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Abstract

Despite remarkable advances in Large001
Language Models (LLMs), mathematical002
reasoning remains a critical frontier where003
models struggle with accuracy, reliability,004
and computational efficiency, particularly005
for competition-level problems. Current006
approaches face fundamental limitations: distil-007
lation methods alone fail to capture reasoning008
depth, reinforcement learning techniques de-009
mand prohibitive computational resources, and010
ensemble methods multiply inference costs.We011
introduce a novel three-stage framework,012
TriMER (Triple-stage Mathematical Efficient013
Reasoning), that synergistically combines rea-014
soning capability distillation, Group Relative015
Policy Optimization (GRPO) with zero KL016
penalty, and multi-agent Preference Reward017
Model (PRM) reranking to address both018
reasoning quality and computational efficiency.019
Leveraging our curated dataset of 387K high-020
difficulty mathematical problems, we achieve021
state-of-the-art performance of 76.7% accuracy022
on the challenging AIME24 benchmark, sur-023
passing Qwen-R1-Distilled-32B (73.3%) and024
Qwen2.5-Math-72B (30.0%) while using only025
5048 tokens per problem—a 6.3× reduction in026
computational requirements. Our multi-agent027
framework further improves performance to028
79.9% accuracy, demonstrating robustness029
through solution diversity. Extensive ablation030
studies confirm the essential contribution031
of each component, with significant gains032
from our memory-optimized GRPO imple-033
mentation https://anonymous.4open.034
science/r/math_reasoner-362E/1.035
By effectively resolving the efficiency-036
accuracy trade-off that has hindered practical037
deployment of mathematical reasoning sys-038
tems, our approach establishes a new paradigm039
for developing LLMs that can tackle complex040
mathematical challenges while remaining041
computationally accessible for real-world042
applications.043

1To be released upon publication.

1 Efficient Multi-Stage Optimization for 044

Advanced Mathematical Reasoning in 045

LLMs 046

Mathematical reasoning remains one of the most 047

challenging frontiers for large language models 048

(LLMs), demanding capabilities fundamentally dif- 049

ferent from general language understanding. While 050

LLMs have made remarkable progress across many 051

domains, solving complex mathematical problems 052

requires maintaining symbolic consistency, exe- 053

cuting multi-step logical reasoning, and applying 054

domain-specific knowledge—capabilities that tra- 055

ditional supervised fine-tuning approaches often 056

fail to develop fully. 057

Three critical challenges continue to limit the 058

practical application of LLMs for advanced mathe- 059

matical reasoning: 060

• Reasoning depth: Models struggle to main- 061

tain coherent reasoning chains across multiple 062

interdependent steps required for competition- 063

level problems. 064

• Computational efficiency: State-of-the-art 065

performance typically demands excessive to- 066

ken generation, making deployment impracti- 067

cal. 068

• Solution verification: Ensuring answer cor- 069

rectness often requires additional computation 070

that compounds resource requirements. 071

Current approaches to mathematical reasoning in 072

LLMs have made progress but face significant limi- 073

tations. Knowledge distillation approaches transfer 074

capabilities from larger teacher models but often 075

sacrifice reasoning depth; reinforcement learning 076

techniques improve reasoning quality but demand 077

prohibitive computational resources; and ensemble 078

methods enhance accuracy by generating multiple 079

solutions but multiply inference costs, making them 080

impractical for real-world applications. 081
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We introduce a novel three-stage framework that082

