
Representation Learning on Biomolecular Structures using
Equivariant Graph Attention

Anonymous Author(s)
Anonymous Affiliation
Anonymous Email

Abstract1

Learning and reasoning about 3D molecular structures with varying size is an2

emerging and important challenge in machine learning and especially in the de-3

velopment of biotherapeutics. Equivariant Graph Neural Networks (GNNs) can4

simultaneously leverage the geometric and relational detail of the problem domain5

and are known to learn expressive representations through the propagation of infor-6

mation between nodes leveraging higher-order representations to faithfully express7

the geometry of the data, such as directionality in their intermediate layers. In this8

work, we propose an equivariant GNN that operates with Cartesian coordinates to9

incorporate directionality and we implement a novel attention mechanism, acting10

as a content and spatial dependent filter when propagating information between11

nodes. Our proposed message function processes vector features in a geometrically12

meaningful way by mixing existing vectors and creating new ones based on cross13

products. We demonstrate the efficacy of our architecture on accurately predicting14

properties of large biomolecules and show its computational advantage over recent15

methods which rely on irreducible representations by means of the spherical har-16

monics expansion.17

1 Introduction18

Predicting molecular properties is of central importance to applications in pharmaceutical research19

and protein design with the incentive to establish accurate computational methods to accelerate the20

overall process of finding better molecular candidates in a faster and cost-efficient way. Learning21

on 3D environments of molecular structures is a rapidly growing area of machine learning with22

promising applications but also domain-specific challenges. While Deep Learning (DL) has replaced23

hand-crafted features to a large extent, many advances are crucially determined through inductive24

biases in deep neural networks. Developed neural models should maintain an efficient and accurate25

representation of structures with even up to thousand of atoms and correctly reason about their 3D26

geometry independent of orientation and position. A powerful method to restrict a neural network27

to the functions of interest, such as a molecular property, is to exploit the symmetry of the data by28

constraining equivariance with respect to transformations from a certain symmetry group [1, 2].29

3D Graph Neural Networks (GNNs) have been applied on a broad field involving molecular structures,30

such as in the prediction of quantum chemistry properties of small molecules [3, 4] and also on31

macromolecular structures like proteins [5–8] due to the natural representation of structures as32

graphs, with atoms as nodes and edges drawn based on bonding or spatial proximity. These networks33

generally encode the 3D geometry in terms of rotationally invariant representations, such as pairwise34

distances to model local interactions which leads to a loss of directional information, while including35

angular information into network architecture has shown to be beneficial in representing the local36

geometry [9–11].37

Neural models that preserve equivariance on point clouds in 3D space have been proposed [12–15]38

which can be described as Tensorfield Networks. These group-theoretic inspired models leverage39

higher-order representations by means of the spherical harmonics expansion of normalized relative40

positions to initially create equivariant features. While these models enable the interaction between41
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(a) Propagation flow for central node i.
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(b) Proposed equivariant message function Ml(·).

Figure 1: (a) Visualization of the local neighbourhood of central carbon atom i. Directed edges
illustrate the message flow from neighbour j to central atom i, where scalar and vector features are
propagated along the edges. Grey boxes R represent the side-chain atoms of each residue and serve
here as visual compression that include many more atoms. Here, nodes comprise scalar and vector
features with 7 and 2 channels, respectively. (b) Proposed equivariant message function that computes
a geometric and content related feature attention filter for scalar features, while vector messages are
created based on a weighted combination of newly constructed vectors.

different-order representations, (often referred to as type-l representation), many data types are often42

restricted to scalar values (type-0 e.g., temperature or energy) and 3D vectors (type-1 e.g., velocity or43

forces). Another design choice is to define equivariant functions that directly operate on Cartesian44

coordinates [16–19], instead on the basis provided by the spherical harmonics. Following this45

approach, one could define (equivariant) transformations on Cartesian tensors, like rank 0 scalar(s)46

and rank 1 vector(s), which is the scope of this work and conceptually simpler and does not require47

