distinct robotic embodiments, each selected to validate different aspects of the
model’s adaptability:

WidowX for pick-and-place experiments. X-VLA-0.9B finetuned on BridgeData is directly deployed
to evaluate its ability to perform robust manipulation on a compact platform. We conduct compre-
hensive evaluations to assess both manipulation performance and language-instruction following in
real-world settings, as illustrated in Fig 13 and each task is evaluated for 10 times.

Put eggplant into pot (w/ 
clutter)

Put yellow corn into pot (w/ 
clutter)

Put Carrot on plate (w/ height 
change) Flip the pot upright

Motion Generalization Physical Generalization

Move the doll into the drying 
rack

Semantic GeneralizationVisual Generalization

Figure 13: Illustration of tasks used in the WidowX pick-and-place experiments. The selected tasks evaluate
different aspects of generalization—Visual, Motion, Physical, and Semantic—following the setup in Open-
VLA (Kim et al., 2024).

AgileX for dexterous manipulation tasks. As discussed in Appendix F, this setup is designed to test
dexterous, fine-grained control on a bi-manual platform equipped with wrist-mounted cameras.

AIRBOT for parameter-efficient finetuning experiments. AIRBOT is unseen during pretraining. We
specifically collect only 200 demonstrations for a cloth-picking task, making it a challenging low-
resource setting. This experiment highlights the adaptability of our two-step adaptation procedure
under strict data and resource constraints.

Fig. 14 shows the hardware setups for these experiments. Each embodiment is equipped with distinct
camera setups, enabling us to construct a heterogeneous deployment environment for validation.

K TRAINING DETAILS OF BASELINES IN REAL-WORLD EXPERIMENTS

In this section, we provide the training details of the real-world baselines.

π0 in cloth-folding task is finetuned from the official base π0 model using the Soft-Fold dataset
described in Appendix F. The model is trained with a total batch size of 32 across 4 A100 GPUs,
requiring approximately 60 hours to complete 150,000 gradient steps.

π0 in PEFT experiments is finetuned from the official π0 base model using the official LoRA
configuration. We apply LoRA with rank 16 and α = 16 to both the attention and FFN modules
within the PaliGemma-2B VLM. For the action expert, we use rank 32 and α = 32. Training
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Wrist viewFront view

Left side view Right wrist view Left wrist view

Top view

(a) WidowX (b) AgileX (c) AIRBOT

Figure 14: Illustration of the hardware setups used in real-world experiments. We evaluate on three robotic
embodiments, including WidowX, Agilex, and AIRBOT, covering diverse camera configurations and task do-
mains to form a heterogeneous validation environment.

is performed with a total batch size of 32 across 4 A800 GPUs, taking approximately 7 hours to
complete 30,000 gradient steps.

ACT in cloth-folding task is trained from scratch using the Soft-Fold dataset described in Ap-
pendix F. The model is trained with a total batch size of 256 on 8A100 GPUs. Since the model
capacity of ACT is not high as large model such as X-VLA and π0, we train ACT approximately
1M gradient steps for better training.

L EVALUATION DETAILS ON AUTONOMOUS DRIVING SIMULATION
BENCHMARK

We evaluate our method on the large-scale real-world autonomous driving benchmark
NAVSIM (Dauner et al., 2024) using closed-loop assessment. Following the official evaluation
protocol, we report the PDM score (higher indicates better performance), which aggregates five key
metrics: NC (no-collision rate), DAC (drivable area compliance), TTC (time-to-collision safety),
Comfort (acceleration/jerk constraints), and EP (ego progress). All methods are tested under the
official closed-loop simulator, and results are averaged over the public test split. As an end-to-end
VLA model, our method achieves superior performance over specialized methods designed for au-
tonomous driving, with detailed scores reported in Table 11.

NAVSIM
Methods NC DAC EP TTC C PDMS

Transfuser (Chitta et al., 2022) 97.7 92.8 79.2 92.8 100.0 84.0
UniAD (Hu et al., 2023) 97.8 91.9 78.8 92.9 100.0 83.4

UniVLA (Wang et al., 2025) 96.9 91.1 76.8 91.7 96.7 81.7
X-VLA (Ours) 97.5 96.5 82.2 92.9 100.0 87.3

Table 11: Detailed results on NAVSIM benchmark.

M EVALUATION DETAILS ON ROBOTICS SIMULATION

We report detailed scores for each simulation benchmark in Table 12-16.
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Simpler
Visual Matching
(Google Robot)

Visual Aggregation
(Google Robot)

Visual Matching
(WidowX Robot)

Coke Near Open Put Average Coke Near Open Put Average Spoon Carrot Blocks Eggplant Average
98.3 97.1 69.5 56.5 80.4 85.5 79.8 61.9 75.7 75.7 100 91.7 95.8 95.8 95.8

Table 12: Detailed results on Simpler benchmark.

Libero

Libero-Spatial 98.2
Libero-Object 98.6
Libero-Goal 97.8
Libero-Long 97.6

Average 98.1

Table 13: Details on Libero.

Calvin
(ABC→D)

1 97.1
2 92.6
3 88.5
4 84.4
5 78.8

Average 4.43

Table 14: Details on Calvin.

