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Abstract

Despite remarkable advances in Large
Language Models (LLMs), mathematical
reasoning remains a critical frontier where
models struggle with accuracy, reliability,
and computational efficiency, particularly
for competition-level problems.  Current
approaches face fundamental limitations: distil-
lation methods alone fail to capture reasoning
depth, reinforcement learning techniques de-
mand prohibitive computational resources, and
ensemble methods multiply inference costs.We
introduce a novel three-stage framework,
TriMER (Triple-stage Mathematical Efficient
Reasoning), that synergistically combines rea-
soning capability distillation, Group Relative
Policy Optimization (GRPO) with zero KL
penalty, and multi-agent Preference Reward
Model (PRM) reranking to address both
reasoning quality and computational efficiency.
Leveraging our curated dataset of 387K high-
difficulty mathematical problems, we achieve
state-of-the-art performance of 76.7% accuracy
on the challenging AIME24 benchmark, sur-
passing Qwen-R1-Distilled-32B (73.3%) and
Qwen2.5-Math-72B (30.0%) while using only
5048 tokens per problem—a 6.3x reduction in
computational requirements. Our multi-agent
framework further improves performance to
79.9% accuracy, demonstrating robustness
through solution diversity. Extensive ablation
studies confirm the essential contribution
of each component, with significant gains
from our memory-optimized GRPO imple-

mentation https://anonymous.4open.

science/r/math_reasoner-362E/!.
By effectively resolving the efficiency-
accuracy trade-off that has hindered practical
deployment of mathematical reasoning sys-
tems, our approach establishes a new paradigm
for developing LLMs that can tackle complex
mathematical challenges while remaining
computationally accessible for real-world
applications.

'To be released upon publication.

1 Efficient Multi-Stage Optimization for
Advanced Mathematical Reasoning in
LLMs

Mathematical reasoning remains one of the most
challenging frontiers for large language models
(LLMs), demanding capabilities fundamentally dif-
ferent from general language understanding. While
LLMs have made remarkable progress across many
domains, solving complex mathematical problems
requires maintaining symbolic consistency, exe-
cuting multi-step logical reasoning, and applying
domain-specific knowledge—capabilities that tra-
ditional supervised fine-tuning approaches often
fail to develop fully.

Three critical challenges continue to limit the
practical application of LLMs for advanced mathe-
matical reasoning:

* Reasoning depth: Models struggle to main-
tain coherent reasoning chains across multiple
interdependent steps required for competition-
level problems.

* Computational efficiency: State-of-the-art
performance typically demands excessive to-
ken generation, making deployment impracti-
cal.

* Solution verification: Ensuring answer cor-
rectness often requires additional computation
that compounds resource requirements.

Current approaches to mathematical reasoning in
LLMs have made progress but face significant limi-
tations. Knowledge distillation approaches transfer
capabilities from larger teacher models but often
sacrifice reasoning depth; reinforcement learning
techniques improve reasoning quality but demand
prohibitive computational resources; and ensemble
methods enhance accuracy by generating multiple
solutions but multiply inference costs, making them
impractical for real-world applications.
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We introduce a novel three-stage framework that
synergistically combines the strengths of these ap-
proaches while addressing their limitations:

1. Capability distillation from DeepSeek-R1 to
Qwen2.5 models establishes a strong mathe-
matical reasoning foundation.

2. Memory-optimized Group Relative Policy
Optimization (GRPQO) with zero KL penalty
enables efficient scaling to 32B parameter
models.

3. Multi-agent Preference Reward Model
(PRM) reranking leverages solution diver-
sity to significantly improve performance.

Our approach achieves state-of-the-art 76.7% ac-
curacy on the challenging AIME’24 benchmark
while using just 5048 tokens per problem—a 6.3%
reduction compared to baseline approaches. The
multi-agent framework further improves perfor-
mance to 79.9% accuracy, demonstrating the ef-
fectiveness of solution diversity.