synergistically combines the strengths of these ap-083

proaches while addressing their limitations:084

1. Capability distillation from DeepSeek-R1 to085

Qwen2.5 models establishes a strong mathe-086

matical reasoning foundation.087

2. Memory-optimized Group Relative Policy088

Optimization (GRPO) with zero KL penalty089

enables efficient scaling to 32B parameter090

models.091

3. Multi-agent Preference Reward Model092

(PRM) reranking leverages solution diver-093

sity to significantly improve performance.094

Our approach achieves state-of-the-art 76.7% ac-095

curacy on the challenging AIME’24 benchmark096

while using just 5048 tokens per problem—a 6.3×097

reduction compared to baseline approaches. The098

multi-agent framework further improves perfor-099

mance to 79.9% accuracy, demonstrating the ef-100

fectiveness of solution diversity.101

This work resolves a critical tension between102

reasoning quality and computational efficiency103

in mathematical problem-solving, establishing a104

new paradigm for developing LLMs that excel at105

complex mathematical challenges while remaining106

computationally accessible for practical applica-107

tions.108

2 Related Work109

Our work builds on research enhancing mathe-110

matical reasoning in LLMs across four key ar-111

eas: prompt engineering, distillation, reinforce-112

ment learning, and verification techniques.113

2.1 Prompt Engineering for Mathematical114

Reasoning115

Chain-of-Thought prompting [Wei et al., 2022]116

demonstrated that showing reasoning steps signif-117

icantly improves mathematical problem-solving,118

leading to variants like Zero-shot CoT [Kojima119

et al., 2022], Self-consistency [Wang et al., 2023b],120

and Tree-of-Thought [Yao et al., 2023]. While121

effective, these approaches require extensive to-122

ken usage, and efficiency-focused strategies like123

Equation-of-Thought [Zhang et al., 2023] and124

Chain-of-Draft [Xu et al., 2025] optimize infer-125

ence patterns without addressing underlying model126

capabilities.127

2.2 Distillation for Mathematical Reasoning 128

Knowledge distillation transfers reasoning capabil- 129

ities from larger to smaller models, with DeepSeek- 130

R1 [AI, 2025] demonstrating effective transfer 131

from RL-trained teachers to student models. Our 132

work extends this approach with specialized tech- 133

niques for mathematical reasoning, using adaptive 134

temperature scheduling and weighted masking to 135

enhance reasoning transfer. 136

2.3 Reinforcement Learning for Reasoning 137

MATH-Shepherd [Wang et al., 2023a] and 138

DeepSeekMath [Shao et al., 2024] employed vari- 139

ants of Proximal Policy Optimization [Schulman 140

et al., 2017] for mathematical reasoning, while 141

Group Relative Policy Optimization (GRPO) [Shao 142

et al., 2024] eliminated the separate critic network. 143

We build on GRPO with a novel zero KL penalty 144

formulation that substantially reduces memory re- 145

quirements while improving mathematical reason- 146

ing performance. 147

2.4 Verification and Multi-agent Approaches 148

Let’s Verify Step by Step [Lightman et al., 2023] 149

demonstrated the value of checking intermediate 150

reasoning steps, while Collaborative Mathematics 151

[Wu et al., 2023] showed benefits of combining 152

multiple reasoning agents. Our multi-agent PRM 153

framework integrates these approaches into a uni- 154

fied system that maximizes reasoning quality while 155

minimizing computational costs. 156

2.5 Efficiency in Mathematical Reasoning 157

Recent work like the Agentica Project [Luo 158

et al., 2025] has explored efficiency improvements 159

through specialized training and scaling techniques. 160

Our approach achieves state-of-the-art performance 161

with substantially reduced computational require- 162

ments through the synergistic combination of dis- 163

tillation, memory-optimized GRPO, and selective 164

multi-agent verification. 165

3 Dataset Creation and Curation 166

We developed a carefully curated dataset of 387K 167

competition-level mathematical problems to sup- 168

port effective training across diverse problem types 169

and difficulty levels. 170

3.1 Dataset Composition 171

Our dataset synthesizes three complementary 172

sources: NuminaMath 1.5 [Li et al., 2024] pro- 173
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vided competition-level problems with varied dif-174