Clebsch-Gordan tensor products of irreducible representations as commonly used in Tensorfield48

Network-like architectures.49

In this work, we introduce Equivariant Graph Attention Networks (EQGAT) that operate on large point50

clouds such as proteins or protein-ligand complexes and show its superior performance compared to51

invariant models as well as our proposed model‘s faster training time compared to recent architectures52

that achieve equivariance through the usage of irreducible representations. Our model implements a53

novel feature attention mechanism which is invariant to global rotations and translations of inputs54

and includes spatial- but also content related information which serves as powerful edge embedding55

when propagating information in the Message Passing Neural Networks (MPNNs) [4] framework.56

Since we define equivariant functions on the original Cartesian space while restricting ourselves to57

tensor representations up to rank 1, i.e., scalars and vectors, we aim to capture as much geometrical58

information as possible through a geometrically motivated message function.59

In summary, we make the following contributions:60

• We introduce a computationally efficient equivariant Graph Neural Network that leverages61

geometric information by operating on vector features in Cartesian space.62

• We implement a novel feature attention mechanism to propagate neighbouring node features and63

we define equivariant operations to combine vector features in a geometrically meaningful way.64

• We benchmark our proposed architecture on large molecular systems such as protein complexes65

and show its efficacy mostly relevant to industrial applications.66
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2 Background67

2.1 Message Passing Neural Networks (MPNNs)68

MPNNs [4] generalize Graph Neural Networks (GNNs) [1, 2, 20] and aim to parameterize a mapping69

from a graph to a feature space. That feature space can either be defined on the node- or graph70

level. Formally, a graph G = (V, E) contains nodes i ∈ V and edges (j, i) ∈ E which represent71

the relationship between nodes j and i. Since MPNNs utilize shared trainable layers among nodes,72

permutation equivariance is preserved.73

In this work, we consider graphs representing molecular systems embedded in 3D Euclidean space,74

where atoms represent nodes and the edges are described through covalent bonds and/or by atom pairs75

within a certain cutoff distance c as illustrated in Figure 1(a). In the case of protein point clouds, a76

common design choice is the construction of residue graphs, where the nodes are represented through77

the Cα-atom of each amino acid residue [5, 6, 18].78

We refer x(l)
i = (ai, pi, s

(l)
i , v

(l)
i ) to the state of the i−th atom, where ai ∈ Z+ and pi ∈ R3 denote79

atom i‘s chemical element and its spatial position, while h
(l)
i = (s

(l)
i , v

(l)
i ) ∈ R1×Fs × R3×Fv are80

the hidden scalar and vector features that are iteratively refined through L message passing steps. We81

distinguish between scalar and vector features because scalars can be transformed without functional82

restrictions, e.g., with standard MLPs, and their domain spans the entire R, while vector features that83

reside in R3 can only be transformed in certain ways to preserve rotation equivariance. In theory,84

one could also only rely on vector features (with a number of Fv channels), and perform a self-dot85

product reduction to make that representation invariant. This step however, restricts the domain space86

of scalars onto R+ only.87

A general MPNN implements a learnable message and update function denoted as Ml(·) and Ul(·) to88

process atom i−th‘s hidden feature by considering its local environment N (i) through89

m
(l+1)
i =

∑
j∈N (i)

Ml(x
(l)
i , x

(l)
j ), and x

(l+1)
i = (ai, pi, Ul(x

(l)
i ,m

(l+1)
i )), (1)

where N (i) = {j : ||pij ||2 = ||pj − pi||2 = dij < c} denotes central atom‘s i−th neighbour set that90

is obtained through a distance cutoff c > 0.91

For our 3D GNN, we wish to implement simple, yet powerful rotation equivariant transformations in92

the message and update functions, to accurately describe the local environment of nodes in the point93

cloud.94

2.2 Invariance and Equivariance95

In this work, we consider the special orthogonal group SO(3), i.e. the group of proper rotations in96

three dimensions. A group element of SO(3) is commonly represented as matrix R ∈ R3×3 satisfying97