This work resolves a critical tension between
reasoning quality and computational efficiency
in mathematical problem-solving, establishing a
new paradigm for developing LL.Ms that excel at
complex mathematical challenges while remaining
computationally accessible for practical applica-
tions.

2 Related Work

Our work builds on research enhancing mathe-
matical reasoning in LLMs across four key ar-
eas: prompt engineering, distillation, reinforce-
ment learning, and verification techniques.

2.1 Prompt Engineering for Mathematical
Reasoning

Chain-of-Thought prompting [Wei et al., 2022]
demonstrated that showing reasoning steps signif-
icantly improves mathematical problem-solving,
leading to variants like Zero-shot CoT [Kojima
et al., 2022], Self-consistency [Wang et al., 2023b],
and Tree-of-Thought [Yao et al., 2023]. While
effective, these approaches require extensive to-
ken usage, and efficiency-focused strategies like
Equation-of-Thought [Zhang et al., 2023] and
Chain-of-Draft [Xu et al., 2025] optimize infer-
ence patterns without addressing underlying model
capabilities.

2.2 Distillation for Mathematical Reasoning

Knowledge distillation transfers reasoning capabil-
ities from larger to smaller models, with DeepSeek-
R1 [AIL 2025] demonstrating effective transfer
from RL-trained teachers to student models. Our
work extends this approach with specialized tech-
niques for mathematical reasoning, using adaptive
temperature scheduling and weighted masking to
enhance reasoning transfer.

2.3 Reinforcement Learning for Reasoning

MATH-Shepherd [Wang et al., 2023a] and
DeepSeekMath [Shao et al., 2024] employed vari-
ants of Proximal Policy Optimization [Schulman
et al., 2017] for mathematical reasoning, while
Group Relative Policy Optimization (GRPO) [Shao
et al., 2024] eliminated the separate critic network.
We build on GRPO with a novel zero KL penalty
formulation that substantially reduces memory re-
quirements while improving mathematical reason-
ing performance.

2.4 Verification and Multi-agent Approaches

Let’s Verify Step by Step [Lightman et al., 2023]
demonstrated the value of checking intermediate
reasoning steps, while Collaborative Mathematics
[Wu et al., 2023] showed benefits of combining
multiple reasoning agents. Our multi-agent PRM
framework integrates these approaches into a uni-
fied system that maximizes reasoning quality while
minimizing computational costs.

2.5 Efficiency in Mathematical Reasoning

Recent work like the Agentica Project [Luo
et al., 2025] has explored efficiency improvements
through specialized training and scaling techniques.
Our approach achieves state-of-the-art performance
with substantially reduced computational require-
ments through the synergistic combination of dis-
tillation, memory-optimized GRPO, and selective
multi-agent verification.

3 Dataset Creation and Curation

We developed a carefully curated dataset of 387K
competition-level mathematical problems to sup-
port effective training across diverse problem types
and difficulty levels.

3.1 Dataset Composition

Our dataset synthesizes three complementary
sources: NuminaMath 1.5 [Li et al., 2024] pro-



vided competition-level problems with varied dif-
ficulty; OpenR1-Math-220K contributed multiple
reasoning traces (55% of our final dataset); and
Bespoke-Stratos-17K (7.5%) offered meticulously
crafted step-by-step solutions for challenging prob-
lems. We further enriched this foundation with
150K pipeline-generated solutions (37.5%) specifi-
cally designed to address coverage gaps, ensuring
comprehensive representation across algebra, ge-
ometry, number theory, and combinatorics.

3.2 Quality Assurance

Data quality was ensured through a multi-stage
verification pipeline that included automatic dedu-
plication, domain-specific filtering, and solution
validity checking. We employed OpenAl-40-mini
as an independent judge to evaluate solution quality,
resulting in approximately 15% of initially gener-
ated solutions being rejected. This rigorous quality
control process maintained high standards while
preserving mathematical diversity, creating a robust
foundation for training models capable of advanced
reasoning across problem types.

