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A Discussion1

Limitation As briefly discussed in Section G, our work is limited in multiple dimensions primarily2

in terms of dataset, retrieval, and generation. First, the benchmark dataset is limited. Despite the3

fact that there are several public Knowledge Graph (KG) available [22, 2], only one dataset [14]4

provides both the diverse set of dialogue and the corresponding large-scale KG. This circumstance5

may limit the rigorous evaluation of our framework’s adaptability in various settings. Future work6

may study applying our approach for a wider range of dialogue datasets based on Wikipedia [4]7

by leveraging existing public large-scale KG such as Wikidata [22]. Second, the search space for8

retrieving context-relevant subgraphs can be expanded. Our SURGE framework now runs on a 1-hop9

KG that is rooted to entities in the given dialogue history. Finding the entity within the text, on the10

other hand, necessitates precise named entity extraction and entity linking. Therefore, future work11

may investigate extending our approach to a framework that can retrieve the context-relevant subgraph12

among entire KG instead of 1-hop KG. Third, there is still room for improvement in generation13

quality since we generate knowledge-enhanced responses with a small-scale Pre-trained Language14

Model (PLM) for efficiency. Such PLMs occasionally fail to generate natural sentences with a high15

quality [17]. Future work could aim to improve generation quality using a small-scale PLM.16

Broader Impact Our proposed knowledge-grounded dialogue generation model is essential for17

designing user-friendly real-world AI systems. Among various types of dialogue generation models,18

knowledge-grounded dialogue models are trained to interact with users and convey factual information19

to users in natural languages. Their conversational features can be adapted to any user interfaces that20

connect the bilateral interaction between human and computer. We believe that the conversational21

interfaces can enhance the users’ experiences and reduce the users’ efforts in learning how to use22

the systems. However, knowledge-grounded dialogue models can become vulnerable to generating23

offensive, harmful, or misinformation responses depending on the users or data. When deploying the24

models in the real world, in addition to generating realistic responses, they also need to be robust to25

adversarial feedback from malicious users and biases inherited in pre-training or training corpus, or26

else they could malfunction. Along with the quantitative and qualitative evaluations on generated27

responses, it is worthwhile to examine robustness of the dialogue models.28

B Notations29

We organize the notations we used for formally describing our method in Table 1.30
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Table 1: A list of notations that we used for defining our method.
V pre-defined vocabulary of tokens for pre-trained language models (text)
E pre-defined vocabulary of entities (symbol)
R pre-defined vocabulary of relations (symbol)

a, . . . z knowledge graph symbols written in typewrite font
x input sequence (vector)

x1, . . . , xN input tokens (scalar)
y = [y1, . . . , yT ] output sequence and tokens

G multi-relational graph, such as knowledge graph
Z retrieved subgraph: Z ⊂ G
z triplet (edge): z ∈ Z
qe mapping function of entity symbol to sequence of tokens
qr mapping function of relation symbol to sequence of tokens

q(·) text representation function for retrieval
d(·) triplet representation function for retrieval
Enc Transformer Encoder
Dec Transformer Decoder
f token (word) embedding function
θ generator parameter
ϕ retriever parameter
ψ set encoding function
β perturbation function
π set permutation
n the number of triplets in a retrieved subgraph Z
k the number of samples in a marginalization term
z encoder hidden state (single token)
Z encoder hidden states (sequence of tokens)
h decoder hidden state (single token)
H decoder hidden states (sequence of tokens)
X input embeddings after token embedding function (sequence)
Y output embeddings after token embedding function (sequence)

C Proofs31

In this section, we first show that a naïve encoding function ψ in Section 3.4 is neither permutation32

invariant nor relation inversion invariant, formalized in Proposition C.1. After that, we prove that our33

invariant and efficient encoding function ψ∗ with graph-conditioned token embedding perturbation is34

both permutation invariant and relation inversion invariant, formalized in Proposition C.2.35

Proposition C.1. A naïve encoding functionψ is neither permutation invariant nor relation inversion36

invariant.37

Proof. We prove this by contradiction.38

Suppose x = [x1, . . . , xn] and Z = {(a, d, b), (b, e, a), (a, d, c)}. Moreover, let Z ′ =39

{(b, e, a), (a, d, b), (a, d, c)} be one of permutations of Z with the permutation order π = (2, 1, 3).40

From the definition of naïve encoding, ψ(x,Z) = [a,d, b, b, e,a,a,d, c,x1, . . . ,xn] and41

ψ(x,Z ′) = [b, e,a,a,d, b,a,d, c,x1, ...,xn]. Therefore, it is easy to notice that ψ(x,Z) ̸=42

ψ(x,Z ′), thus the naïve encoding is not permutation invariant.43

We then show naïve encoding is not relation inversion invariant. Suppose Z ′′ =44

