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The Appendix part is organized as follows:

* All related work are provided in Appendix [A!

* Additional details of prior work of BBSE and MLLS are in Appendix

* Mathematical proof for label shifts with multiple nodes and IW-ERM is given in Appendix|[C]
* General algorithmic description is in Appendix [D.

* Proof of Theorem 5.1]is in Appendix [E.

* Proof of Theorem[5.2]and Convergence-Communication-Privacy guarantees for IW-ERM
in Equation (TIW-ERM) are provided in Appendix [F|

* Complexity analysis is in Appendix [G.
* Mathematical notations are summarized in Appendix [H.
* Limitations are discussed in Appendix L.

* Additional experiments and experimental details are provided in Appendix [J]
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A RELATED WORK

In the context of distributed learning with label shifts, importance ratio estimation is tackled either
by solving a linear system as in (Lipton et al.,[2018; |Azizzadenesheli et al., 2019) or by minimizing
distribution divergence as in (Garg et al., 2020). In this section, we overview complete related work.

Federated learning (FL). Much of the current research in FL predominantly centers around the
minimization of empirical risk, operating under the assumption that each node maintains the same
training/test data distribution (Li et al., [2020a; |[Kairouz et al., 2021; Wang et al.,[2021b). Prominent
methods in FL (Kairouz et al.| 2021} Li et al.,2020a; Wang et al., 2021b) include FedAvg (McMahan
et al.||2017), FedBN (Li et al.,|2021b), FedProx (Li et al.,2020b) and SCAFFOLD (Karimireddy et al.|
2020a). FedAvg and its variants such as (Huang et al.|[2021; [Karimireddy et al.,[2020b) have been the
subject of thorough investigation in optimization literature, exploring facets such as communication
efficiency, node participation, and privacy assurance (Ramezani-Kebrya et al., [2023).Subsequent
work, such as the study by de Luca et al.|(2022), explores Federated Domain Generalization and
introduces data augmentation to the training. This model aims to generalize to both in-domain datasets
from participating nodes and an out-of-domain dataset from a non-participating node. Additionally,
Gupta et al.| (2022) introduces FLL Games, a game-theoretic framework designed to learn causal
features that remain invariant across nodes. This is achieved by employing ensembles over nodes’
historical actions and enhancing local computation, under the assumption of consistent training/test
data distribution across nodes. The existing strategies to address statistical heterogeneity across
nodes during training primarily rely on heuristic-based personalization methods, which currently lack
theoretical backing in statistical learning (Smith et al., 2017; Khodak et al.,2019; L1 et al.,|2021a).
In contrast, we aim to minimize overall test error amid both intra-node and inter-node distribution
shifts, a situation frequently observed in real-world scenarios. Techniques ensuring communication
efficiency, robustness, and secure aggregations serve as complementary.

Importance ratio estimation Classical Empirical Risk Minimization (ERM) seeks to minimize
the expected loss over the training distribution using finite samples. When faced with distribution
shifts, the goal shifts to minimizing the expected loss over the target distribution, leading to the
development of Importance-Weighted Empirical Risk Minimization (IW-ERM)(Shimodaira, 2000;
Sugiyama et al.|[2006; Byrd & C. Lipton, 2019; |[Fang et al.,2020). Shimodaira) (2000) established
that the IW-ERM estimator is asymptotically unbiased. Moreover, Ramezani-Kebrya et al.| (2023)
introduced FTW-ERM, which integrates density ratio estimation.

Label shift and MLLS family For theoretical analysis, the conditional distribution p(x|y) is held
strictly constant across all distributions (Lipton et al., 2018;|Garg et al., 2020; [Saerens et al., 2002).
Both BBSE (Lipton et al., 2018) and RLLS (Azizzadenesheli et al.|[2019) designate a discrete latent
space z and introduce a confusion matrix-based estimation method to compute the ratio w by solving
a linear system (Saerens et al.,2002; |Lipton et al.;,2018). This approach is straightforward and has
been proven consistent, even when the predictor is not calibrated. However, its subpar performance is
attributed to the information loss inherent in the confusion matrix (Garg et al., 2020).

Consequently, MLLS (Garg et al.,[2020) introduces a continuous latent space, resulting in a significant
enhancement in estimation performance, especially when combined with a post-hoc calibration
method (Shrikumar et al.| 2019). It also provides a consistency guarantee with a canonically calibrated
predictor. This EM-based MLLS method is both concave and can be solved efficiently.

Discrepancy Measure In information theory and statistics, discrepancy measures play a critical role
in quantifying the differences between probability distributions. One such measure is the Bregman
Divergence (Banerjee et al.,2005), defined as

Dy(z|ly) = (=) — d(y) — (Vo(y), z — y),
which encapsulates the difference between the value of a convex function ¢ at two points and the
value of the linear approximation of ¢ at one point, leveraging the gradient at another point.

Discrepancy measures are generally categorized into two main families: Integral Probability Metrics
(IPMs) and f-divergences. IPMs, including Maximum Mean Discrepancy (Gretton et al.| [2012)
and Wasserstein distance (Villani, 2009), focus on distribution differences P — Q). In contrast, f-
divergences, such as KL-divergence (Kullback & Leibler,|1951) and Total Variation distance, operate
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on ratios P/() and do not satisfy the triangular inequality. Interconnections and variations between
these families are explored in studies like (f, T")-Divergences (Birrell et al.,[2022), which interpolate
between f-divergences and IPMs, and research outlining optimal bounds between them (Agrawal &
Horel, [2020).