R⊤R = RR⊤ = I and detR = 1.98

For a node feature h = (s, v) ∈ RFs × R3×Fv , an SO(3)-equivariant function f(h) = h′ = (s′, v′)99

must obey the following equation100

f(g.h) = (Is′, Rv′) = g.(s′, v′) = g.f(h), (2)

where g.o in this work means, a group element g of SO(3) acting on the object o. As shown in101

(2), invariance can be regarded as special case of equivariance, where equivariance for a scalar102

representation means that the trivial representation, i.e. the identity, acts on the scalar embedding,103

while vectors are transformed with R, i.e., a change of basis is performed, where the new basis is104

determined by the columns in R.105

3 Related Work106

Neural networks that specifically achieve E(3) or SE(3) equivariance have been proposed in Ten-107

sorfield Networks (TFNs) [12] and its variants in the covariant Cormorant [13], NequIP [15] and108

SE(3)-Transformer [14] which includes the attention mechanism in their architecture. With TFNs,109

equivariance is achieved through the usage of equivariant function spaces such as spherical har-110

monics combined with Clebsch-Gordan tensor products in their intermediate layer to allow the111

3
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multiplication of different ordered representations, while others resort to lifting the spatial space112

to higher-dimensional spaces such as Lie group spaces [21]. Since no restriction on the order of113

representations is imposed on these methods, sufficient expressive power of these models is guaran-114

teed, but at a cost of enlarged computational calculations with increased time and memory. It was115

recently analyzed by Brandstetter et al. [22] that the implementation of non-linear equivariant Graph116

Neural Networks in their model, which they term Steerable E(3) Equivariant Graph Neural Networks117

(SEGNN) achieves strong empirical results on small point clouds like the N-Body experiment or QM9118

dataset, but also larger systems as in the OC20 dataset. One of their insights is that the construction119

of their (non-linear) SEGNN-layer, allows the model to better capture the local environment and120

enables the reduction of radius cutoff when constructing the neighbour list for each central atom i,121

since the Clebsch-Gordan tensor products between neighbouring nodes is computationally expensive.122

To circumvent the expensive computational cost, another line of research proposed to implement123

equivariant operations in the original Cartesian space, providing and efficient approach to preserve124

equivariance as introduced in the E(n)-GNN [16], GVP [18, 23], PaiNN [17] and ET-Transformer125

[24] architectures without relying on irreducible representation of the orthogonal group by means126

of the spherical harmonics basis as originally introduced in TFN and implemented in the e3nn127

framework [25]. Aside of 3D atomistic GNNs, the attention mechanism has also been implemented128

in the GAT [26] and GATv2 [27] architectures, where GATv2 achieves superior performance over129

GAT due to the implementation of attention coefficients using a multilayer perceptron (MLP).130

Our proposed model implements equivariant operations in the original Cartesian space and includes131

a continuous filter through the self-attention coefficients which serve as spatial- and content based132

edge embedding in the message propagation, as opposed to the PaiNN model where the filter solely133

depends on the distance. Additionally, our model constructs vector features from the given point134

cloud and leverages geometrical products that are efficient to compute. The E(n)-GNN architecture135

does not learn vector features with several channels, but only updates a single vector feature1 through136

a weighted linear combination, where the (learnable) scalar weights are obtained from invariant137

embeddings. The GVP model which was initially designed to work on macromolecular structures138

includes a complex message functions of concatenated node- and edge features composed with a139

series of GVP-blocks that enables information exchange between scalar and vector features, through140

dot product reduction of vectors, with a potential disadvantage of discontinuities through non-smooth141

components for distances close to the cutoff.142

4 Proposed Model Architecture143

4.1 Input Embedding144

We initially embed atoms of small molecules or proteins based on their element/amino acid type145

using a trainable look-up table through s
(0)
i = embed(ai), which provides a starting (invariant) scalar146

representation of the node prior to the message passing. As in most cases, no initial vector features147

for atoms are available, we initialize them as zero tensor v(0)i = 0 ∈ R3×Fv .148