ficulty; OpenR1-Math-220K contributed multiple175

reasoning traces (55% of our final dataset); and176

Bespoke-Stratos-17K (7.5%) offered meticulously177

crafted step-by-step solutions for challenging prob-178

lems. We further enriched this foundation with179

150K pipeline-generated solutions (37.5%) specifi-180

cally designed to address coverage gaps, ensuring181

comprehensive representation across algebra, ge-182

ometry, number theory, and combinatorics.183

3.2 Quality Assurance184

Data quality was ensured through a multi-stage185

verification pipeline that included automatic dedu-186

plication, domain-specific filtering, and solution187

validity checking. We employed OpenAI-4o-mini188

as an independent judge to evaluate solution quality,189

resulting in approximately 15% of initially gener-190

ated solutions being rejected. This rigorous quality191

control process maintained high standards while192

preserving mathematical diversity, creating a robust193

foundation for training models capable of advanced194

reasoning across problem types.195

Our solution generation pipeline evolved from196

an initial multi-agent approach requiring approxi-197

mately 10 minutes per batch to an optimized sys-198

tem that reduced processing time by 70% through199

contextual leveraging of existing solutions, allow-200

ing efficient scaling to our final dataset size while201

maintaining solution quality. Our curation process202

prioritized olympiad-level problems requiring so-203

phisticated multi-step reasoning while maintaining204

balanced representation across difficulty levels to205

support robust model training.206

4 Reasoning Capability Distillation207

We developed a specialized distillation framework208

to transfer mathematical reasoning capabilities209

from a capable teacher model to a more efficient210

student architecture, focusing on preserving step-211

by-step deduction patterns.212

Our approach uses DeepSeek-R1 [AI, 2025] as213

the teacher model and Qwen2.5-32B as the student,214

with a hybrid loss function balancing reasoning215

fidelity and answer accuracy:216

L = αLKL + (1− α)LCE (1)217

The KL divergence component captures teacher218

reasoning patterns through temperature-controlled219

softened logits, while the cross-entropy loss en-220

sures alignment with ground truth solutions:221

LKL = T 2 ·KL
(

softmax
(zt
T

)
∥softmax

(zs
T

))
(2) 222

Unlike pure cross-entropy approaches that prior- 223

itize answer correctness or pure KL methods that 224

risk overfitting to teacher idiosyncrasies, our hy- 225

brid approach achieves superior reasoning transfer 226

with manageable computational requirements. 227

Two key innovations enhance our framework’s 228

performance on mathematical tasks: 229

• Adaptive temperature scheduling: Begin- 230

ning with higher values to learn broad rea- 231

soning strategies before transitioning to lower 232

temperatures that enhance precision. 233

• Reasoning-focused weighted masking: Plac- 234

ing greater emphasis on reasoning steps rather 235

than problem statements to prioritize mathe- 236

matical deduction processes. 237

The distilled model achieved 72.1% accuracy 238

on AIME’24—a substantial improvement over the 239

base model’s 50.0%, though token usage remained 240

high at approximately 31,764 tokens per problem. 241

This observation motivated our subsequent GRPO 242

implementation to improve efficiency while pre- 243

serving reasoning capabilities. 244

5 Group Relative Policy Optimization 245

Standard reinforcement learning techniques face 246

prohibitive memory constraints when applied to 247

large language models for mathematical reason- 248

ing. We address this challenge through a memory- 249

optimized implementation of Group Relative Pol- 250

icy Optimization (GRPO) with a novel zero KL 251

penalty formulation. 252

5.1 Policy Optimization Challenges 253

Proximal Policy Optimization (PPO) [Schulman 254

et al., 2017] has become the standard method for 255

aligning language models through reinforcement 256

learning. However, its actor-critic architecture re- 257

quires maintaining a separate value network along- 258

side the policy model, creating significant memory 259

overhead that becomes prohibitive for models with 260

tens of billions of parameters—a critical limita- 261

tion for mathematical reasoning where model size 262

strongly correlates with reasoning ability. 263
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5.2 GRPO and Zero KL Penalty Innovation264

Group Relative Policy Optimization [Shao et al.,265

2024] addresses these limitations by eliminating266

the separate critic network, instead deriving advan-267

tage estimates from grouped sample returns. Our268

implementation takes a single gradient step per269

batch of trajectories with a simplified loss function.270

The key innovation in our approach is setting the271

KL divergence penalty coefficient β to zero. While272

conventional wisdom in RLHF advocates for a pos-273

itive KL penalty to prevent policy divergence, our274

analysis revealed that for mathematical reasoning275

tasks, allowing greater distributional shift from the276

initial model produced superior outcomes. With277

advantage normalization and online RL, the loss ul-278

timately simplifies to J(θ) = −βDKL(πθ||πref ),279

which vanishes when β = 0.280

This enables us to completely eliminate the refer-281

ence model from memory while counter-intuitively282

improving mathematical reasoning performance.283

The advantage estimation uses sample group nor-284

malization where Âi,t =
ri−mean(r)