MLLS (Garg et al.,|2020) employs f-divergence, notably the KL divergence, which is not a metric as
it doesn’t satisfy the triangular inequality, and requires distribution P to be absolutely continuous
with respect to (). Concerning IPMs, while MMD is reliant on a kernel function, it can suffer from the
curse of dimensionality when faced with high-dimensional data. On the other hand, the Wasserstein
distance can be reformulated using Kantorovich-Rubinstein duality (Dedecker et al.,[2006; |Arjovsky
et al., 2017) as a maximization problem subject to a Lipschitz constrained function f : R? — R.
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B BBSE AND MLLS FAMILY

In this section, we summarize the contributions of BBSE (Lipton et al., 2018)) and MLLS (Garg et al.,
2020). Our objective is to estimate the ratio p'°(y)/p"(y). We consider a scenario with m possible
label classes, where y = ¢ for ¢ € [m]. Let v* = [r},...,r% ] " represent the true ratios, with each

r'm

r¥ defined as r¥ = f) l[,gzzg (Garg et al., [2020). We then define a family of distributions over Z,

parameterized by r = [rq, ... ,rm]T € R™, where r.. is the c-th element of the ratio vector.

pel(z) = p(zly=c) p"(y=c) re )
c=1

Here, r. > 0 forc € [m]and > 7. - p"(y = ¢) = D", p(y = ¢) = 1 as constraints. When
r=r*eg.,r.=rsforc € [m], we have p,(2) = p.+(2) = p*(z) (Garg et al.| [2020). So our task
is to find r such that

Y rzly=c) P (y=c)-rex

c=1

m (10)
= (zy=c¢) 1o =p(2)
c=1

Lipton et al. (2018) introduced Black Box Shift Estimation (BBSE) to address this issue. With a
pre-trained classifier f for the classification task, BBSE assumes that the latent space Z is discrete
and defines p(z|x) = darg max f(x)» Where the output of f(x) is a probability vector (or a simplex)
over m classes. BBSE estimates p™(z|y) as a confusion matrix, using both the training and validation
data. It calculates p"(y = ¢) from the training set and p'®(z) from the test data. The problem then
reduces to solving the following equation:

Aw =B 1D

where |[Z] = m, A € R™™ with A;. = p®(z=jly=c) - p"(y = ¢), and B € R™ with
B; =p“(z=j)forc,j € [m].

The estimation of the confusion matrix in terms of p'®(z|y) leads to the loss of calibration information
(Garg et al., 2020). Furthermore, when defining Z as a continuous latent space, the confusion matrix
becomes intractable since z has infinitely many values. Therefore, MLLS directly minimizes the
divergence between p'°(z) and p,.(z), instead of solving the linear system in Equation (11).

Within the f-divergence family, MLLS seeks to find a weight vector by minimizing the KL-
divergence Dk, (p®(2), pr(2)) = E [log p'(2)/pr(2)], for p,.(z) defined in Equation (9). Lever-
aging on the properties of the logarithm, this is equivalent to maximizing the log-likelihood:
r = argmax,. . E [log pr(2z)]. Expanding p,(z), we have

Ete [Ingr (Z)] = ]Ete

log()_p"(z,y = C)TC)]

- (12)
= E log(Zp‘r(y =cl|z)r.) + logptr(z)] .
c=1
Therefore the unified form of MLLS can be formulated as:
r = arg max B [log(z p'(y=c| z)rc)] . (13)
reR c=1

This is a convex optimization problem and can be solved efficiently using methods such as EM,
an analytic approach, and also iterative optimization methods like gradient descent with labeled
training data and unlabeled test data. MLLS defines the p(z|x) as 0, plugs in the pre-defined f to
approximate p"(y|x) and optimizes the following objective:
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ro= ar%é%ax Lr, f):= ar§€r%ax Ee [log(f(z)"r)] . (14)

With the Bias-Corrected Calibration (BCT) (Shrikumar et al.,2019) strategy, they adjust the logits

f(x) of f(x) element-wise for each class, and the objective becomes:

r; = argmax {(r, f) := arg max E |log(g o f(zc))Tr)} , (15)
reR reR

where ¢ is a calibration function.
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Scenario #Nodes  Assumptions on Distributions Ratio Node i Needs
No-LS in equation 2 pi(y) =pi(y) and pi(y) # ps(y) Pi(y)/p2(y)

LS on single inequation 2 pi(y) #pi(y) and p3(y) = p3(y) pi(y)/pi(y) and p¥(y)/ps(y)
LS on both in equation 2 pi(y) #pi(y) and p3(y) # p5(y) pi(y)/pi(y) and p¥(y)/ps(y)
LS on multi inequation K pi(y) # pf(y) forall k ¥ (y) /Py (y) forall k

Table 4: Details of scenarios described in Section

C PROOF OF PROPOSITION

In the following, we consider four typical scenarios under various distribution shifts and formulate
their IW-ERM with a focus on minimizing R;.