4.2 Edge Filter through Feature Attention149

For the two-body interaction between neighbouring node(s) j to central node i, we implement a150

non-linear edge filter that depends on content related information stored in the scalar features (sj , si)151

and a radial basis expansion of the Euclidean distance dji ≤ c. We choose the (orthonormal) Bessel152

basis Gd : R −→ RK that projects the distance into K basis values as introduced by Gasteiger et al.153

[9] and their polynomial envelope function κ : [0, c] −→ (0, 1] that smoothly transitions from 1 to 0 as154

the cutoff value c is approached. The computation of the attention edge-filter is obtained through155

e
(l+1)
ji = [s

(l)
i ||s(l)j ||κ(dji)Gd(dji)] ∈ R2Fs+K

f
(l+1)
ji = MLP(e(l+1)

ji ) ∈ RFs+3Fv , (3)

where MLP refers to an 1-layer Multilayer-Perceptron with SiLU activation function [28]. The input156

to the MLP is a concatenation of scalar features as well as a by κ scaled radial basis expansion of157

the distance between nodes j and i. The SO(3)-invariant embedding f
(l+1)
ji represents the Fs + 3Fv158

1In the E(n)-GNN architecture, Cartesian coordinates of particles p ∈ R3 are updated.
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attention logits which are further split into f
(l+1)
ji = [aji, bji]

(l+1) to be used as a non-linear filter159

when propagating neighbouring features. A novelty of our approach is that the attention coefficient160

between two vertices j and i is in fact obtained per feature-channel instead for the entire embedding161

as commonly achieved through a single scalar value, as done in GATv2 [27], albeit we also include162

edge-features through distances. The feature attention for the scalar embeddings is computed using163

the standard softmax activation function164

αji =
exp(aji)∑

k∈N (i) exp(aki)
∈ (0, 1)Fs , (4)

where the normalization in the denominator runs over all neighbours k and the exponential function165

is applied componentwise. We choose to compute a non-linear intermediate edge-filter fji due to166

increased expressivity through an 1-layer MLP. The embedding bji ∈ R3Fv is processed to create167

coefficients that serve as weights for a linear combination of vector quantities to compute the vector168

message from j to i, which we will describe in the following subsection.169

4.3 Equivariant Message Propagation170

We follow the idea of standard convolution, which is a linear transformation of the input, and compute171

the scalar features message for central node i as172

m
(l+1)
i,s =

∑
j∈N (i)

α
(l+1)
ji ⊙W (l+1)

s s
(l)
j , (5)

where W
(l+1)
s ∈ RFs×Fs is a trainable weight matrix shared among all nodes and α

(l+1)
ji the non-173

linear attention filter obtained in (4).174

In context of atomistic neural network potentials (NNPs), the filter α(l+1)
ji is commonly implemented175

as an MLP that only inputs the distance dji (by means of a radial basis expansion) as in SchNet176

[3], PaiNN [17], NequIP [15], while recent NNPs such as Allegro [29] and BOTNet [30] implement177

edge-filters that depend on the distance as well as node content, e.g., the chemical elements, unifying178

the idea of MPNNs in the context of machine learning force fields.179

The recent work by Brandstetter et al. [22] analyzes modern 3D equivariant GNNs with the insight180

that non-linear message and non-linear update functions combined with their proposed steerable181

features space leads to an improved model, which they term SEGNN. The SEGNN, in similar spirit182

to Tensorfield Networks, can leverage higher-order equivariant representations up to a maximal183

rotation order lmax through the spherical harmonics expansion of relative positions, which they take184

as steerable feature basis. Their proposed model implements steerable MLPs into the message-185

and update function to leverage non-linearity and geometric covariant information of the steerable186

features that go beyond l = 0, i.e., scalar features while our architecture is only restricted to scalar187

information, albeit vector information is still processed in the layers but then reduces to a scalar by188

a dot product operation. Our proposed message function for scalar features in Eq. (5) can also be189

formulated as a linear transformation where the weight matrix depends on distances but also hidden190

scalar information. To see this, we rewrite α
(l+1)
ji ∈ (0, 1)Fs as matrix using the diagonal operator191