{(a, d, b), (b, e, a), (c,¬d, a)}, where (a, d, c) ∈ Z is changed to its inverse relation (c,¬d, a).45

Then, ψ(x,Z ′′) = [a,d, b, b, e,a, c,¬d,a,x1, . . . ,xn] that is different against ψ(x,Z):46

ψ(x,Z) ̸= ψ(x,Z ′′). Therefore, the naïve encoding function is not relation inversion invariant.47

In conclusion, from the above two counterexamples, we prove that a naïve encoding function ψ is48

neither permutation invariant nor relation inversion invariant.49
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We now provide proof of the permutation invariance and the relation inversion invariance of our50

invariant and effective graph encodingψ∗, described in Section 3.4. Before starting the proof, we first51

revisit the permutation invariant property of graph neural networks that sum, mean and max operators52

are permutation invariant for the input set of AGGR. Thus, if we use sum, mean, or max for AGGR, then53

the token embedding perturbation function β naturally satisfies the permutation invariance property.54

In other words, β(X,Z) = β(X, π · Z), whereX = ψ̃(x, SORT(ENT(Z))) for any permutation π.55

Proposition C.2. Invariant and efficient encoding ψ∗ is both permutation invariant and relation56

inversion invariant.57

Proof. Suppose x = [x1, . . . , xn] and Z = {(a, d, b), (b, e, a), (a, d, c)}. We first consider the58

permutation invariance for any permuted set Z ′ = π · Z . While Z and Z ′ can have different59

orders of elements thus the outputs of ENT(Z) and ENT(Z ′) could be different, we always obtain the60

same output with the usage of the SORT operator for encoding. In other words, SORT(ENT(Z)) =61

SORT(ENT(Z ′)) holds due to the definition of the SORT operation in Eq. 5 of the main paper. Therefore,62

ψ̃(x, SORT(ENT(Z))) = ψ̃(x, SORT(ENT(Z ′))) holds.63

Further, since the token embedding perturbation function β(·,Z) along with sum, max, or mean in64

AGGR is also permutation invariant with regards to any permutation on Z , we conclude our invariant65

and efficient encoding ψ∗ is permutation invariant.66

We finally prove the relation inversion invariance property of ψ∗. Suppose Z ′′ = (Z ∪ t′) \ t where67

t ∈ Z is any triplet in a set and t′ is inverse of t. Then, ENT(Z) = ENT(Z ′′) that is trivial as ENT(Z)68

returns the set of only unique nodes in Z . Therefore, ψ̃(x, SORT(ENT(Z))) = ψ̃(x, SORT(ENT(Z ′′)))69

correspondingly holds.70

The remaining step to conclude the proof is to show the following equality: β(·, INV(Z)) =71

β(·, INV(Z ′′)), to conclude that ψ∗(x,Z) = ψ∗(x,Z ′′) from β(ψ̃(x, SORT(ENT(Z))), INV(Z)) =72

β(ψ̃(x, SORT(ENT(Z ′′))), INV(Z ′′)). We note that INV(Z) = INV(Z ′′), as INV makes any graph73

as bidirectional one by the definition in Eq. 6 of the main paper. Therefore, β(·, INV(Z)) =74

β(·, INV(Z ′′)) holds, and the relation inversion invariance property of ψ∗ holds.75

76

D Experimental Setup77

In this section, we introduce the detailed experimental setups for our models and baselines. Specif-78

ically, we describe the details on implementation, dataset, training and model in the following79

subsections of D.1, D.2, D.3 and D.4, one by one.80

D.1 Implementation Details81

We use the T5-small [17] as the base Pre-trained Language Model (PLM) for all experiments. For82

the pre-trained checkpoint, we use the version that the authors released. For all implementations, we83

use Pytorch [16]. To easily implement the language model, we use the huggingface transformers84

library [23].85

Retriever Details In this paragraph, we describe the implementation details of our context-relevant86

subgraph retriever, including the triplet embedding and dialogue context embedding for the retriever.87

For the dialogue history embedding function q, we use the existing pre-trained language model88

(PLM). Specifically, we use the encoder part of the T5-small model [17] and freeze the parameters89

of it not to be trained. We then instead add a Multi-Layer Perceptron (MLP) on top of it, to give a90

point-wise attention [1] to each token, whereby all tokens are not equally considered in the sentence91

encoding. Formally,92

q(x) =

n∑
i=1

αi ∗ zi, Z = [z1, . . . ,zn] = Enc(X), αi =
exp(MLP(zi))∑n
j=1 exp(MLP(zj))

∀i

where αi is a scalar, and MLP is a Multi-Layer Perceptron consisting of two linear layers and ReLU93

nonlinearity.94
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Figure 1: Triplet Representation for Retrieval. To represent each triplet with regards to its graph structure,
we use the message passing on both nodes and edges. (a) Node-level Message Passing. To represent the entity
Sense and Sensibility, the message from its neighbors – the entity Jane Austen – is aggregated. (b) Edge-level
Message Passing. To represent the relation written_by, the messages from relations associated to a green
hyperedge are aggregated. We do not draw self-loops and inverse edges for simplicity.