C.1 NO INTRA-NODE LABEL SHIFT

For simplicity, we assume that there are only 2 nodes, but our results can be extended to multiple
nodes. This scenario assumes pY (y) = pi(y) for k = 1, 2, but pY(y) # p§(y). Node 1 aims to learn

hq, assuming Z EEZ; is given. We consider the following IW-ERM that is consistent in minimizing R;:

[ GHnlrzg 117y11)

1 s
n§ 2 pE(yE,)

(16)
g(hw(wtzr,z‘)a ytzrz)

Here H is the hypothesis class of h,,. This scenario is referred to as No—LS.

C.2 LABEL SHIFT ONLY FOR NODE 1

Here we consider label shift only for node 1, i.e., p{(y) # pT(y) and p§(y) = p5(y). We consider
the following IW-ERM:

1R pE ()

min — —

hweHNY = PI(YY,)

1 Pyt .
t e S T (25), y5.0).

n2 i=1 pQ(sz)

€<hw($tf7i)? ytlrz)
(17

This scenario is referred to as LS on single.

C.3 LABEL SHIFT FOR BOTH NODES
Here we assume pY(y) # p§(y) and p(y) # p5(y), i.e., label shift for both nodes. The correspond-
ing IW-ERM is the same as Eq. equation[I7] This scenario is referred to as LS on both.

Without loss of generality and for simplicity, we set [ = 1. We consider four typical scenarios under
various distribution shifts and formulate their IW-ERM with a focus on minimizing R;. The details
of these scenarios are summarized in Table [4]
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C.4 MULTIPLE NODES

Here we consider a general scenario with K nodes. We assume both intra-node and inter-node label
shifts by the following IW-ERM:

Py yk,) .
o e?—tzn Z ) haw ( k,i)vyk,z‘)v (18)

k=1 Pe(Ypi

where Zszl Ar = 1land Ay > 0. This scenario is referred to as LS on multi.

For the scenario without intra-node label shift, the IW-ERM in Equation can be expressed as

nlr
1 <piys,)
. s f(h wtr‘),ytr‘
2ty R

LN X [pl E’;;ah (z),9)

_ /y ig)) ol [ (), )5 () dy)
:/yp‘f(y)lEp(ww)V(hw(“’)’y)]dy

19)

= /y PY(Y)Ep(aly) [ (), y)]dy

= Eps (@) (hw(2), y)]
= Ri(hw)-
where the second equality holds due to the assumption of the label shift setting and Bayes’ theorem:

p(x,y) = p(x|y) - p(y), and the fourth equality holds by the assumption that p¥(y) = p§(y) in the
No-LS setting.

For the scenario with label shift only for Node 1 or for both nodes, the IW-ERM in Equation (17)
admits

15 pe(ys,) Lo

= 5 Ehw ri, ri 20
5 < p5(ys,) (oo (@3,0), ¥3,) 20)

ng%oo ptle(y)
RISy U ha (T), 21
pz(w,y) |:p[2r(y> ( (.’I)) y) ( )

pl (y) tr

= E, (el [€(hw , d 22
~ [ B i (o). )50l @)
- /y P54 = 9)Ep (i) (o (), )]y 23)
— Ry (hw). (25)

For multiple nodes, let k& € [K]. Similarly, we have

RS ! (ygﬂ) tr N
ﬁ Z ptr(ytr )é(h ( T 7,) ykz) — Rl(hw)' (26)
k j=1 Vk\Jk,i

Then we have

K tr
A Py (Vi) S e
SN (), ) TS Ry (hy), @7)

21



Under review as a conference paper at ICLR 2025

Note that to solve Equation (18), node 1 needs to estimate Z tlr EZ; for all nodes k with A\, > 0
k
in equation [I8]

The consistency of Equation (IW-ERM), i.e., convergence in probability, is followed the standard
arguments in e.g., (Shimodaira, 2000)[Section 3] and (Sugiyama et al.,|2007)[Section 2.2] using the
law of large numbers.
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D ALGORITHMIC DESCRIPTION

Algorithm 3 IW-ERM with VRLS in Distributed Learning

tr
Require: Labeled training data { (2} ;, yf ;) } ., at each node k, for k = [K].

te
Require: Unlabeled test data {«}; ; };Lil at each node k, for k = [K].
Require: Initial global model A,.
Ensure: Trained global model h., optimized with IW-ERM.
1: Phase 1: Density Ratio Estimation with VRLS
: for each node £ = 1 to K in parallel do
Train local predictor f, 4  onlocal training data {(z} ;, Y ;) }-
"k

2

3

4 Use f, ¢ , to estimate the density ratio 'f’nlkc on unlabelled test data {x } at node k.
n k v

5: end for

6: Phase 2: Importance Weight Computation

7

8

: for eachnode £k = 1 to K do
: Compute importance weight:

9: end for
10: Phase 3: Global Model Training with IW-ERM
11: Train global model A, by minimizing the weighted empirical risk:

Koy nf,
. k
min E o E wi € (hw(®%.:), Yk i)
Yog=1""Fk i=1
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# Split the training dataset on each node
trainsets = target_shift.split_dataset (trainset.data, trainset.targets,
node_label_dist_train, transform=transform_train)

[N

5 # Split the test dataset on each node
6 testsets = target_shift.split_dataset (testset.data, testset.targets,
node_label_dist_test, transform=transform_ test)

8 # Initialize K local models (nets) for each node

9 nets = [initialize_model () for _ in range (node_num) ]

11 # Initialize the estimator for each local model

12 estimators = [LS_RatioModel (nets[k]) for k in range (node_num) ]

14 # Initialize tensors to store the estimated ratios, values, and marginal
values for each pair of nodes.