std(r) , preserving the285

stability benefits of PPO’s approach.286

5.3 Systems-Level Implementation287

Our memory-optimized implementation enables288

efficient training of 32B parameter models on just289

8 GPUs through several technical innovations:290

• Distributed inference: Parallel execution291

across 8 vLLM engines processing unique292

prompt batches293

• CPU-GPU memory orchestration: Strate-294

gic offloading of vLLM engines during policy295

updates296

• Parameter-efficient sharding: DeepSpeed297

ZeRO-3 with CPU offloading of optimizer298

states299

• Reference model elimination: Zero KL300

penalty approach removes the need for a ref-301

erence model302

These optimizations create an efficient training303

cycle that enables fine-tuning of models that would304

otherwise require substantially more computational305

resources. The resulting models demonstrate more306

concise reasoning patterns, using 6.3× fewer to-307

kens while maintaining or improving reasoning308

accuracy.309

6 Multi-agent PRM Reranking 310

While our GRPO approach optimizes model pa- 311

rameters for mathematical reasoning, individ- 312

ual solution attempts remain susceptible to er- 313

rors. We developed a multi-agent framework with 314

preference-based reranking to enhance solution 315

quality through strategic diversity. 316

Our framework coordinates multiple solution- 317

generating agents with varied sampling parameters 318

(temperature, top-p) to create solution diversity, 319

while a Preference Reward Model (PRM) evaluates 320

and ranks these solutions based on quality criteria: 321

• Solution generation and verification: Mul- 322

tiple model instances generate diverse solu- 323

tions that capture different mathematical ap- 324

proaches, with both self-reflection and cross- 325

verification to identify potential errors. 326

• Quality-based ranking: The PRM evaluates 327

solutions across key dimensions (answer cor- 328

rectness, reasoning quality, technique appro- 329

priateness, and clarity), scoring each solution 330

to enable optimal selection without requiring 331

explicit mathematical rules. 332

This approach is particularly valuable for 333

competition-level mathematics problems that admit 334

multiple valid solution strategies. By generating 335

and evaluating diverse approaches, our system se- 336

lects the most appropriate technique for each spe- 337

cific problem. 338

To address occasional instabilities in models af- 339

ter GRPO training, we implemented a targeted 340

post-GRPO stabilization phase focusing on solu- 341

tion consistency, advanced technique application, 342

and verification integration. This counterbalances 343

the exploration encouraged during reinforcement 344

learning. 345

The multi-agent framework significantly im- 346

proved performance, achieving 79.9% accuracy on 347

AIME’24 compared to 76.7% for single-inference 348

approaches—a 3.2 percentage point improvement. 349

These gains were particularly pronounced for prob- 350

lems requiring complex multi-step reasoning, con- 351

firming that the multi-agent approach effectively 352

addresses single-solution limitations while main- 353

taining token efficiency. 354

7 Experiments 355

We conducted comprehensive experiments to evalu- 356

ate our three-stage approach across different model 357
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scales and to isolate the contribution of each358

pipeline component.359

7.1 Experimental Setup360

7.1.1 Models and Baselines361

We experimented with three model scales and com-362

pared against five competitive baselines.363

Model Size Description
Our Models
Qwen2.5-1.5B (Ours) 1.5B Resource-efficient variant
Qwen2.5-7B (Ours) 7B Medium-scale variant
Qwen2.5-32B (Ours) 32B Primary model
Baselines
Qwen 32B Base 32B Foundation model
Qwen 32B Instruct 32B Instruction-tuned variant
Qwen2.5-Math-72B 72B Mathematical reasoning model
Qwen2.5-Math-72B w/ TIR 72B Tool-Integrated Reasoning
Qwen-R1-Distilled-32B 32B Distilled from DeepSeek-R1

Table 1: Models used in our experiments

7.1.2 Training Configuration364

All experiments were conducted on 8 NVIDIA365

A100 80GB GPUs.366

Configuration 1.5B 7B 32B
Learning rate 2e-6 2e-6 2e-6
Batch size 64 256 384
KL penalty (β) 0.001 0 0
Max gradient norm 1.0 0.5 0.5
Context length 8192 8192 16384
Temperature 0.7 0.7 0.7
Top-p 0.95 0.95 0.95