Our solution generation pipeline evolved from
an initial multi-agent approach requiring approxi-
mately 10 minutes per batch to an optimized sys-
tem that reduced processing time by 70% through
contextual leveraging of existing solutions, allow-
ing efficient scaling to our final dataset size while
maintaining solution quality. Our curation process
prioritized olympiad-level problems requiring so-
phisticated multi-step reasoning while maintaining
balanced representation across difficulty levels to
support robust model training.

4 Reasoning Capability Distillation

We developed a specialized distillation framework
to transfer mathematical reasoning capabilities
from a capable teacher model to a more efficient
student architecture, focusing on preserving step-
by-step deduction patterns.

Our approach uses DeepSeek-R1 [AI, 2025] as
the teacher model and Qwen2.5-32B as the student,
with a hybrid loss function balancing reasoning
fidelity and answer accuracy:

L=alkgr+(1—a)lcp (D)

The KL divergence component captures teacher
reasoning patterns through temperature-controlled
softened logits, while the cross-entropy loss en-
sures alignment with ground truth solutions:

Lxr=T° KL (softmax (%) ||softmax (%f))
2

Unlike pure cross-entropy approaches that prior-
itize answer correctness or pure KL methods that
risk overfitting to teacher idiosyncrasies, our hy-
brid approach achieves superior reasoning transfer
with manageable computational requirements.

Two key innovations enhance our framework’s
performance on mathematical tasks:

* Adaptive temperature scheduling: Begin-
ning with higher values to learn broad rea-
soning strategies before transitioning to lower
temperatures that enhance precision.

* Reasoning-focused weighted masking: Plac-
ing greater emphasis on reasoning steps rather
than problem statements to prioritize mathe-
matical deduction processes.

The distilled model achieved 72.1% accuracy
on AIME’24—a substantial improvement over the
base model’s 50.0%, though token usage remained
high at approximately 31,764 tokens per problem.
This observation motivated our subsequent GRPO
implementation to improve efficiency while pre-
serving reasoning capabilities.

S Group Relative Policy Optimization

Standard reinforcement learning techniques face
prohibitive memory constraints when applied to
large language models for mathematical reason-
ing. We address this challenge through a memory-
optimized implementation of Group Relative Pol-
icy Optimization (GRPO) with a novel zero KL
penalty formulation.

5.1 Policy Optimization Challenges

Proximal Policy Optimization (PPO) [Schulman
et al., 2017] has become the standard method for
aligning language models through reinforcement
learning. However, its actor-critic architecture re-
quires maintaining a separate value network along-
side the policy model, creating significant memory
overhead that becomes prohibitive for models with
tens of billions of parameters—a critical limita-
tion for mathematical reasoning where model size
strongly correlates with reasoning ability.



5.2 GRPO and Zero KL Penalty Innovation

Group Relative Policy Optimization [Shao et al.,
2024] addresses these limitations by eliminating
the separate critic network, instead deriving advan-
tage estimates from grouped sample returns. Our
implementation takes a single gradient step per
batch of trajectories with a simplified loss function.

The key innovation in our approach is setting the
KL divergence penalty coefficient 5 to zero. While
conventional wisdom in RLHF advocates for a pos-
itive KL penalty to prevent policy divergence, our
analysis revealed that for mathematical reasoning
tasks, allowing greater distributional shift from the
initial model produced superior outcomes. With
advantage normalization and online RL, the loss ul-
timately simplifies to J(0) = —BDkr(mg]||mres),
which vanishes when 8 = 0.

This enables us to completely eliminate the refer-
ence model from memory while counter-intuitively
improving mathematical reasoning performance.
The advantage estimation uses sample group nor-
malization where /li,t = %?%1(7“)’ preserving the
stability benefits of PPO’s approach.

