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DERO: Diffusion-Model-Erasure Robust Watermarking
Anonymous Author(s)

ABSTRACT
The effective denoising demonstrated by the latent diffusion model
poses a new threat to image watermarking, as attackers can erase
the watermark by performing a forward diffusion, followed by
backward denoising. While such denoising might introduce large
distortion in the pixel domain, the image semantics remain similar.
Unfortunately, most existing robust watermarking methods fail to
tackle such an erasure attack since they are primarily designed for
traditional channel distortions. To address such issue, this paper
proposed DERO, a diffusion-model-erasure robust watermarking
framework. Based on the frequency domain analysis of the dif-
fusion model’s denoising process, we designed a destruction and
compensation noise layer (DCNL) to approximate the distortion
effects caused by latent diffusion model erasure (LDE). In detail,
DCNL consists of a multi-scale low-pass filtering and a white noise
compensation process, where the high-frequency components of
the image are first obliterated, and then full-frequency components
are enriched with white noise. Such a process broadly simulates
the LDE distortions. Besides, on the extraction side, we cascaded
a pre-trained variational autoencoder before the decoder to ex-
tract the watermark in the latent domain, which closely adapts
to the operation domain of the LDE process. Meanwhile, to im-
prove the robustness of the decoder, we also design a latent feature
augmentation (LFA) operation on the latent feature. Throughout
the end-to-end training with the DCNL and LFA, DERO can suc-
cessfully achieve robustness against LDE. Our experimental results
demonstrate the effectiveness and the generalizability of the pro-
posed framework. The LDE robustness is significantly improved
from 75% with SOTA methods to an impressive 96% with DERO.
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Figure 1: The process and influence of LDE on watermarked
images, evaluated with StegaStamp [26]. After LDE, the wa-
termark cannot be extracted accurately.

1 INTRODUCTION
Deep learning-based image watermarking mechanisms [1, 5, 14,
15, 18, 19, 26, 33]have garnered significant attention in recent re-
search. These mechanisms typically rely on an architecture known
as “Encoder-Noise Layer-Decoder”. In this setup, the encoder’s pur-
pose is to embed the watermark into the host image, the noise layer
introduces deliberate distortions into the image, and the decoder
tries to extract the embedded watermark signal from the distorted
images. Among these components, the critical factor for achieving
robustness lies in the effective design of the noise layer.

Many methods have been proposed to address diverse attack sce-
narios. The majority of them focus on transmission distortions, for
example, JPEG-Mask [33]and MBRS[10] tailored for the robustness
of JPEG compression; Stegastamp [26] tailored for print-to-camera
scenarios, and PIMoG [5] tailored for screen-to-camera robustness.

However, beyond transmission distortions, watermarked images
may also be subjected to deliberate erasure. Previously, designing a
high-quality watermark erase mechanism needed massive “host-
watermarked” image pairs [7, 27]. However, the powerful denoising
ability of the latent diffusion model provides feasibility for erasure
mechanism design. One can easily leverage a black-box, openly
accessible latent diffusion model API (e.g., Stable Diffusion) to elim-
inate the embedded watermark signal by first adding noise and
then conducting the denoising process on the noised latent. Due to
the powerful denoising capability of the latent diffusion model, the
watermark signal can be efficiently removed from the watermarked
image, while maintaining its semantic integrity and high visual
quality, as shown in Fig. 1.

Our experimental results show the vulnerability of existing wa-
termarking schemes to diffusion model erasing, including the state-
of-the-art (SOTA) deep learning schemes and the classical water-
marking schemes, as well as a well-known commercial watermark-
ing system, Digimarc, as shown in Table 1. We randomly sampled 50
images fromCOCOdatasets [13] and reshaped them to size 512×512
and embedded the watermark with length 256 bits into these im-
ages. Then we perform no distortion, Gaussian noise and latent
diffusion model erasure (LDE) distortion (with Stable Diffusion v1.5
and denoising strength 0.15) on the watermarked images and test
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Table 1: The extraction accuracy with different watermarking mechanisms.

Method HiDDeN[33] MBRS[10] DADW[14] FIN[6] CIN[15] StegaStamp[26] PIMoG[5] LGDR[16] DWTDFT[11] Digimarc

Identity 99.5% 100% 100% 100% 100% 100% 100% 100% 100% ✓

GaussianNoise 85.34% 99.37% 85.60% 97.26% 97.28% 99.34% 99.58% 100% 93.05% ✓

LDE 58.10% 71.29% 50.91% 66.00% 53.96% 75.04% 52.70% 72.00% 56.67% ×

the extraction performance. It can be seen that all the algorithms
experienced a notable reduction in watermark extraction accuracy
after LDE. Such a high-quality, low-barrier, easy-to-deploy attack
leads to the goal of this paper, enhancing the robustness against
LDE.

A trivial way to ensure the LDE robustness is by integrating the
LDE process directly as a noise layer into the framework’s train-
ing. However, due to the intricate nature of the diffusion model
and the numerous sampling iterations involved, this approach im-
poses a substantial memory overhead for gradient computation.
Consequently, it leads to time-consuming and inefficient training
processes.