15 estimated_ratios = torch.zeros (node_num, node_num, nclass)
16 estimated_values = torch.zeros (node_num, node_num, nclass)
17 marginal_values = torch.zeros (node_num, nclass)

18
19 # Phase 1: Compute the estimated ratios for each node pair (k, 7J)
20 for k in range (node_num) :

21 for j in range (node_num) :

22 # Perform test on node k using node j’s testset

23 estimated_ratios[k, j] = estimators[k] (testsets[j].data.cpu().
numpy () )

24

25 # Phase 2: Compute the marginal values on each node’s training set

26 for i, trainset in enumerate (trainsets):

27 marginal_values[i] = marginal (trainset.targets)

28

29 # Phase 3: Compute the final estimated values for each node

30 for k in range (node_num) :

31 for j in range (node_num) :

32 estimated_values[k, j] = marginal_values[j] * estimated_ratioslk,
J]

33

34 # Aggregate the estimated values across nodes

35 aggregated_values = torch.sum(estimated_values, dim=1)

36

37 # Compute the final ratios for each node

33 ratios = (aggregated_values / marginal_values) .to(args.device)

Listing 1: Our VRLS in distributed learning. It is the implementation of Algorithm
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E PROOF OF THEOREM

Proof. Let H(r,0,x) = —log(f(x,0) 7). From the strong convexity in Lemma E, we have that

[P =7 g3 <

(Lo (Pre) — Lo (14+)) (28)

min

Now focusing on the term on the right-hand side, we find by invoking Lemma [E.4] that
L‘,g* (f‘nxe) — L‘,g* (T‘f* )

<E [H(fﬁnm, 0,0, a‘,)} ~E [H(’rf* O, x)} +2LE [||énu- - 0*||2]

nt te

. a4 1 . A
> H(fpe, O, ;) + — > H(#y, O, x))

¢ n
j=1 j=1

1
s

=K |:I{("A'nls7 0/\7,111'7 x):| -

-E [H(rf*,énu, :c)} +2LE [|énu - 0*||2]

A R 1 nt A R 1 R
<E |:H(Tn‘°7 en“'a x):l - E Z H(’I"nm, on“'a mj) + ﬁ Z H(rf* ) On‘"a :cj)
Jj=1

Jj=1
-E [H(rf*,én‘,, m)} +2LE [|én" - 0*||2] :
(29)

where in the last inequality we used the fact that 7,, is a minimizer of r — % Z?:l H(r, 6,, x;).
Finally by using Lemma and Lemma with §/2 each, we have that with probability 1 — §,
. 4 - log(4/96)
ﬁg* ('rnle) - ﬁe* (T’f*) SﬁRad(f) + 2LE |:|0nlr - 0*2:| +4B T (30)

Plugging this back into Equation (28)), we have that

) 2 4 log(4/6 AL A .
[#e — 12 < (Rad(f)+4B g4/ )> + IE{HGM—O ||2}. 31)

min Vv nte n'e HPmin
O
Lemma E.1. Foranyr € R, 0 € ©, = € X, we have that
1
r' f(z,0) <
Pmin

Proof. Applying Holder’s inequality we have that
T f(2,0) < |[7llsollf (2, 0) 1 = ||7]| -

Moreover, since r € R, we have that )_, ,p;(y) = 1 This implies that ||| < -=—, which
yields the result. O

Lemma E.2 (Implication of Assumption Assumption|5.1). Under Assumption|5.1, there exists B > (
such that foranyr € R, 0 € ©, x € X,

[log(r " f(x,0))| < B.

Proof. Since r € R'", it has at least one non-zero coordinate and f(x, €) is the output of a softmax
layer so all of its coordinates are non-zero. Consequently,

r' f(z,0) >0
So by Assumption the function (7,0, z) + log(r " f(x, @)) is defined and continuous over a
compact set, so there exists a constant B giving us the result. [
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Lemma E.3 (Population Strong Convexity). Let H(r,0,x) = —log(r ' f(x,8)). Under Assump-
tion Assumption[5.2] the function

Lo« : 7+ E[H(r, 0", w)}
IS WPmin-strongly convex.

Proof. We first compute the Hessian of L to find that

1 N .
@ e @) (@6 )T}.

Since by Lemma we have that " f(z,0*) < p_1 , we conclude that

V2£(’l‘) Z PminlE [f(w» 9*)f(w7 0*)—'—] = ,UpminIm~

V2L(r) = E{

O

Lemma E.4 (Lipschitz Parametrization). Let H(r,0,x) = —log(f(x,8) " r). There exists L > 0
such that for any 61,05 € ©, and r € R, we have that

|H(7‘701,33) — H(T,@Q,CI!)| S LH01 — 92”2.