5.3 Systems-Level Implementation

Our memory-optimized implementation enables
efficient training of 32B parameter models on just
8 GPUs through several technical innovations:

* Distributed inference: Parallel execution
across 8 vLLM engines processing unique
prompt batches

* CPU-GPU memory orchestration: Strate-
gic offloading of vLLM engines during policy
updates

* Parameter-efficient sharding: DeepSpeed
ZeRO-3 with CPU offloading of optimizer
states

* Reference model elimination: Zero KL
penalty approach removes the need for a ref-
erence model

These optimizations create an efficient training
cycle that enables fine-tuning of models that would
otherwise require substantially more computational
resources. The resulting models demonstrate more
concise reasoning patterns, using 6.3x fewer to-
kens while maintaining or improving reasoning
accuracy.

6 Multi-agent PRM Reranking

While our GRPO approach optimizes model pa-
rameters for mathematical reasoning, individ-
ual solution attempts remain susceptible to er-
rors. We developed a multi-agent framework with
preference-based reranking to enhance solution
quality through strategic diversity.

Our framework coordinates multiple solution-
generating agents with varied sampling parameters
(temperature, top-p) to create solution diversity,
while a Preference Reward Model (PRM) evaluates
and ranks these solutions based on quality criteria:

* Solution generation and verification: Mul-
tiple model instances generate diverse solu-
tions that capture different mathematical ap-
proaches, with both self-reflection and cross-
verification to identify potential errors.

* Quality-based ranking: The PRM evaluates
solutions across key dimensions (answer cor-
rectness, reasoning quality, technique appro-
priateness, and clarity), scoring each solution
to enable optimal selection without requiring
explicit mathematical rules.

This approach is particularly valuable for
competition-level mathematics problems that admit
multiple valid solution strategies. By generating
and evaluating diverse approaches, our system se-
lects the most appropriate technique for each spe-
cific problem.

To address occasional instabilities in models af-
ter GRPO training, we implemented a targeted
post-GRPO stabilization phase focusing on solu-
tion consistency, advanced technique application,
and verification integration. This counterbalances
the exploration encouraged during reinforcement
learning.

The multi-agent framework significantly im-
proved performance, achieving 79.9% accuracy on
AIME’24 compared to 76.7% for single-inference
approaches—a 3.2 percentage point improvement.
These gains were particularly pronounced for prob-
lems requiring complex multi-step reasoning, con-
firming that the multi-agent approach effectively
addresses single-solution limitations while main-
taining token efficiency.

7 Experiments

We conducted comprehensive experiments to evalu-
ate our three-stage approach across different model



scales and to isolate the contribution of each
pipeline component.

7.1 Experimental Setup

7.1.1 Models and Baselines

We experimented with three model scales and com-
pared against five competitive baselines.

Model Size Description

Our Models

Qwen2.5-1.5B (Ours) 1.5B Resource-efficient variant
Qwen2.5-7B (Ours) 7B Medium-scale variant
Qwen2.5-32B (Ours) 32B  Primary model

Baselines

Qwen 32B Base 32B Foundation model

Qwen 32B Instruct 32B Instruction-tuned variant
Qwen2.5-Math-72B 72B  Mathematical reasoning model

Qwen2.5-Math-72B w/ TIR 72B  Tool-Integrated Reasoning
Qwen-R1-Distilled-32B 32B Distilled from DeepSeek-R1

Table 1: Models used in our experiments

7.1.2 Training Configuration

All experiments were conducted on 8§ NVIDIA
A100 80GB GPUs.

Configuration 1.5B 7B 32B
Learning rate 2e-6 2e-6 2e-6
Batch size 64 256 384
KL penalty (3) 0.001 0 0
Max gradientnorm 1.0 0.5 0.5
Context length 8192 8192 16384
Temperature 07 07 0.7
Top-p 095 095 095

Table 2: Training hyperparameters across model scales

7.2 Progressive Experimental Validation

7.2.1 Initial GRPO Validation (1.5B Scale)

Our preliminary experiment used Qwen-1.5B-
Instruct on the GSM8K benchmark with a two-
component reward function:

0.2,
1.0,

R if the output uses correct format
if the output is correct

3)

This initial validation confirmed the efficacy of

our zero KL penalty approach while establishing

baseline improvements at smaller model scales.