A
(l+1)
ji = diag(α(l+1)

ji ) ∈ (0, 1)Fs×Fs and observe that the filter scales the (independent) weight192

matrix W
(l+1)
s leading to the message propagation193

m
(l+1)
i,s =

∑
j∈N (i)

A
(l+1)
ji W (l+1)

s s
(l)
j =

∑
j∈N (i)

W
(l+1)
ji s

(l)
j ,

where W
(l+1)
ji defines the linear transformation matrix which depends on SO(3)-invariant informa-194

tion through (s(l)i , s
(l)
j , dji). The scalar message propagation can still be interpreted as non-linear195

convolution as the A(l+1)
ji weight matrix is obtained through an MLP and softmax activation function.196

Building Equivariant Features. In many cases, no initial vector features are provided in raw197

point cloud data. However, when working with a protein backbone, i.e., the sequence of atoms198

(Cα, C,O,N)i, initial vectorial (node) features that describe the local environment of each backbone199

atom can be pre-computed as described by Ingraham et al. [6] and Jing et al. [18]. In a full-atom200

5



Representation Learning on Biomolecular Structures using Equivariant Graph Attention

model, initial vector features for a node i can be obtained by averaging over relative position vectors201

vi,0 = 1
|N (i)|

∑
j∈N (i) pji ∈ R3 which satisfies Eq. (2) due to linearity. In our work, we initialize202

the vectors as zero tensor as described in Subsection 4.1 and calculate equivariant features by utilizing203

normalized relative positions pji,n in the first layer to describe the directional interaction between204

central node i and its neighbour j. In the subsequent layers, we extend the set of vectors by (1)205

constructing vectors based on normalized relative positions again, (2) mixing existing vector channels206

from the previous iteration, and (3) creating new vector quantities by making use of the cross product.207

(1) We create equivariant vector features based on normalized relative position pji,n = 1
dji

(pi − pj)208

as those provide directional information. Since we explicitly model scalar and vector features, each209

equipped with Fs and Fv channels, respectively, the tensor product offers a natural way to obtain a210

vector feature, by simply combining a vector and a scalar. Equivariant interactions between node j211

and i are computed through212

v
(l+1)
ji,0 = pji,n ⊗ b

(l+1)
ji,0 = pji,nb

(l+1)⊤
ji,0 ∈ R3×Fv , (6)

which preserves SO(3) equivariance, due to the linearity of the tensor product. We note that the213

creation of ‘initial’ equivariant features in such manner is also performed in architectures, like214

[12, 13, 15, 22] just to name a few, that make use of irreducible representations of the SO(3) group215

by means of the spherical harmonics and implement the Clebsch-Gordan tensor product (⊗cg) that216

allows the mixing of possibly higher-order embedding representations of type l > 1, while we restrict217

ourselves to vector representations only, i.e. features of order l = 1 or equivalently Cartesian rank 1218

tensors. The representation in Eq. (6) can be interpreted as Fv scaled relative position vectors.219

(2) In similar fashion to the (independent) linear transformation of scalar channels, we mix the vector220

channels using a learnable weight matrix W
(l)
v ∈ RFv×Fv which preserves SO(3) equivariance due221

to the linearity property222

v(l+1)
n = v(l)W (l+1)

v ,

and is shared among all nodes. For a particular neighbouring node j, we scale the linearly transformed223

vectors224

v
(l+1)
ji,1 = b

(l+1)
ji,1 ⊙ v

(l+1)
n,j , (7)

which can be interpreted as a gating of previously mixed vectors.225

(3) To capture more geometric information, while restricting the representation to be of rank 1, we226

utilize the vector cross product c = (a × b) ∈ R3 between two vectors a and b that satisfy the227

following rotation invariance property228

Ra×Rb = R(a× b).