To address such limitations, we propose an alternative approach
by introducing an LDE distortion approximation scheme as a noise
layer during training. Building upon insights from [29] and our own
observations, we note that in the generation process of the latent
diffusion model, low-frequency components of an image are ini-
tially recovered, followed by gradual refinement of high-frequency
components. Leveraging this observation, we designed the destruc-
tion and compensation noise layer (DCNL) to emulate the LDE
distortions. Specifically, DCNL incorporates multi-scale low-pass
filtering and a white noise compensation process, wherein the high-
frequency components of the image are initially removed, followed
by the addition of white noise to the full-frequency components.
Consequently, the distortion introduced by LDE can be effectively
approximated.

However, relying solely on DCNL may not suffice to guarantee
robustness against LDE. Therefore, we introduce a complementary
technique called latent feature augmentation (LFA) on the extrac-
tion side. Specifically, we utilize a pre-trained variational autoen-
coder (VAE) to encode the distorted images and apply LFA on the
VAE-encoded features. LFA combines VAE-encoded features with
Gaussian noise in a randomly weighted manner, which enables the
decoder to be trained to extract watermarks from severely distorted
latent representations, thereby enhancing the overall robustness of
the system against LDE.

Based on DCNL and LFA, we proposed DERO, a diffusion-model-
erasure robust watermarking framework. Additionally, by config-
uring different noise layers, the framework demonstrates excellent
adaptability to various types of distortions.

The main contributions of this paper are summarized as follows:

1) We post a potential threat of latent diffusion model-based
erasure (LDE) on watermarking systems and underscore
the vulnerability of existing watermarking systems to LDE
distortions.

2) Based on our analysis of the LDE process, which involves
the initial recovery of low-frequency components followed
by the gradual refinement of high-frequency components,

we have targetedly proposed a destruction and compensa-
tion noise layer (DCNL) to simulate the LDE distortion. By
combining the proposed DCNLwith a latent feature augmen-
tation operation, we design DERO, a diffusion-model-erasure
robust watermarking framework, which can be end-to-end
trained to ensure robustness against LDE distortion.

3) Extensive experiments indicate the superior performance
of the proposed framework on robustness for latent dif-
fusion model erasure. Compared with the state-of-the-art
DNN-based watermarking schemes, we observe a substan-
tial improvement in extraction accuracy (from 80.89% with
StegaStamp[26] to 98.49%).

2 RELATEDWORKS
2.1 Deep learning-based watermarking
The current deep learning-based watermarking algorithm adopts an
“Encoder-Noise Layer-Decoder” architecture, initially proposed by
Zhu et al. [33]. By introducing various distortions within the noise
layer, targeted robustness can be achieved. An essential requirement
for the noise layer is its differentiability, and significant research
efforts are directed toward designing differentiable operations that
can effectively replicate non-differentiable distortions. For example,
to ensure robustness against JPEG compression, Zhu et al. [33] intro-
duced a differentiable operation called JPEG-Mask. Building upon
this work, Jia et al. [10] developed a mini-batch-based noise layer to
enhance JPEG robustness. In addition to addressing image editing
distortions, some noise layers are tailored to physical distortions. To
ensure print-shooting robustness, Tancik et al.[26] proposed a noise
layer comprising several differentiable operations to replicate print-
shooting distortions. Similarly, Fang et al.[5] introduced PIMoG, a
noise layer designed for screen-shooting robustness. Furthermore,
rather than utilizing specific operations, Luo et al.[14] suggested
employing an adversarial network as the noise layer to generate
the worst-case distorted image and iteratively train for improving
robustness. As for the unknown distortions, a combined noise layer
that contains multiple distortions is often employed[15]. However,
the design of existing noise layers has predominantly concentrated
on mitigating transmission distortions. In the case of LDE, none of
these methods can be successfully applied.

2.2 Diffusion models
Diffusion models as well as the latent diffusion models [9, 20, 22, 24]
have demonstrated remarkable performance in generative tasks,
fitting applications across various computer vision domains, includ-
ing inpainting, super-resolution, and even text-to-image generation
[2, 4, 23]. Thanks to the exceptional sampling quality, diffusion mod-
els have emerged as the leading architecture for generation tasks
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nowadays. In general, diffusionmodels encompass two primary pro-
cesses: (1) the forward diffusion process, which introduces Gaussian
noise on the image to perturb the input into random noise, and (2)
the reverse process, which progressively transforms the random
noise back into high-quality images through a step-by-step denois-
ing procedure. The latent diffusion model typically uses variational
autoencoder VAE to encode the image into latent features, and the
processes of forward-diffusion and backward-denoising occur in
the latent domain. The effectiveness of high-quality denoising in
the reverse process has led to a series of intriguing developments
in adversarial purifications[21]. Moreover, some advancements in
the certifiable robustness of adversarial attacks are built upon the
analysis of diffusion models [30]. It should be noted that the purifi-
cation process is similar to watermark erasure, where the diffusion
model is adept at erasing unexpected perturbations effectively. Such
a capability poses a potential threat to the watermarking systems.