Table 2: Training hyperparameters across model scales

7.2 Progressive Experimental Validation367

7.2.1 Initial GRPO Validation (1.5B Scale)368

Our preliminary experiment used Qwen-1.5B-369

Instruct on the GSM8K benchmark with a two-370

component reward function:371

R =

{
0.2, if the output uses correct format
1.0, if the output is correct

(3)372

This initial validation confirmed the efficacy of373

our zero KL penalty approach while establishing374

baseline improvements at smaller model scales.375

7.2.2 Mid-scale Implementation (7B376

Parameters)377

Building on our initial findings, we implemented378

our full pipeline with DeepSeek-R1-Distill-Qwen-379

7B using an expanded batch size of 256 comple-380

tions per update. This experiment verified the scal-381

ability of our memory-optimized GRPO implemen-382

tation and demonstrated the importance of larger 383

batch sizes for mathematical reasoning tasks. 384

7.2.3 Primary Model Optimization (32B 385

Scale) 386

Our primary model combined lessons from previ- 387

ous experiments with several enhancements: 388

• Expanded exploration space: Increased roll- 389

out_batch_size to 48 390

• Enhanced reward formulation: Added 391

mathematical validity checks 392

• Curriculum optimization: Progressive diffi- 393

culty increases 394

• Extended context window: Utilized 16,384 395

token context 396

These refinements enabled more effective learn- 397

ing while maintaining computational efficiency. 398

Evaluation Protocol We evaluated our models 399

on benchmarks designed to assess different aspects 400

of mathematical reasoning. Performance was mea- 401

sured using exact match accuracy for final answers, 402

with partial credit assigned for multi-part problems. 403

Benchmark Size Description
AIME’24 15 problems Competition-level problems from AIME
OpenR1-Math 1,000 problems Holdout from OpenR1-Math-220K

Table 3: Evaluation benchmarks

7.2.4 Multi-agent Configuration 404

For the multi-agent framework evaluation, we used 405

4 parallel inference passes with strategically varied 406

sampling parameters. 407

Parameter Agent 1 Agent 2 Agent 3 Agent 4
Temperature 0.2 0.4 0.6 0.8
Top-p 0.85 0.90 0.92 0.95
Max tokens 4096 4096 4096 4096

Table 4: Multi-agent inference configuration

The PRM model was fine-tuned on paired so- 408

lutions with preference annotations, using a base 409

Qwen2.5-7B model with 1000 training steps. 410

8 Results 411

We evaluated our three-stage mathematical reason- 412

ing framework across multiple benchmarks, focus- 413

ing on both performance accuracy and computa- 414

tional efficiency. 415

5



8.1 AIME’24 Benchmark Performance416

On the challenging AIME’24 competition-level417

mathematics benchmark, our approach achieved418

state-of-the-art results while dramatically reducing419

computational requirements.420

Model AIME’24 Accuracy Tokens Used
Qwen 32B Base 50.0% 32000
Qwen 32B Instruct 26.7% 32000
Qwen2.5-Math-72B 30.0% 32000
Qwen2.5-Math-72B (TIR) 40.0% 32000
Qwen-R1-Distilled 73.3% 32000
Our Model (Single) 76.7% 5048
Our Model (Multi-agent) 79.9% 5048 × 4

Table 5: Performance comparison showing superior
accuracy and reduced token usage.

Our single-inference model achieves 76.7% ac-421

curacy using only 5048 tokens per problem—a 6.3×422

reduction in computational requirements compared423

to baselines. The multi-agent approach further im-424

proves accuracy to 79.9%, outperforming even the425

strongest baseline (Qwen-R1-Distilled at 73.3%)426

while maintaining the same token efficiency per427

agent.428

8.2 Component Contribution Analysis429

To quantify the impact of each pipeline component,430

we performed systematic ablation studies:431

Model Configuration AIME’24 Accuracy Avg. Tokens
Full Pipeline (multi-agent) 79.9% 5048 × 4
Without Multi-agent PRM 76.7% 5048
Without GRPO (Distill only) 72.1% 31764
Without Distillation (Base) 50.0% 32000

Table 6: Ablation results demonstrating incremental
contribution of each component.

Each stage of our pipeline contributes meaning-432

fully to the final performance: distillation estab-433

lishes mathematical reasoning foundations (+22.1434

percentage points over the base model); GRPO sig-435

nificantly improves token efficiency while further436

enhancing accuracy (+4.6 points with 84% token437

reduction); and multi-agent PRM provides the final438

performance boost (+3.2 points) through verifica-439

tion and reranking.440

8.3 Scaling and Generalization Analysis441

Our approach demonstrates consistent performance442

improvements across model scales, with larger443

models benefiting more substantially from GRPO444

training:445

Model AIME’24 Holdout
Qwen2.5-1.5B GRPO 10.0% —
Qwen2.5-7B GRPO 16.7% —
Qwen2.5-32B Base 50.0% 54.6%
Qwen2.5-32B GRPO (checkpoint) — 58.5%
Qwen2.5-32B GRPO (final) 76.7% 63.1%

Table 7: Performance across model scales and on hold-
out evaluation.