7.2.2 Mid-scale Implementation (7B
Parameters)

Building on our initial findings, we implemented
our full pipeline with DeepSeek-R1-Distill-Qwen-
7B using an expanded batch size of 256 comple-
tions per update. This experiment verified the scal-
ability of our memory-optimized GRPO implemen-

tation and demonstrated the importance of larger
batch sizes for mathematical reasoning tasks.

7.2.3 Primary Model Optimization (32B
Scale)

Our primary model combined lessons from previ-
ous experiments with several enhancements:

* Expanded exploration space: Increased roll-
out_batch_size to 48

e Enhanced reward formulation: Added

mathematical validity checks

* Curriculum optimization: Progressive diffi-
culty increases

* Extended context window: Utilized 16,384
token context

These refinements enabled more effective learn-
ing while maintaining computational efficiency.

Evaluation Protocol We evaluated our models
on benchmarks designed to assess different aspects
of mathematical reasoning. Performance was mea-
sured using exact match accuracy for final answers,
with partial credit assigned for multi-part problems.

Benchmark  Size Description
AIME’24 15 problems Competition-level problems from AIME
OpenR1-Math 1,000 problems Holdout from OpenR1-Math-220K

Table 3: Evaluation benchmarks

7.2.4
For the multi-agent framework evaluation, we used
4 parallel inference passes with strategically varied
sampling parameters.

Multi-agent Configuration

Parameter Agent1 Agent2 Agent3 Agent4
Temperature 0.2 0.4 0.6 0.8
Top-p 0.85 0.90 0.92 0.95
Max tokens 4096 4096 4096 4096

Table 4: Multi-agent inference configuration

The PRM model was fine-tuned on paired so-
lutions with preference annotations, using a base
Qwen2.5-7B model with 1000 training steps.

8 Results

We evaluated our three-stage mathematical reason-
ing framework across multiple benchmarks, focus-
ing on both performance accuracy and computa-
tional efficiency.



8.1 AIME’24 Benchmark Performance

On the challenging AIME’24 competition-level
mathematics benchmark, our approach achieved
state-of-the-art results while dramatically reducing
computational requirements.

Model

Qwen 32B Base

Qwen 32B Instruct
Qwen2.5-Math-72B
Qwen2.5-Math-72B (TIR)
Qwen-R1-Distilled

Our Model (Single)

Our Model (Multi-agent)

AIME’24 Accuracy Tokens Used
50.0% 32000
26.7% 32000
30.0% 32000
40.0% 32000
73.3% 32000
76.7% 5048
79.9% 5048 x 4

Table 5: Performance comparison showing superior
accuracy and reduced token usage.

Our single-inference model achieves 76.7% ac-
curacy using only 5048 tokens per problem—a 6.3%
reduction in computational requirements compared
to baselines. The multi-agent approach further im-
proves accuracy to 79.9%, outperforming even the
strongest baseline (Qwen-R1-Distilled at 73.3%)
while maintaining the same token efficiency per
agent.

8.2 Component Contribution Analysis

To quantify the impact of each pipeline component,
we performed systematic ablation studies:

Model Configuration AIME’24 Accuracy Avg. Tokens

Full Pipeline (multi-agent) 79.9% 5048 x 4
Without Multi-agent PRM 76.7% 5048
Without GRPO (Distill only) 72.1% 31764

‘Without Distillation (Base) 50.0% 32000

Table 6: Ablation results demonstrating incremental
contribution of each component.

Each stage of our pipeline contributes meaning-
fully to the final performance: distillation estab-
lishes mathematical reasoning foundations (+22.1
percentage points over the base model); GRPO sig-
nificantly improves token efficiency while further
enhancing accuracy (+4.6 points with 84% token
reduction); and multi-agent PRM provides the final
performance boost (+3.2 points) through verifica-
tion and reranking.