For obtaining triplet representations, we need to embed the entity (node) and relation (edge) into95

the latent space. Similar to the token embedding matrix used in PLMs, we can introduce the96

entity and relation embedding matrices. However, since the number of entities used in Freebase of97

OpendialKG [14] is too large compared to the number of tokens in T5 (100,814 vs 32,000) [17], it is98

inefficient to introduce the trainable entity embedding matrix for the retriever.99

Thus, we instead reuse the contextualized representation from the PLM encoder, to embed each100

node if the corresponding entity exists in the dialogue context. Formally, suppose that there is a101

triplet {(eh, r, et)} in the 1-hop subgraph G, which satisfies the following condition: qe(eh) ⊆ x102

or qe(et) ⊆ x. If so, we can know the position of the mapped entity within the dialogue history:103

[xstart, ..., xend] = qe(eh) from qe(eh) ⊆ x. Therefore, the node embedding for the entity eh is104

obtained by EntEmb(eh) = 1
|qe(eh)|

∑end
i=start Enc(X)i iff qe(eh) ⊆ x. For edge embedding, we105

use the trainable relation embedding matrixR ∈ R|R|×128 to represent the edge, since the number of106

relations is relatively small (1,357).107

With our node and edge representations, we now focus on representing the triplet in Eq. 4 of the main108

paper for its retrieval. In particular, we use the Graph Neural Networks (GNNs) for encoding triplets,109

where we obtain the node representations from the Graph Convolutional Network (GCN) [9] that is a110

widely used architecture for representing the nodes with respect to their graph structures. However,111

for representing the edges, we use the Edge Hypergraph Graph Neural Network (EHGNN) used in Jo112

et al. [8], due to its simplicity but effectiveness for edge representations. We summarize our triplet113

representation in Figure 1.114

Graph Encoder Details In this paragraph, we describe the implementation details of the token115

embedding perturbation function β used in our Invariant and Efficient graph encoding introduced in116

Section 3.4. To be aware of the relation of the graph over GNNs, we use the simplified version of117

CompGCN [20]. For architectural details, instead of using the different linear layers to distinguish118

the inverse relation from its opposite relation, we use the same linear layer. Also, we use subtraction119

as the specific composition operator for reflecting relations in CompGCN.120

Then, we form the learnable affine transformation based on the aggregated representation from GNN121

layers, to perturb the token embeddings with respect to their graph information as in Eq. 7 of the122
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main paper. In particular,123

η = UPD(f(a), AGGR({f(b), r | ∀b ∈ N (a;Z)})), γ = MLP1(η), δ = MLP2(η),
β(f(a),Z) = (1+ γ) ∗ f(a) + δ,

where MLP1 and MLP2 are learnable MLPs consisting of two linear layers with ReLU nonlinearity.124

KQA Details In this paragraph, we describe the implementation details for our Knowledge-125

verifying Question Answering (KQA) introduced in Section 4. For building the QA dataset, we first126

gather the dialogue sessions where the gold response contains the entity from the whole OpendialKG127

dataset. Then, we extract the triplet from the given whole KG where the head entity is placed within128

the dialogue history and the tail entity is placed within the gold response. We build a QA training129

dataset based on the extracted triplets and a corresponding dialogue session. To diversify the training130

data, we replace the tail entity of each triplet with plausible candidate entities within KG and change131

the entity in the response following the changed entity on the triplet. As a result, we obtain the QA132

dataset size of 200k. We train the BERT-base [3] with the constructed QA dataset. We hold out 10%133

of data for validation and obtain the fine-tuned BERT model with 88.89 F1 score on the hold-out134

validation set. When we apply the fine-tuned QA model on the evaluation of the generated responses,135

we rebuild the QA evaluation set with the generated response instead of a gold response as illustrated136

in Figure 3 of the main paper.137

D.2 Dataset Details138

We mainly conduct experiments on OpendialKG [14], which provides the parallel dialogue corpus139

corresponding to the existing large-scale Knowledge Graph (KG) named Freebase [2]. The provided140

large-scale KG consists of total 1,190,658 fact triplets over 100,813 entities and 1,358 relations. This141

dataset is collected from 15K human-to-human role-playing dialogues, having multi-turns, from142

which we pre-process that each assistance response is the label and its corresponding dialogue history143

is the input. Although some of the data contain the gold knowledge that is useful for generating144

the response on the ongoing conversation, we found that 51% of data has no gold knowledge. To145

overcome this limitation, we additionally find entities from the dialogue history using the Named146