Evaluation on a 1,000-problem holdout set from 446

OpenR1-Math-220K demonstrates that our im- 447

provements generalize beyond the competition- 448

specific AIME benchmark. We observed progres- 449

sive accuracy gains throughout training, with a no- 450

table improvement after extending the context win- 451

dow from 8K to 16K tokens at checkpoint-350, 452

highlighting the importance of sufficient context 453

for complex mathematical reasoning. 454

8.4 Token Efficiency Mechanisms 455

Our models achieve remarkable token efficiency 456

through several learned behaviors: 457

• Adaptive allocation: Using fewer tokens for 458

simpler problems while allocating more to 459

complex ones requiring detailed reasoning 460

• Redundancy elimination: Removing unnec- 461

essary explanation steps without sacrificing 462

solution validity 463

• Technique optimization: Focusing on the 464

most relevant mathematical approaches for 465

each problem type 466

This adaptive token usage resulted in 2.1× faster 467

inference compared to baseline models—a critical 468

advantage for practical applications where infer- 469

ence cost and latency matter. The efficiency gains 470

are particularly noteworthy considering they oc- 471

cur without compromising—and in fact improv- 472

ing—mathematical reasoning accuracy. 473

9 Ablation Studies and Analysis 474

We conducted comprehensive analyses to under- 475

stand component contributions, error patterns, and 476

efficiency-accuracy trade-offs in our mathematical 477

reasoning framework. 478

9.1 Component Contribution Analysis 479

Beyond basic ablation tests, we examined how each 480

pipeline component influences overall performance 481

through targeted parameter variations: 482

6



• Distillation objective balance: Varying the483

KL+CE loss weighting parameter α revealed484

an optimal mid-range value (α ≈ 0.5), balanc-485

ing reasoning structure transfer and answer486

accuracy. Low α values preserved solutions487

but compromised reasoning coherence, while488

high values maintained reasoning structure489

but reduced answer precision.490

• GRPO KL penalty impact: Our zero KL491

penalty approach not only reduced memory492

requirements by 38% but also accelerated con-493

vergence by 22% compared to traditional PPO494

implementations with standard KL penalties.495

This optimization proved particularly benefi-496

cial for token efficiency improvements.497

• Multi-agent scaling: Performance increased498

logarithmically with agent count, showing499

substantial gains from 1 to 4 agents (+3.2500

percentage points) but diminishing returns501

beyond that point (+0.7 points from 4 to 8502

agents), confirming our 4-agent configuration503

as near-optimal for the performance-compute504

trade-off.505

9.2 Error Analysis506

Detailed examination of model errors on the507

AIME’24 benchmark revealed structured patterns:508

The error distribution demonstrates domain-509

specific challenges, with geometry problems show-510

ing the highest error rate. Across all domains,511

conceptual misunderstandings (43%) outweighed512

computational errors (27%) and incomplete reason-513

ing (30%), suggesting that future improvements514

should prioritize enhancing conceptual representa-515

tion rather than calculation capabilities.516

9.3 Tool Integration and Cross-Domain517

Analysis518

We evaluated both Tool-Integrated Reasoning (TIR)519

and cross-domain generalization capabilities:520

Model AIME’24 Cross-Domain
Qwen2.5-1.5B 10.0% 18.1%
Qwen2.5-32B (Ours) 76.7% 60.2%

Table 8: Performance on AIME’24 and cross-domain
tasks (averaged across calculus and abstract algebra).