2.3 Diffusion model-based watermarking
Recently, many diffusion model-based watermarking schemes have
been proposed [17, 25, 28, 31]. These methods typically follow a
common procedure: given an image and its watermark, they first
extract the diffused latent features of the image and then embed the
watermark either within the latent features or during the denoising
process. However, these approaches often fail to meet the visual
quality requirements in the pixel domain for image watermarking.
This limitation arises from the fact that latent domain embedding
tends to preserve only semantic consistency, potentially leading to
significant visual distortion in the pixel domain.

3 BACKGROUND
3.1 Denoising Diffusion Models
The denoising diffusion model (DDM) reverses a progressive noise
process. Given the image sampled from the real distribution 𝑥 ∈ 𝑋 ,
it is noised with𝑇 steps by Gaussian noise 𝜖 ∼ 𝑁 (0, 1) with different
schedules, shown as Eq. (1)

𝑥𝑡 =
√
𝛼𝑡𝑥 +

√
1 − 𝛼𝑡𝜖 (1)

where 𝛼𝑡 is a set of monotonic increasing scheduled timesteps
{𝛼𝑡 }𝑇𝑡=0, 𝛼𝑇 = 0, 𝛼0 = 1. The DDM 𝜖𝜃 is trained with the loss func-
tion𝑀𝑆𝐸 (𝜖𝜃 (𝑥𝑡 , 𝑡), 𝜖) to predict the added noise on each timesteps.
At the backward denoising process, given a noise vector 𝑥𝑇 , the
noise is progressively diminished through sequential predictions
made by 𝜖𝜃 over 𝑇 steps. The most common sampling scheme is
DDIM [24] where intermediate steps are calculated as:

𝑥𝑡−1 =
√︂

𝛼𝑡−1
𝛼𝑡

𝑥𝑡 +
(√︂

1
𝛼𝑡−1

− 1 −
√︂

1
𝛼𝑡

− 1

)
· 𝜖𝜃 (𝑥𝑡 , 𝑡) (2)

In the current text-guided diffusion models, DDM 𝜖𝜃 also contains
another input which is text condition 𝐶 to generate the image
corresponding to the given conditioning prompt, i.e., 𝜖𝜃 (𝑥𝑡 , 𝑡,𝐶).
For the latent diffusion model [22], the image is first encoded by a
pre-trained VAE and all the diffusion and denoising operations are
performed on the latent features 𝑧𝑡 = E𝑉𝐴𝐸 (𝑥𝑡 ).

Figure 2: The generated images and the corresponding frequency components
with different timesteps.

3.2 Latent Diffusion Model Erasure
Here we described the latent diffusion model erasure process. For
the watermarked images 𝑥𝑤 , the attacker can first encode with the
VAE encoder of the LDM to get the latent features 𝑧𝑤 = E𝑉𝐴𝐸 (𝑥𝑤).
Then Gaussian noise of zero mean and certain variance 𝜖 is added
to 𝑧𝑤 to get the noisy latent 𝑧𝑤

𝑁
= 𝑧𝑤 + 𝜖 . Subsequentially, 𝑧𝑤

𝑁
is

treated as the starting point and is denoised by LDM 𝜖𝜃 with 𝑇

steps. The denoised latent 𝑧�̃� is then decoded by VAE decoder to
get the erased image 𝑥𝑒 = D𝑉𝐴𝐸 (𝑧�̃�). Such an erasure process
is easy to automatically deploy by choosing “img2img” functions
in the “WebUI” of Stable Diffusion 1, details can be found in the
supplementary materials.

4 PROPOSED FRAMEWORK
4.1 Motivation and Analysis
The key to ensuring LDE robustness is designing a noise layer ca-
pable of accurately representing the LDE distortion. To achieve this
objective, we begin by analyzing the denoising process of the latent
diffusion model from a frequency domain perspective. We record
the generation process of the latent diffusion model with different
timesteps in both spatial domain and Fourier domain, as shown
in Fig. 2. It is clear that with the time steps, more details of the
generated image are refined in the spatial domain. From the Fourier
perspective, low-frequency components are first generated, then
high-frequency components are gradually completed. Meanwhile,
during the refinement of the high-frequency component, changes
are also observed in the low-frequency part. Based on the obser-
vation, we design the destruction and compensation noise layer,
which characterizes the LDE distortion through a model involving
low-pass filtering followed by full-band component compensation.
Nevertheless, such an approximation is not sufficient to model all
the distortions generated by the LDE. To address this limitation, we
additionally perform latent feature-level augmentation to introduce
further distortions in training the decoder.