Entity Recognition module in spaCy1, and then include the extracted entities’ corresponding triplets147

in the KG to the dataset. Since the dataset does not provide the pre-defined data split, we randomly148

split sessions into train (70%), validation (15%), and test sets (15%).149

D.3 Training Details150

All experiments are constrained to be done with a single 48GB Quadro 8000 GPU. SURGE training151

needs 12 GPU hours. For all experiments, we select the best checkpoint on the validation set. We152

fine-tune the SURGE for 10 epochs on the training set, where we set the learning rate as 1e-4, weight153

decay as 0.01, learning rate decay warmup rate as 0.06, maximum sequence length for dialogue154

history as 256, maximum sequence length for knowledge as 128, and batch size as 24. For retrieval,155

we use the subgraph size n as 3, and sample size k for marginalization as 4. We use the AdamW [13]156

optimizer for training. For fairness, we apply the same training setting to all baselines if applicable.157

D.4 Model Details158

In this subsection, we describe the details of baselines and our models used in our experiments, as159

follows:160

1. No Knowledge: This model is provided with only the dialog history. No knowledge is used to161

generate responses.162

2. Gold Knowledge: This model is provided with the dialogue history along with its exact gold163

knowledge for the gold response. Thus, since this model uses such gold knowledge, we expect the164

results of it as the upper bound of the task.165

3. Space Efficient (series): This model is provided with all the knowledge which are related to166

the entities that appeared in the dialogue history [6], by matching the entities in the dialogue167

history and the entities in the KG. In particular, this model encodes the entities and their relations168

explicitly in the words in the encoder part.169

1https://spacy.io/
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Method MRR Hits@1 Hits@3 Hits@5 Hits@10 Hits@100

Random Retrieval 7.47 2.31 6.36 9.72 17.01 61.91

Sparse Retrieval (BM25) 7.17 2.22 6.23 8.98 16.36 56.88

Text-based Retrieval 24.39 15.46 26.97 33.94 43.25 72.36

SURGE (unsupervised) 19.66 9.55 22.46 29.81 41.09 69.35

SURGE (semi-supervised) 22.30 13.28 24.31 29.60 42.72 64.44

Figure 2: (Left:) Performances of our SURGE by varying the number of facts for retrieving the subgraph
(i.e., varying the number of triplets in the subgraph) from three, to five, to ten, with EM and F1 scores of KQA
as evaluation metrics. (Right:) We additionally report the knowledge retrieval performances, with MRR and
Hits@K as evaluation metrics.

4. Space Efficient (parallel): This model is mostly the same as the above model – space Efficient170

(series) – except the knowledge encoding part. Specifically, it encodes the entities in the words171

like the above, whereas, encoding the relation between entities in the segmentation block of the172

entities [6].173

5. EARL: This model uses the RNN-based encoder-decoder architecture with the entity-agnostic174

representation learning [24], with all the provided knowledge associated with the entities in the175

dialogue history. Specifically, this model first calculates the probability of words obtained by176

encoding the entities in the KG, and then uses such probabilities to generate a word in the decoding177

phase.178

6. Random Retrieval: This model is provided with entire facts from 1-hop subgraphs of entities179

that appeared in the dialogue history. However, instead of encoding all the knowledge in one-hop180

subgraph as in Space Efficient, this model randomly samples them, which are then used for181

generating responses.182

7. Sparse Retrieval (BM25): This model is also provided with entire facts from 1-hop subgraphs of183

entities. To sample relevant facts to the dialogue history among the entire facts, this model uses184

BM25 [18] that is a sparse retrieval model. To be specific, let assume we have a dialogue history185

and its corresponding facts from 1-hop subgraphs of matched entities. Then, to run BM25, we186

first concatenate components of each fact consisting of two entities and one relation, and tokenize187

the dialogue history and the facts for obtaining corpus and queries, respectively, for BM25. After188

that, BM25 calculates the lexical overlapping score between the dialogue context (corpus) and the189

one-hop fact (query), from which we use the relevant facts having top-k scores by BM25.190

191

8. Text-based Retrieval: This model uses a pre-trained language model as the triplet embedding192

function of the retriever similar to [7], instead of using GNN. Specifically, we consider each triplet193

as a single sentence (e.g, (Jane Austen, write, Susan) → “Jane Austen write Susan”) and embed194

them with the pre-trained language model.195

9. SURGE (unsupervised): Our basic subgraph retrieval-augmented generation framework that is196

provided with entire facts from 1-hop subgraphs of entities. In particular, this model trains the197

structure-aware subgraph retriever without any guidance of the gold knowledge (i.e., ground truth198

knowledge for the dialogue history is not given). In other words, for the given dialogue context,199

this model implicitly learns to retrieve the context-relevant knowledge, and then generates the200

response with the retrieved knowledge.201

10. SURGE (semi-supervised): Our subgraph retrieval-augmented generation framework with semi-202

supervised learning of graph retrieval, with provided entire facts from 1-hop subgraphs of entities.203

Unlike the unsupervised version of SURGE, this model trains the retriever to select the gold204

knowledge if the dialogue context has such knowledge during training.205

11. SURGE (contrastive): Our full subgraph retrieval-augmented generation framework with the con-206

trastive learning of graph-text modalities as well as the semi-supervised learning of graph retrieval,207

with provided entire facts from 1-hop subgraphs of entities. Unlike aforementioned frameworks208

of ours, this additionally enforces the model to faithfully reflect the retrieved knowledge in the209

input, to the generated response with contrastive learning.210
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Table 2: Experimental results on OpendialKG dataset with BART-base as the base PLM.