The output of the cross product a × b defines a vector c that is perpendicular to plane spanned by229

a and b. Here, we calculate the cross product on the same channels from the previous layer vector230

features of node i and j as231

ṽ
(l+1)
ji,2 = (v

(l)
i × v

(l)
j ) ∈ R3×Fv ,

to reduce the computational complexity.232

We highlight that recent equivariant GNNs which work with rank 1 Cartesian tensors, such as GVP,233

PaiNN or ET-Transformer do not include the cross product in their architecture and are restricted in234

the creation of vector features that may span the entire R3. These architecture make use of step (1)235

and (2) only. For example, when all atoms are placed on the xy-plane, using step (1) and (2) would236

always create vectors on the xy plane, while the coordinate on z axis is always 0. By leveraging the237

cross product, vectors in the z direction can be computed, without increasing the rank order2.238

We note that our assumption on SO(3) equivariance is attributed to the fact of using the cross product239

in our architecture. For the case that practitioners care about O(3) equivariance, our proposed EQGAT240

might be suboptimal for usage since we do not distinguish polar or pseudo vectors in the internal241

network representation. If O(3) equivariance is desired, special care on the selection between input242

vectors in the cross product have to be made, in order to correctly assign the output parity type. E.g.,243

2Two rank 1 Cartesian tensors, i.e., two vectors can also be combined by computing the tensor product of the
two, which results into a rank 2 Cartesian tensor with 9 elements in the matrix. This rank 2 Cartesian tensor
contains 3 unique elements of the cross product in its antisymmetric part after a sum decomposition.
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a cross product of two polar vectors will return a pseudo vector, while a cross product of a polar and244

pseudo vector will return a polar vector.245

In similar fashion to Eq. (6) and (7), each channel of the representation ṽ
(l)
ji,2 is weighted by the SO(3)246

non-linear filter b(l)ji,2 ∈ RFv to obtain247

v
(l+1)
ji,2 = b

(l+1)
ji,2 ⊙ ṽ

(l+1)
ji,2 , (8)

Finally, we define the vector message from node j to central node i as the sum of the three components248

in (6) to (8) and aggregate it across all neighbouring nodes j ∈ N (i) to obtain the vector message249

m
(l+1)
i,v =

1

|N (i)|
∑

j∈N (i)

(v
(l+1)
ji,0 + v

(l+1)
ji,1 + v

(l+1)
ji,2 ), (9)

which results into new weighted geometric vectors by utilizing the (static) relative positions as well250

as neighbouring vector features and lastly, normal vectors obtained through the cross product. Since251

we combine the three vector components through a gating mechanism, we do not use an attention252

mechanism on vector features to avoid additional computational steps and the fact that the calculation253

of attention logits had to be done using some SO(3) invariant input, which would make the model254

more complicated. We provide the full proof of SO(3) equivariance of Eq. (9) in Appendix C.255

�̃�!(#$%) 𝑣$!(#$%)
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𝑊 ⋅

⋅ !concat

SiLU

split ⊙

𝑊 ⋅

𝑠!
(#$%) 𝑣!

(#$%)

𝑊 ⋅ +	𝑏

𝑊 ⋅ +	𝑏

Figure 2: A gated equivariant MLP
that transforms scalar and vector
features into a new representation.
Here we used this block as update
function Ul(·).