4.2 Architecture
The framework of the proposed DERO is shown in Fig. 3. In the
training stage, the host image 𝐼ℎ ∈ R𝐶×𝐻×𝑊 and the watermark
𝑤 ∈ {0, 1} are first fed into the encoder E which outputs the wa-
termarked image 𝐼𝑤 ∈ R𝐶×𝐻×𝑊 . Then 𝐼𝑤 is distorted by DCNL
to get the distorted image 𝐼𝑑 ∈ R𝐶×𝐻×𝑊 . Subsequentially, 𝐼𝑑 is
first encoded by a pre-trained VAE encoder E𝑉𝐴𝐸 to get the latent
feature 𝐿𝑑 ∈ R𝐶×𝐻/8×𝑊 /8, which is further augmented by LFA to
1https://github.com/AUTOMATIC1111/stable-diffusion-webui
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Figure 3: The proposed framework. It consists of four main parts: the encoder E, the destruction and compensation noise layer, the latent feature augmentation and
the decoder D. The whole framework is trained end-to-end with two loss functions which constrains the visual similarity of the host image and the watermarked
image and the extraction accuracy of the embedded watermark.

generate the augmented latents 𝐿𝑎 ∈ R𝐶×𝐻/8×𝑊 /8. The decoder
D extracts the watermark𝑤𝑒𝑥 from 𝐿𝑎 . While in the testing stage,
the well-trained encoder EΔ and decoder DΔ are fixed. When re-
ceiving the erased/distorted image 𝐼𝑒 , we first use E𝑉𝐴𝐸 (same as
the training stage) to get the latent features 𝐿𝑒𝑥 and then feed 𝐿𝑒𝑥
into DΔ for the final extraction.

4.2.1 Encoder. The encoder E aims to embed the watermark into
the host image. In this paper, we utilize a UNet-based architecture
as the backbone of E. Specifically, four “double conv” blocks (the
concatenation of two “Conv-BN-ReLU” blocks) are first applied to
downsample 𝐼ℎ to the feature with size of 𝐻/32 ×𝑊 /32. At the
same time, one linear layer is applied to the watermark message to
generate the watermark feature with the same size of𝐻/32×𝑊 /32.
Then four “up-conv” blocks (the concatenation of two “UpSampling-
Conv-BN-ReLU” blocks) are applied to each hidden feature of E,
which is further concatenated by the upsampledwatermark features.
The UNet-based architecture effectively facilitates the fusion of the
watermark feature with the host image features across different
scales, thereby enhancing the quality of the watermarked images.

4.2.2 Destruction and Compensation Noise Layer. The purpose of
DCNL is to introduce a similar distortion as LDE to thewatermarked
images. Drawing from our observations of LDM generation, we
devised a mechanism for destroying high-frequency components
and compensating for full-frequency components. In detail, after
obtaining the watermarked image 𝐼𝑤 , we first down-sample it to
generate the images with different scales I, as shown in Eq. (3).

𝐼𝑠𝑤 = D𝑜𝑤𝑛(𝐼𝑤 , 𝑠) (3)

where D𝑜𝑤𝑛 indicates the down-sampling operation and 𝑠 is the
scale of the down-sampling. I = {𝐼0𝑤 , 𝐼1𝑤 , 𝐼2𝑤 , ...}. For each 𝐼𝑠𝑤 , we

apply discrete Fourier transformation (DFT) with Eq. (4).

𝐹𝑠𝑤 (𝑈 ,𝑉 ) =
𝐻∑︁
𝑢=1

𝑊∑︁
𝑣=1

𝐼𝑠𝑤 (𝑢, 𝑣)𝑒− 𝑗2𝜋
(
𝑈
𝐻
𝑢+ 𝑉

𝑊
𝑣

)
(4)

where 𝐼𝑠𝑤 (𝑢, 𝑣) is the pixel value at (𝑢, 𝑣) in spatial domain and
𝐹𝑠𝑤 (𝑈 ,𝑉 ) is the complex value of (𝑈 ,𝑉 ) in frequency domain. Then
a low-pass filtering process is performed on each Fourier coeffi-
cients 𝐹𝑠𝑤 with Eq. (5).

𝐹𝑠𝐷𝑒 (𝑈 ,𝑉 ) = H(𝑈 ,𝑉 , 𝑠) · 𝐹𝑠𝑤 (𝑈 ,𝑉 ) (5)

where

H(𝑈 ,𝑉 , 𝑠) = 𝑒
− 𝐷2 (𝑈 ,𝑉 )

2𝐷2
𝑠 (6)

𝐷 (𝑢, 𝑣) = 𝑢2 + 𝑣2, 𝐷𝑠 indicates the cutoff frequency of scale 𝑠 . So in
total, we can get multiple low-pass filtered frequency components
with different scales F𝐷𝑒 = {𝐹 0

𝐷𝑒
, 𝐹 1

𝐷𝑒
, 𝐹 2

𝐷𝑒
...}. After that, an up-

sampling operation with scale 𝑠 is first applied on F𝐷𝑒 , then white
Gaussian noises 𝜉 with variance 𝜎 are added into each upsampled
frequency component to get the compensated Fourier coefficients
F𝐶 = {𝐹 0

𝐶
, 𝐹 1

𝐶
, 𝐹 2

𝐶
...}, where

𝐹𝑠𝐶 = U𝑝 (𝐹𝑠𝐷𝑒 , 𝑠) + 𝜉 (7)

Given that the spectral density of white noise remains constant,
implying its energy presence across the full band, we can effec-
tively simulate the full band changing by adding white noise in the
frequency domain. Then, by applying the inverse DFT on F𝐶 , we
can get the compensated images I𝐶 .