8.3 Scaling and Generalization Analysis

Our approach demonstrates consistent performance
improvements across model scales, with larger
models benefiting more substantially from GRPO
training:

Model
Qwen2.5-1.5B GRPO
Qwen2.5-7B GRPO 16.7% —
Qwen2.5-32B Base 50.0% 54.6%
Qwen2.5-32B GRPO (checkpoint) — 58.5%
Qwen2.5-32B GRPO (final) 76.7 % 63.1%

AIME’24 Holdout
10.0% —

Table 7: Performance across model scales and on hold-
out evaluation.

Evaluation on a 1,000-problem holdout set from
OpenR1-Math-220K demonstrates that our im-
provements generalize beyond the competition-
specific AIME benchmark. We observed progres-
sive accuracy gains throughout training, with a no-
table improvement after extending the context win-
dow from 8K to 16K tokens at checkpoint-350,
highlighting the importance of sufficient context
for complex mathematical reasoning.

8.4 Token Efficiency Mechanisms

Our models achieve remarkable token efficiency
through several learned behaviors:

» Adaptive allocation: Using fewer tokens for
simpler problems while allocating more to
complex ones requiring detailed reasoning

* Redundancy elimination: Removing unnec-
essary explanation steps without sacrificing
solution validity

* Technique optimization: Focusing on the
most relevant mathematical approaches for
each problem type

This adaptive token usage resulted in 2.1x faster
inference compared to baseline models—a critical
advantage for practical applications where infer-
ence cost and latency matter. The efficiency gains
are particularly noteworthy considering they oc-
cur without compromising—and in fact improv-
ing—mathematical reasoning accuracy.

9 Ablation Studies and Analysis

We conducted comprehensive analyses to under-
stand component contributions, error patterns, and
efficiency-accuracy trade-offs in our mathematical
reasoning framework.

9.1 Component Contribution Analysis

Beyond basic ablation tests, we examined how each
pipeline component influences overall performance
through targeted parameter variations:



* Distillation objective balance: Varying the
KL+CE loss weighting parameter « revealed
an optimal mid-range value (o ~ 0.5), balanc-
ing reasoning structure transfer and answer
accuracy. Low « values preserved solutions
but compromised reasoning coherence, while
high values maintained reasoning structure
but reduced answer precision.

* GRPO KL penalty impact: Our zero KL
penalty approach not only reduced memory
requirements by 38% but also accelerated con-
vergence by 22% compared to traditional PPO
implementations with standard KL penalties.
This optimization proved particularly benefi-
cial for token efficiency improvements.

¢ Multi-agent scaling: Performance increased
logarithmically with agent count, showing
substantial gains from 1 to 4 agents (+3.2
percentage points) but diminishing returns
beyond that point (+0.7 points from 4 to 8
agents), confirming our 4-agent configuration
as near-optimal for the performance-compute
trade-off.

9.2 Error Analysis

Detailed examination of model errors on the
AIME’24 benchmark revealed structured patterns:

The error distribution demonstrates domain-
specific challenges, with geometry problems show-
ing the highest error rate. Across all domains,
conceptual misunderstandings (43%) outweighed
computational errors (27%) and incomplete reason-
ing (30%), suggesting that future improvements
should prioritize enhancing conceptual representa-
tion rather than calculation capabilities.

9.3 Tool Integration and Cross-Domain
Analysis

We evaluated both Tool-Integrated Reasoning (TIR)
and cross-domain generalization capabilities:

Model AIME’24 Cross-Domain
Qwen2.5-1.5B 10.0% 18.1%
Qwen2.5-32B (Ours)  76.7% 60.2%

Table 8: Performance on AIME’24 and cross-domain
tasks (averaged across calculus and abstract algebra).

Tool-Integrated Reasoning shows the most sig-
nificant relative improvement on smaller models,
suggesting external tools can partially compensate
for limited model capacity. Meanwhile, our 32B

model demonstrates substantial cross-domain gen-
eralization capabilities, though with expected per-
formance degradation on domains not specifically
targeted during training.

9.4 Efficiency-Accuracy Trade-off Analysis

We systematically explored the relationship be-
tween token limit and reasoning accuracy by vary-
ing maximum allowed tokens during inference:

* Performance inflection points: Accuracy in-
creases steeply up to 4000 tokens (72.1%),
moderately to 6000 tokens (77.3%), and
plateaus beyond 8000 tokens (77.9%).