KQA BLEU ROUGE Unigram
Method EM F1 B-1 B-2 B-3 B-4 R-1 R-2 R-L F1

No Knowledge (BART-base) 22.87 27.53 17.38 10.79 7.16 4.81 20.64 8.22 19.92 24.36
Space Efficient (BART-base, Series) 38.00 42.41 18.56 11.85 8.01 5.56 22.36 9.43 21.48 26.38
Space Efficient (BART-base, Parallel) 39.77 43.90 18.90 12.19 8.35 5.81 22.63 9.79 21.76 26.79
SURGE (BART-base, semi-supervised, n = 10) 41.85 45.75 19.13 12.37 8.55 6.09 21.81 9.26 20.97 26.41
SURGE (T5-small, semi-supervised, n = 3) 39.57 44.13 18.21 11.74 8.08 5.68 22.11 9.41 21.22 25.91
SURGE (T5-small, semi-supervised, n = 10) 42.28 47.37 18.04 11.70 8.11 5.75 22.08 9.49 21.13 26.02

E Additional Experiments211

E.1 Varying the Number of Facts in Subgraphs212

We experiment our SURGE framework with varying the number of facts in retrieval, which are213

then used in our graph encoding function to condition the encoded graph information for response214

generation. Specifically, in Figure 2, we report the EM and F1 scores measured by our KQA for215

our SURGE framework, with different numbers of facts within a retrieved subgraph: n = [3, 5, 10].216

Note that, in this experiment, we only use the semi-supervised model without the contrastive loss.217

We expect that the performance of our SURGE will increase as we increase the number of facts218

within the retrieved subgraph, since the model can leverage more numbers of knowledge for response219

generation. As shown in Figure 2, we observe the significant performance improvements on using ten220

facts against using three and five facts, while the performance difference between the three and five is221

marginal. We suggest that this result should be interpreted with the retrieval results on the right side222

of Figure 2, where about 40% of retrieved subgraphs including the ten different facts contain at least223

one necessary knowledge, thus the generation performance is boosted according to the improvement224

in retrieval.225

E.2 Discussions on Using Larger PLMs226

Notably, we observe that the use of larger Pre-trained Language Models (PLMs) – three times more227

number of parameters compared to T5-small that we use – does not result in better performance for228

the knowledge-grounded dialogue task. Specifically, in Table 2, we report the experimental results of229

selected baselines and our SURGE semi-supervised model with BART-base [10] as the base PLM.230

We want to clarify that the BART-base model has 220M parameters, which is about three times231

larger than the number of parameters of the T5-small model (60M).232

We first observe that BART-base shows decent performance without any knowledge (No Knowledge)233

compared to the no-knowledge case of T5-small, verifying that the larger PLM generally contains234

more factual knowledge within its pre-trained parameters. Moreover, BART-base obtains higher235

scores in the simple word overlap metrics such as BLEU [15] and ROUGE [12], whose results236

further confirm that a larger PLM can generate more natural or syntactically better sentences than the237

smaller one, thanks to its parameter size.238

On the other hand, we find that BART-base is less suffered from the irrelevant knowledge issue (i.e.,239

conditioning irrelevant knowledge for the given context when generating responses) than T5-small,240

therefore, the performance of Space Efficient Encoding on KQA is quite high. However, the use of241

BART-base does not result in significant improvement on the KQA metric for our SURGE framework.242

Moreover, ours with T5-small shows better performance than ours with BART-base in terms of KQA243

scores, when the number of facts within the retrieved subgraph is 10: n = 10. This result suggests244

that the quality of the generated response – having relevant knowledge to the given context – might245

depend on the performance of the subgraph retriever whose goal is to retrieve the context-relevant246

knowledge, rather than the inherent performance of PLMs.247

E.3 Experimental Results on Another Dataset248

In the main paper, we only experiment on OpendialKG dataset [14], since it is the largest and most249

realistic public datasets that provides both dialogues across diverse domains and corresponding250

large-scale Knowledge Graph (KG) [2]. To verify the effectiveness of our SURGE framework, the251

existence of the large-scale KG and the importance of relevant fact searching is important since we252
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Table 3: Experimental results on KOMODIS dataset with T5-small as the base PLM.