VLABench

In Distribution 67.8
Cross Category 25.1
Common Sense 48.2

Semantic Instruction 63.1
Average 51.1

Table 15: Details on VLABench.

RoboTwin-2.0

Task Easy Hard Task Easy Hard Task Easy Hard

Adjust Bottle 97.0 56.0 Open Microwave 85.0 57.0 Place Object Stand 78.0 33.0
Beat Block Hammer 78.0 18.0 Pick Diverse Bottles 27.0 25.0 Place Phone Stand 80.0 9.00

Blocks Ranking RGB 79.0 26.0 Pick Dual Bottles 30.0 27.0 Place Shoe 70.0 51.0
Blocks Ranking Size 42.0 9.00 Place A2B Left 62.0 21.0 Press Stapler 70.0 13.0

Click Alarmclock 96.0 69.0 Place A2B Right 54.0 17.0 Put Bottles Dustbin 0.00 1.00
Click Bell 100 61.0 Place Bread Basket 75.0 39.0 Put Object Cabinet 78.0 82.0

Dump Bin Bigbin 94.0 59.0 Place Bread Skillet 82.0 17.0 Rotate QRcode 78.0 52.0
Grab Roller 99.0 66.0 Place Burger Fries 98.0 47.0 Scan Object 60.0 44.0

Handover Block 27.0 30.0 Place Can Basket 58.0 18.0 Shake Horizontally 99.0 100.0
Handover Mic 100 38.0 Place Cans Plasticbox 100 85.0 Shake Bottle 99.0 99.0
Hanging Mug 34.0 15.0 Place Container Plate 98.0 60.0 Stack Blocks Three 22.0 15.0

Lift Pot 99.0 75.0 Place Dual Shoes 98.0 28.0 Stack Blocks Two 87.0 55.0
Move Can Pot 50.0 44.0 Place Empty Cup 98.0 34.0 Stack Bowls Three 80.0 42.0

Move Pillbottle Pad 52.0 29.0 Place Fan 72.0 27.0 Stack Bowls Two 83.0 10.0
Move Playingcard Away 94.0 57.0 Place Mouse Pad 19.0 3.00 Stamp Seal 52.0 13.0

Move Stapler Pad 58.0 35.0 Place Object Basket 50.0 0.00 Turn Switch 40.0 13.0
Open Laptop 85.0 73.0 Place Object Scale 39.0 13.0 Average 70.0 39.0

Table 16: Detailed results on RoboTwin-2.0 benchmark.

N LIMITATIONS AND FUTURE WORKS

In this section, we discuss the limitations of our work and outline potential directions for future
research.

Scaling X-VLA with broader data and model sizes. While X-VLA-0.9B achieves strong perfor-
mance, its scale remains modest compared to large foundation models in the vision–language and
language domains. This limitation stems primarily from computational constraints and the lim-
ited availability of high-quality robotics data. Despite our efforts to collect and curate open-source
datasets (Wu et al., 2025; O’Neill et al., 2024; Bu et al., 2025), the diversity and scale of current
robotics corpora still fall short of those in language or vision–language domains. Scaling X-VLA
to larger capacities, either by expanding the backbone or leveraging stronger pretrained VLMs, and
training on broader, more diverse robotics datasets could further enhance generalization and robust-
ness. Such extensions also raise open questions about the scaling laws of VLA models and how
embodiment-specific variability interacts with model capacity.

Enhancing supervision signals for large-scale robotics pretraining. Despite our efforts to miti-
gate heterogeneity across data sources and to align action spaces for generalized knowledge learning,
the supervision provided by low-dimensional action labels remains inherently limited in information
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content. These labels, while essential for direct control, capture only a narrow view of the underlying
task structure and often fail to convey higher-level reasoning, intent, or multi-step dependencies. In
this work, we show that a simple temporal downsampling strategy can help abstract action intentions
and thereby facilitate more efficient pretraining. However, such heuristics only partially address the
problem, as they do not fundamentally enrich the supervision. Future directions include incorporat-
ing richer supervisory signals such as 3D spatial reasoning cues, physical dynamics or intermediate
subgoal annotations. Another promising avenue is leveraging self-supervised objectives from raw
input streams to complement sparse action labels, thereby enhancing representation learning and
improving scalability in heterogeneous, real-world robotics settings.

Towards a generalist model seamlessly deployed to downstream tasks. Our X-VLA demon-
strates superior performance across various downstream tasks, showing strong adaptability under
fine-tuning and efficient specialization. However, realizing the vision of a truly generalist embodied
model that can be seamlessly deployed to arbitrary downstream tasks without additional engineering
or retraining remains an open challenge. Currently, deployment still relies on embodiment-specific
adaptation, typically involving the collection of a small number of demonstrations for post-training.
While these strategies are lightweight compared to full retraining, they nonetheless introduce over-
head and prevent the model from serving as a true plug-and-play solution in real-world applica-
tions. Moreover, the dependence on embodiment-specific data becomes problematic when scaling
to platforms where high-quality demonstrations are scarce, expensive, or risky to collect. Future
research should therefore focus on approaches that move closer to seamless deployment. Based
on the empirical finding in this paper, a promising direction include exploring unified embodiment
representations: incorporating explicit embodiment-agnostic abstractions (e.g., universal kinematic
descriptors, physics-informed priors) to reduce reliance on task-specific adaptation.
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