4.2.3 Latent Feature Augmentation. Since the diffusion process in
LDE is performed on the latent feature of the images, we proposed
to extract the watermark in the latent domain to adapt to such
distortion. Therefore, after obtaining I𝐶 , we randomly select one
of them as the distorted image 𝐼𝑑 , 𝐼𝑑 ∈ I𝐶 . Then 𝐼𝑑 is encoded by a
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Figure 4: The visual results of the watermarked image with different methods.

pre-trained VAE encoder E𝑉𝐴𝐸 to get the latent representation 𝐿𝑑 .
It is important to note that DCNL only serves as a rough simulation
of the distortion introduced by LDE, which may not be sufficient to
ensure robustness against LDE. To further enhance robustness, we
apply augmentations on 𝐿𝑑 . Specifically, 𝐿𝑑 is augmented through
a weighted noising operation, as depicted in Eq. (8).

𝐿𝑎 = 𝛼𝐿𝑑 + 𝛽𝜂 (8)

where 𝜂 ∼ 𝑁 (0, 1) and is with the same size of 𝐿𝑑 . 𝛼 and 𝛽 indi-
cates the weights. By performing LFA, the latent feature is further
distorted, thereby presenting more stringent samples to enhance
the extraction capability of the decoder. In this paper, 𝛼 sampled
uniformly from [0.3,0.5] and 𝛽 sampled uniformly from [0.5,0.8].

4.2.4 Decoder. The decoderD is designed to extract the watermark
𝑤𝑒𝑥 from the augmented latent features 𝐿𝑎 , which consists of one
“single-conv” (“Conv-BN-ReLU”) block, three “Res-Block” [8], one
“Conv” block and one linear block. The downsampling operation is
carried out in the “Res-Block”.

4.3 Loss Functions
Two main loss functions are applied in training the whole frame-
work, one is the image lossL𝐼 which constrains the visual similarity
of the watermarked image and the host image:

L𝐼 = ∥𝐼ℎ − 𝐼𝑤 ∥2 = ∥𝐼ℎ − E(𝐼ℎ,𝑤)∥2 (9)

Another loss function is the message L𝑀 which ensure the extrac-
tion accuracy of the watermark:

L𝑀 = ∥𝑤 −𝑤𝑒𝑥 ∥2 = ∥𝑤 − D(𝐿𝑎)∥2 (10)

Since all the procedures in DCNL and LFA are differentiable, the
whole network can be trained end-to-end with L𝐼 and L𝑀 in the
following manner:

L𝑡𝑜𝑡𝑎𝑙 = 𝜆𝐼L𝐼 + 𝜆𝑀L𝑀 (11)

where 𝜆𝐼 and 𝜆𝑀 are the weight of the loss functions.

5 EXPERIMENTAL RESULTS
5.1 Implementation Details
5.1.1 Dataset and Settings. In this paper, MS COCO [13] is utilized
as the training dataset for all stages. In the evaluation stage, 50
random images in the testing dataset were utilized. All images
used, both in training and testing, have dimensions of 512×512×3.
The length of the watermark message is set to 256 bits. The pre-
trained VAE encoder E𝑉𝐴𝐸 employed in this paper is the default
VAE provided with Stable Diffusion v1.5. The entire framework is
implemented using PyTorch [3] and executed on a Tesla V100 GPU.
Adam [12] is utilized for parameter optimization.

5.1.2 Baseline and Benchmark. For the latent diffusion model era-
sure process, we utilize the “img2img” function in open-sourced
Stable Diffusion web UI (SD-webUI). The specific procedure entails
embedding the watermark message into the host image, followed
by applying SD-webUI to erase the watermark. Upon erasure, we
extract the watermark message from the erased image and record
the extraction accuracy. The version of Stable Diffusion we use is
v1.52. The default image size is 512×512 with 30 sampling steps
and a guidance scale of 7. All the comparison experiments are per-
formed with these settings. To demonstrate the effectiveness of the
proposed method, we compare its performance with seven state-of-
the-art (SOTA) methods: HiDDeN [33], DADW [14], StegaStamp
[26], MBRS [10], CIN [15], PIMoG[5] and FIN [6]. For HiDDeN,
MBRS, FIN, and CIN, they were trained with the combined noise of
JPEG compression, median filtering and Gaussian noise.

5.1.3 Evaluation Metrics. We evaluated the performance in two
main aspects:
Visual Quality of Watermarked Images: Measured by the peak
signal-to-noise ratio (PSNR), structural similarity index measure
(SSIM) (where a larger value represents better visual quality), and

2https://huggingface.co/runwayml/stable-diffusion-v1-5
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the LPIPS [32], which is a learned perceptual similarity metric (a
lower value indicates better visual quality).
Robustness Against LDE Distortion: Assessed by the extraction
accuracy of the watermark message after LDE distortion. Higher
accuracy indicates stronger robustness.

5.2 Visual Quality
We provide one example to subjectively evaluate the visual quality
of the watermarked image generated with different methods, as
shown in Fig. 4. Additionally, we provide objective evaluations of
visual quality through metrics (PSNR, SSIM, and LPIPS), as detailed
in Table 2.