BLEU ROUGE
B-1 B-2 B-3 B-4 R-1 R-2 R-L F1

No Knowledge 8.02 4.12 2.44 1.53 16.07 3.62 15.72 16.60
Random 9.45 5.30 3.48 2.47 17.60 4.50 17.20 18.57
Space Efficient (Series) 7.08 3.96 2.64 1.93 15.69 3.68 15.36 16.61
Space Efficient (Parallel) 7.71 4.45 3.00 2.20 16.61 4.16 16.27 17.65

SURGE (Ours) 10.16 5.89 3.94 2.84 17.74 4.85 17.32 19.22

Table 4: (Left:) Performance evaluation with the diversity metric named Distinct. (Right:) Ablation study
results on GNN variants in our modules.

Method Dist-1 Dist-2

No Knowledge 6.06 15.73

All Knowledge 9.67 24.45

SEE (Series) 8.49 21.77

SEE (Parallel) 8.78 22.70

EARL 5.15 16.46

Sparse Retrieval (BM25) 7.65 19.63

SURGE (semi-supervised) 10.33 28.26

KQA BLEU ROUGE Unigram

Method EM F1 B-1 B-2 B-3 B-4 R-1 R-2 R-L F1

Eq 4. GCN → GAT 38.58 43.21 18.00 11.52 7.88 5.55 21.79 9.20 20.90 25.60

Eq 7. CompGCN → GCN 37.50 42.49 17.77 11.29 7.63 5.28 21.62 9.07 20.76 25.39

SURGE (semi-supervised) 39.57 44.13 18.21 11.74 8.08 5.68 22.11 9.41 21.22 25.91

focus on the real-world scenario where the response generation requires the relevant fact acquirement253

from the large-scale KG.254

However, one can raise the question regarding the versatility of our method on other datasets. To255

alleviate the issue, we conduct additional experiments on another dataset named KOMODIS [5],256

which is also KG-based dialogue dataset. Compared to OpendialKG, KOMODIS does not provide257

the corresponding large-scale KG and most of responses do not require the knowledge. Therefore, we258

only measure the automatic evaluation to evaluate the performance of each method on KOMODIS259

dataset. In Table 3, we present the experimental results on the KOMODIS dataset. Results obviously260

show that our SURGE framework shows superior performance against baselines on the additional261

dataset. Therefore, we can conclude that our method can generalize to other datasets beyond the262

opendialKG dataset.263

E.4 Diversity Evaluation264

In the main paper, we evaluate model generation performance primarily on its quality. We measure265

the distinct metric [11], which is one of the most popular metrics for evaluating the diversity of the266

generative model, to evaluate the performance of each model in more diverse aspects. In Table 4 left,267

we report the performance of baselines and our models in distinct metric. Our SURGE framework268

generates more diverse responses than all other baselines, according to the results.269

E.5 Ablations Studies on GNN Design Choices270

We use two different types of Graph Neural Networks (GNN) in our SURGE framework. One271

is the Graph Convolutional Network (GCN) [9], which is used to embed each node entity on the272

entire 1-hop subgraph in the triplet embedding function d of the main paper Equation 4. Another273

is Composition-Based Multi-Relational Graph Convolutional Networks (CompGCN) [20], which274

is used to embed each entity by considering the relations between entities in the token embedding275

perturbation function β of the main paper Equation 7. In this subsection, we conduct ablation studies276

on both GNN design choices. First of all, we replace the GCN in Equation 4 with Graph Attention277

Network (GAT) [21] to validate the effect of the GNN design choices on the node embedding in278

the triplet embedding function. Then, we run experiments by changing CompGCN in Equation 7279

to GCN to see how important the relationships are in the graph encoding. We present the results280

on Table 4 right. Results indicate that the use of GAT in Equation 4 does not have any impact on281

the performance a lot. However, the use of relation-aware GNN is highly important in effective and282

efficient graph encoding, since removing the relation awareness of GNN reduces the performance of283

our model a lot.284
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Figure 3: Human Evaluation Instructions. To measure the qualitative performances of the generated
responses, annotators are provided with the following instruction on three criteria – consistency, informativeness,
and fluency.