Proof. The gradient of H with respect to 6 is given by

1
VeH(r,0,x) = ———F~=—V (7]
0 ('I", 7"1:) f((L', H)T’l" Qf(m, )
Reasoning like in Lemma|E.1, we know that ——%— is defined and continuous over the compact set

f(®,0)Tr
of its parameters, we also know that f is a neural network parametrized by 6, hence Vg f(x, 0) is
bounded when 6 and @ are bounded. Consequently, under Assumption|5.1| there exists a constant
L > 0 such that
IVoH (r,0,x)||2 < L.

O]
Lemma E.5 (Uniform Bound 1). Letr 6 € (0, 1), with probability 1 — 0, we have that
.4 I~ . 4
E {H(rn, Ot,m)} - ZH(rn, 6,,x;)
=t (32)

< 2 Rad(F) + 2B/ 1284/
n

Vn n

Proof. Leté € (0,1). Since 7, is learned from the samples x;, we do not have independence, which
would have allowed us to apply a concentration inequality. Hence, we derive a uniform bound as
follows. We begin by observing that:

]El:H(’f‘n,ét,Il?)] - l ZH('ﬁnvétij)
n

Jj=1

1 n
< sup E{H(T,O,az)} - ZH(T,H,:L’j)
r,0 -

k) ‘771

Now since LemmalE.2|holds, we can apply McDiarmid’s Inequality to get that with probability 1 — d,
we have:

ln
sup | E|H(r,0,x)| — — H(r,0,x;
up | 5[ (r.0,) PILLLES
log(2/9)

<E{Sup E[H(r,@,x)]—%iH(r,@,a:j) }—1—23 —

7,0 j=1
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The expectation of the supremum on the right-hand side can be bounded by the Rademacher com-
plexity of F := {z — 7' f(x,0), (r,0) € RT x O}, and we obtain:

sup | E[H(r,0,x)] — %ZH(T,G,(E]‘)
r,0 j=1

(33)
2 log(2/6
< 2 Rad(F) + 2B/ 282/
Vn n
O
Lemma E.6 (Uniform Bound 2). Let 6 € (0, 1), with probability 1 — 0, we have that
R 1 & R
E |:H(7'f* s Gt, ZB):| — ﬁ Z H(T’f*, 0,5, m])
= (34)
2 log(2/d
< 2 Rad(F) + 2B/ 12820,
vn n
Proof. The proof is identical to that of Lemma O

Lemma E.7 (Strong Convexity of Population Loss). Let L(7, 8) be the population loss as defined in
Lemma E We establish that L(r, 0) is ppmin-strongly convex under the assumptions of calibration

(Assumption[5.2).

Proof. We compute the Hessian of the population loss £ as in Lemmal[E.7] obtaining that:

g @ 0@

From LemmalE. 1} we have that 7T f(x,0) < p_. . Therefore, we conclude:

V2L(r) = E[

VZ‘C(T) t pminIE |:f($, 0>f($, H)T:| t ,U/pmin]:wr

O

Lemma E.8 (Bound on Empirical Loss). Under Assumption l5_1] the empirical loss L. (7, én,)
satisfies the following concentration bound:

P | sup
reRY

Proof. This result follows from standard concentration inequalities, such as McDiarmid’s inequality,
together with the Lipschitz continuity of the loss function £ with respect to the samples. [

ﬁnre (T‘, énn-) — L(T’, Onfr)

> e) < 2exp (—ene?).
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F PROOF OF THEOREM[5.2] AND CONVERGENCE-COMMUNICATION
GUARANTEES FOR IW-ERM wITH VRLS

We now establish convergence rates for IW-ERM with VRLS and show our proposed importance
weighting achieves the same rates with the data-dependent constant terms increase linearly with
maxyey Sups 77(Y) = Tmax under negligible communication overhead over the baseline ERM-
solvers without importance weighting. In Appendix [F| we establish tight convergence rates and
communication guarantees for IW-ERM with VRLS in a broad range of importance optimization
settings including convex optimization, second-order differentiability, composite optimization with
proximal operator, optimization with adaptive step-sizes, and nonconvex optimization, along the lines
of e.g., (Woodworth et al.,|2020; Haddadpour et al.,2021; |Glasgow et al., 2022} Liu et al.; 2023; Hu
& Huang, [2023; Wu et al.| 2023} |Liu et al.| 2023).

By estimating the ratios locally and absorbing into local losses, we note that the properties of the
modified local loss w.r.t. the neural network parameters w, e.g., convexity and smoothness, do not
change. The data-dependent parameters such as Lipschitz and smoothness constants for £ o h.,
w.r.t. w are scaled linearly by 7,.x. Our method of density ratio estimation trains the pre-defined
predictor exclusively using local training data, which implies IW-ERM with VRLS achieves the same
privacy guarantees as the baseline ERM-solvers without importance weighting. For ratio estimation,
the communication between clients involves only the estimated marginal label distribution, instead
of data, ensuring negligible communication overhead. Given the size of variables to represent
marginal distributions, which is by orders of magnitude smaller than the number of parameters
of the underlying neural networks for training and the fact that ratio estimation involves only one
round of communication, the overall communication overhead for ratio estimation is masked by the
communication costs of model training. The communication costs for IN-ERM with VRLS over the
course of optimization are exactly the same as those of the baseline ERM-solvers without importance
weighting. All in all, importance weighting does not negatively impact communication guarantees
throughout the course of optimization, which proves Theorem[5.2]

In the following, we establish tight convergence rates and communication guarantees for IW-ERM
with VRLS in a broad range of importance optimization settings including convex optimization,
second-order differentiability, composite optimization with proximal operator, optimization with
adaptive step-sizes, and nonconvex optimization.