Table 2: Visual quality of different methods.

Method HiDDeN[33] DADW[14] StegaStamp[26] MBRS[10]

PSNR(dB) 36.60 33.07 28.55 39.60

SSIM 0.9647 0.9244 0.9329 0.9839

LPIPS 0.1358 0.2060 0.1525 0.0961

Method CIN [15] PIMoG[5] FIN [6] DERO

PSNR(dB) 40.21 38.32 39.19 40.53

SSIM 0.9845 0.9789 0.9820 0.9848

LPIPS 0.0833 0.0829 0.1207 0.0815

In Fig. 4, each column represents a different method. The first
row, second row, third row, and bottom row correspond to the
host images, watermarked images, erased images, and residuals,
respectively. From the objective assessment results in Table 2, we
can see that the proposed method maintains a high level of visual
quality, where the PSNR value and SSIM value are higher than 40
dB and 0.98, respectively. Moreover, compared to the state-of-the-
art (SOTA) methods, the proposed scheme achieves the best visual
quality. All subsequent experiments assessing LDE robustness are
conducted based on these visual quality results.

5.3 Comparison of the LDE Robustness
To comprehensively assess the robustness of LDE distortion, we
utilized SD-webUI with varying denoising strengths (0.1/0.15/0.2)
and different sampling methods (Eular, LMS, and DPM adaptive)
for the diffusion erasure process. The robustness test results are
presented in Table 3.

As shown in Table 3, it is evident that for all the compared meth-
ods, the latent diffusion model can successfully erase the watermark
signal, even at a denoising strength of 0.1. Among them, the highest
extraction rate is achieved by StegaStamp, reaching 80.89%. How-
ever, the proposed method consistently achieves high extraction
accuracy, surpassing 97% at a denoising strength of 0.1. This signif-
icant performance gap underscores the superiority of the proposed
framework. In addition, with regard to denoising strength, it is
observed that as the strength increases, the watermark extraction
accuracy decreases. This is because larger denoising strengths will
result in stronger noise added to the watermarked latent, and con-
sequently, a more pronounced erasure of the watermarked signal.
Different sampling methods yield varied removal results, leading to
distinct effects on the watermarked images. Notably, the proposed
method demonstrates applicability across all tested sampling meth-
ods. Irrespective of denoising strengths and sampling methods, the

Figure 5: The visual results with different diffusion model versions.
proposed method consistently exhibits the highest performance,
with an extraction accuracy exceeding 94%, at least 17% higher
than the compared methods. This outcome strongly underscores
the effectiveness of the proposed noise layer and the robustness of
the proposed method against LDE distortion.

5.4 Generalization of Robustness
5.4.1 Different LDMVersions. The advancement of diffusionmodel
technology has led to the development of numerous fine-tunedmod-
els. Therefore, it is crucial to ensure LDE robustness across different
versions. In this section, we primarily assess the generalizability of
LDE robustness concerning model versions. Specifically, we gather
seven different and commonly used versions (Stable Diffusion v1.2,
v1.4, v1.5, v2.1, Deliberate (Deli), Dreamshaper (DS), and Realis-
ticVision (RV)) for testing purposes. Subsequently, we conduct the
LDE process with each of these versions. The visual results of the
erased images (with sampling method “Eular” and strength 0.15)
are presented in Fig. 5, and the corresponding PSNR and extraction
accuracy are summarized in Table 4.

It is clear from Fig. 5 that the diffusion model with different
versions will result in different erased images, primarily differing in
details. Notably, when utilizing the “Dreamshaper” model, the color
contrast becomes sharper, as observed in the zoom-in patches of
the images. However, from the perspective of overall image quality,
all models effectively maintain visual consistency with the water-
marked image. This conclusion is further supported by Table 4,
where the PSNR values of erased images with different versions of
LDM are found to be at similar levels. Regarding LDE robustness,
the proposed scheme consistently achieves a high extraction accu-
racy of at least 96%, demonstrating its effectiveness and resilience
in the face of LDE distortions across different versions of the diffu-
sion model. This underscores the robustness and reliability of the
proposed approach.

5.4.2 Different Sampling Settings. In the diffusion process, the de-
noising result is affected by two main parameters: the sampling
steps and the denoising strength. Different sampling steps will lead
to different schedules of timestep, which will further influence the
sampling weight 𝛼𝑡 in each step. Different denoising strength gives
different starting points to the latent sampling. Higher denoising
strengths result in deeper denoising. In this section, we evaluate
LDE robustness under different conditions by varying sampling
steps and denoising strengths. We fixed the denoising strength at
0.15 and varied the sampling steps from 20 to 50 to conduct the
test. Additionally, we fixed the sampling steps at 30 and tested with

2024-04-13 01:13. Page 6 of 1–9.
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Table 3: Extraction accuracy of different methods after latent diffusion erasure distortions.