F Human Evaluation285

In this section, we describe the details of human evaluation used in Section 5 of the main paper. We286

request the annotators to evaluate the responses generated from two baselines (i.e., ALL Knowledge287

and Space Efficient) and our SURGE framework in response to the given dialogue context, according288

to three criteria – consistency, informativeness, and fluency. Figure 3 is the instructions provided to289

each annotator. Specifically, regarding the consistency metric, we ask annotators to check whether290

the generated response makes sense in the context of the conversation. For informativeness, we291

ask annotators to check whether the response contains correct and enough information, whereby292

experiment participants are recommended to use the internet search, to check whether the response293

contains correct facts. In addition to this, we also provide the dialogue-related facts from Freebase294

as a reference for fact checking for annotators. For fluency, we ask annotators to check whether the295

response is grammatically correct and naturally sound.296

G Retrieval and Generation Examples297

In this section, we provide the examples for knowledge retrieval and response generation, for the298

given dialogue history.299

Embeeding Space Visualization In Figure 4, we present a larger version of Figure 7 in the main300

paper. Specifically, we embed the hidden representations before the projection layer for each graph301

(star) and the embedding of the generated text (circle) through the dimensionality reduction using302

t-SNE [19]. As mentioned in the main paper, the visualization highlights that our SURGE framework303

with graph-text contrastive learning generates more distinct responses to different subgraphs, unlike304

the one without graph-text contrastive learning which shows less variety over responses even with305

different graphs.306

Retrieval Examples We provide the retrieval examples of various models, such as random retrieval,307

sparse retrieval and our SURGE models. In particular, in the first (top) example of Figure 5, we are308

given a dialogue context in regard to books for Richard Maxwell, and baselines including random and309

BM25 retrievers select the facts associated to the entity Richard Maxwell, which are but irrelevant to310

9



Figure 4: Large version of Figure 7 in the main paper. Stars indicate the embedding of graph and circles
indicate the embedding of decoder hidden states (text), respectively.

the ongoing conversion, for example, (Richard maxwell, is-a Theatre director). Also, as shown in the311

second (bottom) example of Figure 5, we observe that the simple term-based matching model (i.e.,312

BM25) cannot contextualize the current and previous dialogues, but retrieves the facts associated to313

frequent words, for example, song, which are less meaningful for the user’s question. In contrast to314

baselines, as our SURGE framework trains a retriever in an end-to-end fashion, it first contextualizes315

the given dialogue context, and then accurately retrieves relevant knowledge.316

Generation Examples We provide the generation examples from our model. To be specific, we317

provide the dialogue context along with its corresponding retrieved subgraph and generated response318

obtained from our SURGE framework. In Figure 6 and Figure 7, we provide the correct examples:319

our model retrieves a context-relevant subgraph, but also generates a factual response from retrieved320

knowledge. On the other hand, in Figure 8, we provide the failure cases. In particular, as shown in321

the first row of Figure 8, the fact in the knowledge graph could be ambiguous or inaccurate, as it322

defines the release year of the book – Wicked – as both 2008 and 2014. Moreover, we further provide323

the failure example on retrieval in the second row of Figure 8, where the user asks about the Bourne324

Legacy, while the dialogue agents retrieve the irrelevant knowledge to the question. Finally, we show325

the common problem in PLMs in the last row of Figure 8, where the generative model repeats the326

meaningless words at the end, while the retriever correctly selects the relevant knowledge.327
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Dialogue Context

A: Could you recommend any books written by Richard Maxwell?

Gold Knowledge

Richard maxwell, ~written_by, a tale of two cities

Random Knowledge

Richard maxwell, sibling, jan maxwell

Screenwriter, ~is-a, Richard maxwell

Theatre director, ~is-a, Richard maxwell

BM25 Knowledge

Richard maxwell, is-a, Theatre director

Screenwriter, ~is-a, Richard maxwell

Richard maxwell, organization founded, new york city players

Our Knowledge

Richard maxwell, ~written_by, a tale of two cities

Richard maxwell, sibling, Jan maxwell

Dialogue Context

A: I like Adam Levine.

B: OMG me too! I love that song Moves Like Jagger.

A: Yes, Love that too. It is really fun. Can you tell me more.

B: Did you know it's considered a power pop song?

A: No, I did'n. Do you know Love the way you Lie?

Gold Knowledge

Song, ~kind of composition, Love the way you lie

Random Knowledge

Blue monday, kind of composition, Song

The look of love, kind of composition, Song

Bad romance, kind of composition, Song

BM25 Knowledge

Song, ~kind of composition, This charming man

Behati prinsloo, ~spouse (or domestic partner), Adam levine

Song, ~kind of composition, safe & sound

Our Knowledge

g minor, ~key, Love the way you lie

Eminem, ~composer, Love the way you lie

Love the way you lie, composer, Eminem

Skylar grey, ~composer, Love the way you lie

Figure 5: Examples of the dialogue history with its corresponding gold knowledge as well as the retrieved
knowledge from random retrieval and sparse retrieval baselines and from our SURGE framework. The retrieved
fact is represented as the format of (head, relation, tail), where ∼symbol in the front of relation (i.e., ∼relation)
in the retrieved knowledge denotes the inverse relation.
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Dialogue Context

Generated Response

B: Yes, he wrote Pirates of the Caribbean: On Stranger Tides, Memoirs of a Geisha Nine and 
many others. Have you seen either of those?

A: Do you like Rob Marshall? My friends have recommend his films.