* Optimal operating range: The 4000-6000
token range represents the sweet spot for
balancing accuracy and efficiency, with our
chosen 5048 token limit capturing 98.4% of
maximum performance at less than 20% of
the computational cost of standard 32K ap-
proaches.

* Problem-adaptive allocation: Token usage
analysis reveals that our model adaptively al-
locates tokens based on problem complexity
(r=0.72 correlation between problem difficulty
and token usage), demonstrating efficient re-
source utilization.

These analyses confirm that our approach effec-
tively resolves the fundamental efficiency-accuracy
trade-off in mathematical reasoning, with particular
benefits for deployment scenarios where compu-
tational resources are constrained but reasoning
quality cannot be compromised.

10 Conclusion

Our work establishes a novel framework for math-
ematical reasoning in large language models that
successfully resolves the longstanding tension be-
tween reasoning quality and computational effi-
ciency. By synergistically combining reasoning
capability distillation, memory-optimized GRPO,
and multi-agent PRM reranking, we achieved state-
of-the-art performance on competition-level mathe-
matics while dramatically reducing computational
requirements.

Our models demonstrate unprecedented token
efficiency, achieving a 6.3x reduction in token us-
age while improving accuracy on the challenging
AIME’24 benchmark to 76.7



10.1 Impact and Future Work

The advancements presented in this work have sig-
nificant implications beyond benchmarks and open
several promising research directions:

* Democratizing advanced reasoning: Our ap-
proach makes sophisticated mathematical rea-
soning more accessible across diverse deploy-
ment environments, particularly benefiting ed-
ucational applications where response time
significantly impacts student engagement and
learning outcomes. The substantial reduction
in token usage also translates to meaningful
energy savings at scale.

¢ Extending to other domains: This frame-
work can be adapted to other complex reason-
ing tasks such as scientific problem-solving
and algorithmic reasoning. Future work could
explore integration with iterative refinement
mechanisms like Chain-of-Draft [Xu et al.,
2025] and specialized tool integration for pre-
cise computation tasks.

* Scaling and generalization: Further research
should investigate how these techniques gen-
eralize across model scales from sub-billion to
hundred-billion parameter ranges and across
different mathematical domains.

In summary, our three-stage approach estab-
lishes a new paradigm for mathematical reasoning
in LLMs that effectively balances performance and
efficiency, making advanced reasoning capabilities
more practical for real-world applications.

Limitations

Despite the significant improvements demonstrated
in our work, several limitations remain:

Our current model shows varying perfor-
mance across mathematical subfields, with relative
strengths in algebra and number theory but weaker
performance in geometry and probability. This sug-
gests a need for more balanced training data across
mathematical domains.

While multiagent approaches improve solution
quality, they sometimes converge to similar rea-
soning paths, which limits the diversity of solution
approaches. Developing techniques to encourage
more diverse reasoning styles could improve ro-
bustness.

More research is needed to understand how our
approach scales to even larger models (100B+ pa-
rameters) and whether the token efficiency gains
continue to increase with scale.

Our evaluation focused primarily on
competition-level mathematics problems. Real-
world mathematical applications may present
different challenges that require customized
training or fine-tuning approaches.

Ethics Statement

Our work aims to advance mathematical reasoning
capabilities in Al systems, which has broad applica-
tions in the fields of education, scientific research,
and engineering. By improving both accuracy and
computational efficiency, we make advanced math-
ematical reasoning more accessible.

The models developed in this work do not
present significant ethical concerns beyond those
common to all large-language models. We have
carefully curated training data to focus on well-
established mathematical content and problems.
The models are used to solve mathematical prob-
lems rather than to generate text that might contain
harmful biases or misinformation.

The reduced token usage in our models has
positive environmental implications by decreasing
the computational resources required for inference,
potentially leading to lower energy consumption
when deployed at scale.
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