For convex and second-order Differentiable optimization, we establish a lower bound on the conver-
gence rates for IW-ERM in with VRLS and local updating along the lines of e.g., (Glasgow et al.|
2022, Theorem 3.1).

Assumption F.1 (PL with Compression). 1) The {(h.(x),y) is S-smoothness and convex w.r.t. w
Sor any (x,y) and satisfies Polyak-Lojasiewicz (PL) condition (there exists ay > 0 such that, for all
w € W, we have U(hy) < ||Vwl(hw)||3/(204); 2) The compression scheme Q is unbiased with
bounded variance, i.e., E[Q(x)] = x and E[||Q(x) — z||3 < q||z||3]; 3) The stochastic gradient
g(w) = Vl(hy) is unbiased, i.e., E[g(w)] = Vl(hy) for any w € W with bounded variance
E[Hg('w) - wa(hw)ﬂg]

For nonconvex optimization with PL condition and communication compression, we establish
convergence and communication guarantees for IW-ERM with VRLS, compression, and local
updating along the lines of e.g., (Haddadpour et al., 2021}, Theorem 5.1).

Theorem F.1 (Convergence and Communication Bounds for Nonconvex Optimization with PL). Let
K denote the condition number, T denote the number of local steps, R denote the number of communi-
cation rounds, and maxy,cy sup 7 (y) = rmax. Under Assumptionm suppose Algorithmwith T
local updates and communication compression (Haddadpour et al[[2021, Algorithm 1) is run for
T = 7R total stochastic gradients per node with fixed step-sizes 1 = 1/(2rmaxy7(q/K + 1)) and
v > K. Then we have E[{(hy,) — €(hay+)] < € by setting
< (e +)nioe (0) ant 5 (i)

RN(K+1 wlog (1) and 75 (e e 35)
Assumption F.2 (Nonconvex Optimization with Adaptive Step-sizes). 1) The { o hy, is B-smoothness
with bounded gradients; 2) The stochastic gradients g(w) = V ,{(hay ) is unbiased with bounded
variance E[||g(w) — Vl(hw)||3]; 3) Adaptive matrices A; constructed as in (Wu et al.| 2023,
Algorithm 2) are diagonal and the minimum eigenvalues satisfy Amin(A¢) > p > 0 for some p € R,
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For nonconvex optimization with adaptive step-sizes, we establish convergence and communication
guarantees for IW-ERM with VRLS and local updating along the lines of e.g., (Wu et al., [2023]
Theorem 2).

Theorem F.2 (Convergence and Communication Guarantees for Nonconvex Optimization with
Adaptive Step-sizes). Let T denote the number of local steps, R denote the number of communication
rounds, and maxyey supy s (y) = Tmax- Under Assumption ?, suppose Algorithm [2|with T local
updates is run for T = TR total stochastic gradients per node with an adaptive step-size similar
to (Wu et al., 2023, Algorithm 2). Then we E[||V wl(hw, )|2] < € by setting:

rmax Tmax
T< Toe3 and R < 2 (36)
Assumption F.3 (Composite Optimization with Proximal Operator). 1) The £ o h., is smooth and
strongly convex with condition number r; 2) The stochastic gradients g(w) = V., {(hyy) is unbiased.

For composite optimization with strongly convex and smooth functions and proximal operator, we
establish an upper bound on oracle complexity to achieve e error on the Lyapunov function defined as
in (Hu & Huang| 2023} Section 4) for Gradient Flow-type transformation of IW-ERM with VRLS in
the limit of infinitesimal step-size.

Theorem F.3 (Oracle Complexity of Proximal Operator for Composite Optimization). Let k denote
the condition number. Under Assumption suppose Gradient Flow-type transformation of Al-
gorithm[2 with VRLS and Proximal Operator evolves in the limit of infinitesimal step-size (Hu &
Huang, [2023, Algorithm 3). Then it achieves O (rmax+/k10g(1/€)) Proximal Operator Complexity.
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G COMPLEXITY ANALYSIS

In our algorithm, the ratio estimation is performed once in parallel before the IW-ERM step.