Sampling Strengths HiDDeN[33] DADW[14] Stegastamp[26] MBRS[10] CIN[15] PIMoG[5] FIN[6] DERO

Eular
0.1 59.41% 51.02% 80.89% 72.98% 52.73% 55.02% 71.37% 98.49%

0.15 58.10% 50.91% 75.04% 71.29% 52.70% 53.90% 66.00% 98.25%

0.2 55.98% 50.76% 67.17% 64.93% 52.72% 52.86% 59.75% 96.92%

LMS
0.1 59.36% 50.88% 80.44% 73.92% 52.75% 55.07% 78.47% 98.78%

0.15 58.13% 50.94% 78.5% 71.94% 52.71% 54.90% 74.53% 98.38%

0.2 56.82% 50.85% 66.96% 66.72% 52.65% 52.99% 67.00% 96.94%

DPMA
0.1 56.94% 50.61% 70.63% 68.14% 52.78% 52.90% 71.12% 97.63%

0.15 55.87% 50.60% 64.54% 63.64% 52.70% 52.23% 64.47% 96.74%

0.2 54.37% 50.51% 58.90% 58.36% 52.76% 51.37% 60.03% 94.59%

Table 4: Extraction accuracy with different LDM versions.

Versions v1.2 v1.4 v1.5 v2.1 Deli DS RV

Eular Acc 98.16% 98.18% 98.25% 98.30% 98.37% 98.31% 98.20%

PSNR 22.58 22.63 22.54 23.06 22.93 22.61 22.99

LMS Acc 98.56% 98.26% 98.38% 98.63% 98.47% 98.41% 98.31%

PSNR 22.29 22.22 22.78 22.86 22.33 22.99 22.93

DPMA Acc 96.44% 96.54% 96.74% 97.04% 96.56% 96.52% 96.51%

PSNR 21.41 21.50 21.40 21.74 21.41 21.90 21.56

Figure 6: The visual results of the watermarked image with sampling steps
and denoising strengths.

(a) Influence of sampling steps. (b) Influence of denoising strength.
Figure 7: The influence of sampling steps and denoising strengths in LDE.

denoising strengths ranging from 0.05 to 0.35. The visual results of
the erased images are presented in Fig. 6. Furthermore, we show-
case the corresponding PSNR of the erased images and extraction
accuracy with different erasure settings in Fig. 7.

From Fig. 6, it is apparent that the most influential parameter is
the denoising strength. As the denoising strength increases, there
is a significant alteration in the details of the images. On the other

hand, variations in the sampling steps do not significantly affect
the erasure performance of the images. Since sampling steps only
impact the sampling schedules and not the starting point, they
do not produce substantial differences in the final image. These
observations are also reflected in the results of PSNR values and
extraction accuracy, as shown in Fig. 7. When fixing the denois-
ing strength and increasing the sampling steps, the PSNR of the
erased images remains consistent, as does the extraction accuracy.
However, when fixing the sampling steps and increasing the de-
noising strength, the visual quality of the erased image deteriorates,
evidenced by a decrease in PSNR. Similarly, the extraction accu-
racy also decreases with increasing denoising strength. It is worth
noting that even when the denoising strength is set to 0.35, re-
sulting in heavily altered erased images, the extraction accuracy
remains higher than 91%. This indicates the strong robustness of
the proposed framework against LDE distortions.

5.4.3 Different Guidance Scales. In latent diffusion model gener-
ation, to produce an image that aligns with conditioning 𝐶 to the
desired extent, the model must exhibit a stronger bias toward gen-
erating outputs that are in harmony with 𝐶 . This bias is typically
accomplished by adding weights to the unconditional prediction
𝜖𝜃 (𝑥𝑡 , 𝑡,∅). Thus, the final generation process is expressed as:

Φ𝜃 (𝑥𝑡 , 𝑡,𝐶,𝐺) = 𝜖𝜃 (𝑥𝑡 , 𝑡,∅) +𝐺 × (𝜖𝜃 (𝑥𝑡 , 𝑡,𝐶) − 𝜖𝜃 (𝑥𝑡 , 𝑡,∅))
where 𝐺 is the weight called the guidance scale. Different 𝐺 will
result in different generation effects. In this section, we test the
LDE robustness of the algorithm under different settings of 𝐺 =

{1, 3, 5, 7, 9, 11, 13}. The test model version is v1.5, with fixed sam-
pling steps at 30, denoising strength at 0.15, and the sampling
method “Eular”. The results are presented in Fig. 8 and Table 5.

Table 5: Extraction accuracy with different guidance scales.

𝐺 1 3 5 7 9 11 13

Acc 98.18% 98.20% 98.35% 98.25% 98.12% 98.06% 98.26%

PSNR 22.61 22.66 22.47 22.54 22.59 22.56 22.58

It can be seen that the changing of the guidance scale will not
greatly influence the visual quality of the erased images. Even
with guidance 𝐺 = 11, the images are still similar to those with
guidance 𝐺 = 1, where the PSNR value with different guidance
scales is at the same level. This phenomenon occurs because the
LDE process adds only a small amount of noise to the original latent
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Figure 8: The visual results of the erased image with different guidance scales.

as the starting point, rather than generating from random noise.
Additionally, the corresponding timestep weights are not very large.
Consequently, the guidance scale does not have a substantial impact
on the generated image. Furthermore, from Table 5, it is apparent
that for all tested guidance scales, the proposed method achieves
high extraction accuracy exceeding 98%. This demonstrates the
robustness of the algorithm across different guidance scales.