Tool-Integrated Reasoning shows the most sig-521

nificant relative improvement on smaller models,522

suggesting external tools can partially compensate523

for limited model capacity. Meanwhile, our 32B524

model demonstrates substantial cross-domain gen- 525

eralization capabilities, though with expected per- 526

formance degradation on domains not specifically 527

targeted during training. 528

9.4 Efficiency-Accuracy Trade-off Analysis 529

We systematically explored the relationship be- 530

tween token limit and reasoning accuracy by vary- 531

ing maximum allowed tokens during inference: 532

• Performance inflection points: Accuracy in- 533

creases steeply up to 4000 tokens (72.1%), 534

moderately to 6000 tokens (77.3%), and 535

plateaus beyond 8000 tokens (77.9%). 536

• Optimal operating range: The 4000-6000 537

token range represents the sweet spot for 538

balancing accuracy and efficiency, with our 539

chosen 5048 token limit capturing 98.4% of 540

maximum performance at less than 20% of 541

the computational cost of standard 32K ap- 542

proaches. 543

• Problem-adaptive allocation: Token usage 544

analysis reveals that our model adaptively al- 545

locates tokens based on problem complexity 546

(r=0.72 correlation between problem difficulty 547

and token usage), demonstrating efficient re- 548

source utilization. 549

These analyses confirm that our approach effec- 550

tively resolves the fundamental efficiency-accuracy 551

trade-off in mathematical reasoning, with particular 552

benefits for deployment scenarios where compu- 553

tational resources are constrained but reasoning 554

quality cannot be compromised. 555

10 Conclusion 556

Our work establishes a novel framework for math- 557

ematical reasoning in large language models that 558

successfully resolves the longstanding tension be- 559

tween reasoning quality and computational effi- 560

ciency. By synergistically combining reasoning 561

capability distillation, memory-optimized GRPO, 562

and multi-agent PRM reranking, we achieved state- 563

of-the-art performance on competition-level mathe- 564

matics while dramatically reducing computational 565

requirements. 566

Our models demonstrate unprecedented token 567

efficiency, achieving a 6.3× reduction in token us- 568

age while improving accuracy on the challenging 569

AIME’24 benchmark to 76.7 570
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10.1 Impact and Future Work571

The advancements presented in this work have sig-572

nificant implications beyond benchmarks and open573

several promising research directions:574

• Democratizing advanced reasoning: Our ap-575

proach makes sophisticated mathematical rea-576

soning more accessible across diverse deploy-577

ment environments, particularly benefiting ed-578

ucational applications where response time579

significantly impacts student engagement and580

learning outcomes. The substantial reduction581

in token usage also translates to meaningful582

energy savings at scale.583

• Extending to other domains: This frame-584

work can be adapted to other complex reason-585

ing tasks such as scientific problem-solving586

and algorithmic reasoning. Future work could587

explore integration with iterative refinement588

mechanisms like Chain-of-Draft [Xu et al.,589

2025] and specialized tool integration for pre-590

cise computation tasks.591

• Scaling and generalization: Further research592

should investigate how these techniques gen-593

eralize across model scales from sub-billion to594

hundred-billion parameter ranges and across595

different mathematical domains.596

In summary, our three-stage approach estab-597

lishes a new paradigm for mathematical reasoning598

in LLMs that effectively balances performance and599

efficiency, making advanced reasoning capabilities600

more practical for real-world applications.601

Limitations602

Despite the significant improvements demonstrated603

in our work, several limitations remain:604

Our current model shows varying perfor-605

mance across mathematical subfields, with relative606

strengths in algebra and number theory but weaker607

performance in geometry and probability. This sug-608

gests a need for more balanced training data across609

mathematical domains.610

While multiagent approaches improve solution611

quality, they sometimes converge to similar rea-612

soning paths, which limits the diversity of solution613

approaches. Developing techniques to encourage614

more diverse reasoning styles could improve ro-615

bustness.616

More research is needed to understand how our 617

approach scales to even larger models (100B+ pa- 618

rameters) and whether the token efficiency gains 619

continue to increase with scale. 620

Our evaluation focused primarily on 621

competition-level mathematics problems. Real- 622

world mathematical applications may present 623

different challenges that require customized 624

training or fine-tuning approaches. 625

Ethics Statement 626

Our work aims to advance mathematical reasoning 627

capabilities in AI systems, which has broad applica- 628

tions in the fields of education, scientific research, 629

and engineering. By improving both accuracy and 630

computational efficiency, we make advanced math- 631

ematical reasoning more accessible. 632

The models developed in this work do not 633

present significant ethical concerns beyond those 634

common to all large-language models. We have 635

carefully curated training data to focus on well- 636

established mathematical content and problems. 637

The models are used to solve mathematical prob- 638

lems rather than to generate text that might contain 639

harmful biases or misinformation. 640

The reduced token usage in our models has 641

positive environmental implications by decreasing 642

the computational resources required for inference, 643

potentially leading to lower energy consumption 644

when deployed at scale. 645
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