In the experiments, we used a simple network to estimate the ratios in advance, which required
significantly less computational effort compared to training the global model. Although IW-ERM
with VRLS introduces additional computational complexity compared to the baseline FedAvg, it
results in substantial improvements in overall generalization, particularly under challenging label
shift conditions.
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H MATHEMATICAL NOTATIONS

In this appendix, we provide a summary of mathematical notations used in this paper in Table [5}

Table 5: Math Symbols

Math Symbol  Definition

Compact metric space for features

Discrete label space with |Y| = m

Number of clients in an FL setting

All samples in the training set of client &

Hypothesis function /i, : X — Y

Hypothesis class for h,,

Mapping space from &', which can be discrete or continuous

SEEE R
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I LIMITATIONS

The distribution shifts observed in real-world data are often not fully captured by the label shift or
relaxed distribution shift assumptions. In our experiments, we applied mild test data augmentation to
approximate the relaxed label shift and manage ratio estimation errors for both the baselines and our
method. However, the label shift assumption remains overly restrictive, and the relaxed label shift
lacks robust empirical validation in practical scenarios.

Additionally, IW-ERM’s parameter estimation relies on local predictors at each client, which limits
its scalability. In practice, a simpler global predictor could be sufficient for parameter estimation and
IW-ERM training. Future research could explore VRLS variants capable of effectively handling more
complex distribution shifts in challenging datasets, such as CIFAR-10.1 (Recht et al., 2018}; {Torralba
et al., 2008)), as suggested in (Garg et al., 2023).
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J  EXPERIMENTAL DETAILS AND ADDITIONAL EXPERIMENTS

In this section, we provide experimental details and additional experiments. In particular, we validate
our theory on multiple clients in a federated setting and show that our IW-ERM outperforms FedAvg
and FedBN baselines under drastic and challenging label shifts.

J.1 EXPERIMENTAL DETAILS

In single-client experiments, a simple MLP without dropout is used as the predictor for MNIST, and
ResNet-18 for CIFAR-10.

For experiments in a federated learning setting, both MNIST (LeCun et al., |[1998) and Fashion
MNIST (Xiao et al., [2017) datasets are employed, each containing 60,000 training samples and
10,000 test samples, with each sample being a 28 by 28 pixel grayscale image. The CIFAR-10
dataset (Krizhevsky) comprises 60,000 colored images, sized 32 by 32 pixels, spread across 10
classes with 6,000 images per class; it is divided into 50,000 training images and 10,000 test images.
In this setting, the objective is to minimize the cross-entropy loss. Stochastic gradients for each client
are calculated with a batch size of 64 and aggregated on the server using the Adam optimizer. LeNet
is used for experiments on MNIST and Fashion MNIST with a learning rate of 0.001 and a weight
decay of 1 x 10~°. For CIFAR-10, ResNet-18 is employed with a learning rate of 0.0001 and a
weight decay of 0.0001. Three independent runs are implemented for 5-client experiments on Fashion
MNIST and CIFAR-10, while for 10 clients, one run is conducted on CIFAR-10. The regularization
coefficient ¢ in Equation (2) is set to 1 for all experiments. All experiments are performed using a
single GPU on an internal cluster and Colab.

Importantly, the training of the predictor for ratio estimation on both the baseline MLLS and our
VRLS is executed with identical hyperparameters and epochs for CIFAR-10 and Fashion MNIST.
The training is halted once the classification loss reaches a predefined threshold on MNIST.

J.2 RELAXED LABEL SHIFT EXPERIMENTS

In conventional label shift, it is assumed that p(« | y) remains unchanged across training and test
data. However, this assumption is often too strong for real-world applications, such as in healthcare,
where different hospitals may use varying equipment, leading to shifts in p(z | y) even with the same
labels (Rajendran et al.,2023). Relaxed label shift loosens this assumption by allowing small changes
in the conditional distribution (Garg et al.||2023; |Luo & Renl 2022).

To formalize this, we use the distributional distance D and a relaxation parameter € > 0, as defined by
Garg et al.[(2023): max, D (pu(x | y), pee(x | y)) < €. This allows for slight differences in feature
distributions between training and testing, capturing a more realistic scenario where the conditional
distribution is not strictly invariant.

In our case, visual inspection suggests that the differences between temporally distinct datasets,
such as CIFAR-10 and CIFAR-10.1_v6 (Torralba et al., 2008; Recht et al., [2018), may not meet
the assumption of a small €. To address this, we instead simulate controlled shifts using test data
augmentation, allowing us to regulate the degree of relaxation, following the approach outlined in
Garg et al.[(2023).

J.3 ADDITIONAL EXPERIMENTS

In this section, we provide supplementary results, visualizations of accuracy across clients and tables
showing dataset distribution in FL setting and relaxed label shift.
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Figure 3: MSE analysis on MNIST for MLLS baselines. Left: Performance evaluation across various
alpha values, comparing different methods: MLLS_EM, MLLS_L1, MLLS_ L2, and MLLS_CG.
MLLS_L1 and MLLS_L2 utilize convex optimization with L; and Ly regularization for estimating
our limited test sample problem, respectively, and are solved directly with a convex solver. In
contrast, MLLS_CG uses conjugate gradient descent and MLLS_EM solves this convex optimization
problem with EM algorithm. Both the EM and convex optimization methods (MLLS_L1, MLLS_L2)
demonstrate superior and more consistent performance, especially under severe label shift conditions,
when compared to MLLS_CG. Middle: At an alpha value of 1.0, the MSE analysis shows comparable
performance across most methods, with the exception of MLLS_CG, which lags behind. Right: For
alpha=0.1, MLLS_CG performs significantly worse than the EM and convex optimization methods,
consistent with the trends observed in the left plot.
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Figure 4: In our detailed analysis with the MNIST dataset, we conduct a thorough comparison of
VRLS alongside MLLS (Garg et al., 2020), EM (Saerens et al.,2002), and also RLLS (Azizzade-
nesheli et al., [2019)).