5.5 Compatibility of Robustness
It is crucial to consider that in real-world scenarios, watermarked
images may encounter various distortions beyond just LDE. There-
fore, assessing the robustness compatibility of the proposed frame-
work to these different distortions is essential. In this section, we
conduct experiments to evaluate the framework’s compatibility
with various distortions. Following the common settings of state-
of-the-art methods [6, 15], we train the entire framework with a
combined noise layer containing Gaussian noise, JPEG compres-
sion, Dropout and Gaussian blur, named DERO++. Subsequently,
we test the corresponding robustness with DERO and DERO++.
The results of these experiments are presented in Table 6.

Table 6: Extraction accuracy with different distortions.

Distortions Gaussian Noise Salt& Pepper Noise
𝜎2 =0.01 0.02 0.05 𝑟 =0.01 0.02 0.03

DERO 98.41% 97.31% 94.57% 98.06% 96.78% 95.22%

DERO++ 99.58% 99.40% 98.89% 98.89% 97.80% 97.60%

Distortion Gaussian Blur Median Blur
𝜎2 =1 2 3 𝑤 =3 5 7

DERO 94.85% 94.98% 95.34% 98.93% 97.81% 96.05%

DERO++ 99.76% 99.81% 99.85% 99.67% 99.79% 99.80%

Distortion JPEG Compression Dropout
QF=50 60 70 p=0.7 0.8 0.9

DERO 93.13% 95.77% 97.78% 79.70% 84.06% 89.22%

DERO++ 99.15% 99.23% 99.37% 91.19% 94.18% 96.50%

Table 6 highlights the strong robustness compatibility of DERO++,
with extraction accuracy exceeding 91% for all tested distortions.
When only with DERO, the robustness with certain distortions is
not strong enough. Taking “Dropout” distortion as an example,
the extraction accuracy of DERO against “Dropout-0.08” is only
84.06%. But with combined noise layer training, it achieves 94.18%.
Remarkably, the extraction results under “Median Blur”, “Salt &
Pepper Noise” demonstrate the generalizability of the proposed

method. These positive results underscore the effectiveness of the
designed DCNL in cooperation with traditional noise layers.

5.6 Ablation Study
5.6.1 Importance of DCNL and LFA. The crucial component for the
LDE robustness of the proposed method is the design of DCNL and
LFA. To demonstrate the importance of each, we conduct ablation
experiments. We train the whole model with only DCNL and LFA
individually. Additionally, we attempt a trivial approach to simulate
LDE distortion by generating massive “original-distortion” image
pairs and training a neural network to mimic the distortion. This
neural network can also serve as the noise layer for training. Specif-
ically, we generate 5000 training pairs using MS COCO training
datasets [13] (Stable Diffusion v1.5, sampling steps 30, denoising
strength 0.15, guidance scale 7, sampling method “Eular”). Then, we
utilize the network architecture proposed in [34] to train the surro-
gate model for LDE distortions and train it with the well-trained
distortion simulation model. Finally, we test the LDE robustness
with these three models. The results are shown in Table 7.

Table 7: Extraction accuracy with different noise layers.

Settings Surrogate 𝐷𝐶𝑁𝐿 𝐿𝐹𝐴 𝐷𝐶𝑁𝐿 + 𝐿𝐹𝐴

Eular 81.45% 95.01% 95.81% 98.25%

LMS 81.41% 95.47% 94.76% 98.38%

DPMA 78.61% 90.93% 93.03% 96.74%

For a fair comparison, the PSNR of the watermarked images
trained with different settings is set at the same level as 40.5 ± 0.2
dB. It can be seen that when training with the surrogate model, the
extraction accuracy can only achieve 81%, which is 15% lower than
the proposed methods. We believe the reason is that a simple net-
work cannot well simulate the LDE distortion since the LDE process
is complex. On the other hand, training only with DCNL and LFA
ensures a certain level of robustness, with an extraction accuracy
of up to 95%. Both DCNL and LFA simulate the LDE distortion
to some extent, contributing to this level of robustness. However,
training with both DCNL and LFA achieves the best extraction
accuracy, surpassing the other settings by 2%. This indicates that
the combination of DCNL and LFA synergistically enhances the
model’s ability to LDE robustness.

6 CONCLUSION
This paper points out a potential vulnerability in watermarking
systems, revealing their susceptibility to high-quality erasure using
the latent diffusion model. While existing schemes mainly address
image processing distortions, they often fall short in adapting to
latent diffusion erasure distortion. To fortify robustness, we first
analyze the denoising process of LDM in the frequency domain.
Leveraging the observation of the generation in frequency com-
ponents, we successfully provide a destruction and compensation
noise layer, which gives a rough simulation of LDE distortions.
Combined with a VAE-based decoder and a latent feature augmen-
tation operation, the whole system can be trained to guarantee
LDE robustness. Experimental results affirm the method’s efficacy,
demonstrating superior robustness against latent diffusion erasure
compared to state-of-the-art methods.
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