Retrieved Knowledge
Nine, has_genre, Drama
Pirates of the Caribbean: On Stranger Tides, directed_by, Rob Marshall

Memoirs of a Geisha, directed_by, Rob Marshall

Dialogue Context

Generated Response

B: It's Literary fiction, and was released in 2008.

A: Are there any works by Chris Cleave, which you can recommend me?
B: Certainly, wrote The Other Hand, Incendiary, and Old. Have you read them? 
A: No, I haven't read The Other Hand out of the ones you mentioned. What genre is it?

Retrieved Knowledge
The Other Hand, release_year, 2008
2008, ~release_year, The Other Hand

The Other Hand, has_genre, Literary fiction

Dialogue Context

Generated Response

B: Yes he also wrote Tortilla Flat

A: Who wrote Of Mice and Men?
B: It was written by John Steinbeck
A: Didn't he also write The Red Pony?
B: Yes He also wrote The Red Pony
A: Can you suggest other titles by him to read?

Retrieved Knowledge
Cannery Row, written_by, John Steinbeck
The Grapes of Wrath, written_by, John Steinbeck

Tortilla Flat, written_by, John Steinbeck

Figure 6: Examples of the dialogue history with its corresponding retrieved knowledge and generated response
from our SURGE framework. The fact is represented as the format of (head, relation, tail), where ∼symbol in
the front of relation (i.e., ∼relation) in the retrieved knowledge denotes the inverse relation. In this example, we
only provide the correct cases of both retrieval and generation.
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Dialogue Context

Generated Response

B: Simon Wood directed The One That Got Away. Have you seen that?

A: Could you recommend some movies by director Simon Wood?

Retrieved Knowledge
The One That Got Away, written_by, Simon Wood
Simon Wood, ~written_by, The One That Got Away

Author, ~is-a, Simon Wood

Dialogue Context

Generated Response

B: It was released in 2011. It's a great book.

A: I like David McCullough. Could you recommend any books of him?
B: Sure. He wrote The Greater Journey: Americans In Paris. Also, he wrote some documentary 
and Indie films. 
A: Thank you for the information. When was The Greater Journey: Americans In Paris released?

Retrieved Knowledge
The Greater Journey: Americans In Paris, release_year, 2011
2011, ~release_year, The Greater Journey: Americans In Paris

Paris, written_by, Edward Rutherfurd

Dialogue Context

Generated Response

B: I think he is a great actor. He starred in Sense and Sensibility and Mansfield Park.

A: I like Tony Tanner, what do you think?

Retrieved Knowledge
Sense and Sensibility, written_by, Tony Tanner
Tony Tanner, ~written_by, Mansfield Park

Mansfield Park, written_by, Tony Tanner

Figure 7: Examples of the dialogue history with its corresponding retrieved knowledge and generated response
from our SURGE framework. The fact is represented as the format of (head, relation, tail), where ∼symbol in
the front of relation (i.e., ∼relation) in the retrieved knowledge denotes the inverse relation. In this example, we
only provide the correct cases of both retrieval and generation.
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Dialogue Context

Generated Response

B: It is a play written by Jennifer L. Armentrout and released in 2008.

A: Do you know what books Jennifer L. Armentrout has written?
B: She wrote Wicked, White House Kiss and Wait For You. Are you interested in her other 
books as well?
A: No thanks. What genre is Wicked?
B: Wicked is a  Play that won the Pulitzer Prize for Drama. Would you like more information 
about it?
A: Sure, sounds interesting

Retrieved Knowledge
Wicked, release_year, 2008
2008, ~release_year, Wicked

Wicked, release_year, 2014

Dialogue Context

Generated Response

B: Yes, he did. He also wrote Michael Clayton.

A: I like the movie Armageddon.
B: Did you know Armageddon is written by Tony Gilroy?
A: Oh, didn't he also write The Bourne Legacy?

Retrieved Knowledge
Michael Clayton, starred_actors, Tony Gilroy
Michael Clayton, written_by, Tony Gilroy

Proof of Life, written_by, Tony Gilroy

Dialogue Context

Generated Response

B: Deadpool is a great movie. Stefan Kapicic starred in it. Stefan Kapicic also starred in The 
Last Man and The Last Man.

A: I like Deadpool or any movies like Deadpool. 

Retrieved Knowledge
Deadpool, starred_actors, Ryan Reynolds
Deadpool, starred_actors, Stefan Kapicic

Deadpool, starred_actors, Ed Skrein

Figure 8: Examples of the dialogue history with its corresponding retrieved knowledge and generated response
from our SURGE framework. The fact is represented as the format of (head, relation, tail), where ∼symbol in
the front of relation (i.e., ∼relation) in the retrieved knowledge denotes the inverse relation. In this example, we
only provide the failure cases due to the problem on data (first row), retrieval (second row), and generation (third
row).
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