Table 6: LeNet on Fashion MNIST with label shift across 5 clients. 15,000 iterations for FedAvg and
FedBN; 5,000 for Upper Bound (FTW-ERM) using true ratios and our IW-ERM. To mention, to train

our predictor, we use a simpliest MLP and employ linear kernel.

FMNIST

Our IW-ERM

FedAvg

FedBN

Upper Bound

Avg. accuracy

Client 1 accuracy
Client 2 accuracy
Client 3 accuracy
Client 4 accuracy
Client 5 accuracy

0.7520 £ 0.0209
0.7162 + 0.0059
0.9266 + 0.0125
0.6724 £ 0.0467
0.7979 + 0.0448
0.6468 + 0.0248

0.5472 £ 0.0297
0.3616 £+ 0.0527
0.9060 £ 0.0157
0.3279 £ 0.0353
0.6858 £ 0.0105
0.4548 £ 0.0655

0.5359 £+ 0.0306
0.3261 £+ 0.0296
0.9035 £ 0.0162
0.3612 £+ 0.0814
0.6654 + 0.0121
0.4234 £ 0.0387

0.8273 £ 0.0041
0.8590 £ 0.0062
0.9357 £ 0.0037
0.7896 £+ 0.0109
0.8098 £ 0.0112
0.7426 £+ 0.0257
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Figure 5: In this experiment with Fashion MNIST, a simple MLP with dropout were employed.

Table 7: ResNet-18 on CIFAR-10 with label shift across 5 clients. For fair comparison, we run 5,000
iterations for our method and Upper Bound, while 10000 for FedAvg and FedBN.

CIFAR-10 Our IW-ERM FedAvg FedBN Upper Bound

Avg. accuracy 0.5640 £+ 0.0241 0.4515 £0.0148 0.4263 +0.0975 0.5790 £ 0.0103
Client 1 accuracy 0.6410 + 0.0924 0.5405 £ 0.1845 0.5321 + 0.0620 0.7462 + 0.0339
Client 2 accuracy 0.8434 + 0.0359 0.3753 £ 0.0828 0.4656 + 0.2158 0.7509 £ 0.0534

Client 3 accuracy
Client 4 accuracy
Client 5 accuracy

0.4591 £+ 0.1131
0.4751 £ 0.1241
0.4013 £ 0.0430

0.3973 £ 0.1333
0.5007 £ 0.1303
0.4429 £ 0.1195

0.2838 £ 0.1055
0.5256 £+ 0.1932
0.5603 £+ 0.1581

0.5845 £+ 0.0854
0.3507 £ 0.0578
0.4627 £+ 0.0456

Comparison of Methods on Fashion MNIST

- verage

T T =
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Figure 6: The average, best-client, and worst-client accuracy, along with their standard deviations,
are derived from Table |§ Our method exhibits the lowest standard deviation, showcasing the most
robust accuracy amongst the compared methods.

C ison of Methods on CIFAR-10
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Figure 7: The average, best-client, and worst-client accuracy, along with their standard deviations,
are derived from Table
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Table 8: Label distribution on Fasion MNIST with 5 clients, with the majority of classes possessing a

limited number of training and test images across each client.

Class

0 1 2 3 4 5 6 7 8 9

Client 1 Train 34 34 34 34 34 5862 34 34 34 34
Test 977 5 5 5 5 5 5 5 5 5

Client 2 Train 34 34 34 34 34 34 5862 34 34 34
Test 5 977 5 5 5 5 5 5 5 5

Client 3 Train 34 34 34 34 34 34 34 5862 34 34
Test 5 5 977 5 5 5 5 5 5 5

Client 4 Train 34 34 34 34 34 34 34 34 5862 34
Test 5 5 5 977 5 5 5 5 5 5

Client 5 Train 34 34 34 34 34 34 34 34 34 5862
Test 5 5 5 5 977 5 5 5 5 5

Table 9: Label distribution on CIFAR-10 with 5 clients, with the majority of classes possessing a

limited number of training and test images across each client.

Class

0 1 2 3 4 5 6 7 8 9

Client 1 Train 34 34 34 34 34 5862 34 34 34 34
Test 977 5 5 5 5 5 5 5 5 5

Client 2 Train 34 34 34 34 34 34 5862 34 34 34
Test 5 977 5 5 5 5 5 5 5 5

Client 3 Train 34 34 34 34 34 34 34 5862 34 34
Test 5 5 977 5 5 5 5 5 5 5

Client 4 Train 34 34 34 34 34 34 34 34 5862 34
Test 5 5 5 977 5 5 5 5 5 5

Client 5 Train 34 34 34 34 34 34 34 34 34 5862
Test 5 5 5 5 977 5 5 5 5 5
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Table 10: Label distribution on CIFAR-10 with 100 clients, wherein groups of 10 clients share the
same distribution and ratios. The majority of classes possess a limited quantity of training and test
images on each client.

Class
0o 1 > 3 4
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