256

Equivariant Update Function. After obtaining the aggre-257

gated message for central node i in the representation m(l+1) ∈258

RFs × R3×Fv , we implement a residual connection as interme-259

diate update step260

s̃i
(l+1) = s

(l)
i +m

(l+1)
i,s , and ṽi

(l+1) = v
(l)
i +m

(l+1)
i,v

while in the update layer, we implement an equivariant non-261

linear transformation inspired by gated non-linearities proposed262

by [31] and used in [17] with minor modification as shown in263

Figure 2. Notably, the scalar features receive geometric infor-264

mation by concatenating the norm of linear transformed vector265

features, while the 1-layer scalar MLP is tasked to transform the266

combined embeddings to update the scalar states and retrieve267

non-linear weights that are used to reweight vector features. We268

apply these weights by element-wise multiplying with linearly269

transformed vector features as shown on the right which can270

also be interpreted as variants of the Gated Linear Unit [32, 33],271

followed by a linear layer to implement an equivariant MLP for272

vector features.273

5 Experiments and Results274

We test the efficacy of our proposed EQGAT model on five publicly available molecular benchmark275

datasets which pose significant challenges for the development of efficient and accurate prediction276

models in protein design.277

5.1 ATOM3D278

The ATOM3D benchmark [34] provides datasets for representation learning on atomic-level 3D279

molecular structures of different kinds, i.e., proteins, RNAs, small molecules and complexes. Since280

proteins perform specific biological functions essential for all living organisms and hence, play a key281

role when investigating the most fundamental questions in the life sciences, we focus our experiments282

on the learning problems often encountered in structural biology with different difficulties due to283

data scarcity and varying structural sizes. We use provided training, validation and test splits from284

ATOM3D and refer the interested reader to the original work of Townshend et al. [34] for more details.285

For all benchmarks, we compare against the Baseline CNN and GNN models provided by Townshend286

et al. [34] from ATOM3D, GVP-GNN reported in [23] and we run experiments for SchNet [3], an287
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Table 1: Benchmark results on ATOM3D tasks. We report the results for the Baseline models from
[34] and GVP-GNN [23]. We run our own experiments with the SchNet, PaiNN, SEGNN and our
EQGAT model and report averaged metrics over 3 runs. For the SEGNN model we only report the
results on a single run due longer training time. RS stands for Spearman Rank Correlation, RMSE
abbreviates Root Mean Square Deviation and ROCAUC the area under ROC curve. The experiments
for EQGAT-RES are still running.

Tasks PSR (↑) RSR (↑) LBA (↓) RES (↑) PPI (↑)
Metric Mean RS Global RS Mean RS Global RS RMSE Accuracy ROCAUC
CNN 0.431± 0.013 0.789± 0.017 0.264± 0.046 0.372± 0.027 1.416± 0.021 0.451± 0.002 0.844± 0.002
GNN 0.515± 0.010 0.755± 0.004 0.234± 0.006 0.512± 0.049 1.570± 0.025 0.082± 0.002 0.669± 0.001
GVP-GNN 0.511± 0.010 0.845± 0.008 0.211± 0.142 0.330± 0.054 1.594± 0.073 0.527± 0.003 0.866± 0.004
SchNet 0.448± 0.016 0.784± 0.013 0.247± 0.029 0.273± 0.017 1.522± 0.015 0.326± 0.003 0.839± 0.005
PaiNN 0.462± 0.015 0.809± 0.003 0.270± 0.062 0.462± 0.064 1.507± 0.033 0.370± 0.004 0.884± 0.002
SEGNN 0.474 0.833 −0.099 0.252 1.450± 0.011 0.454 0.854
EQGAT 0.491± 0.008 0.847± 0.006 0.316± 0.029 0.404± 0.096 1.440± 0.027 0.552 0.908± 0.001

SO(3) invariant GNN architecture that has shown strong performance on small molecule prediction288

tasks, PaiNN [17] as SchNet‘s improved SO(3) equivariant architecture and the recently proposed289

SEGNN [22] that leverages higher-order representations by means of the irreducible representations290

and Clebsch-Gordan tensor products using their official code base.291

For SchNet, PaiNN and our proposed EQGAT architecture, we implement a 5-layer GNN with292

Fs = 100 scalar channels and Fv = 16 vector channels for the PSR, RSR, RES and PPI benchmark, as293

these benchmarks consists of more training samples and comprise larger biomolecules. For the Ligand294

Binding Affinity (LBA) task, we utilize a 3-layer GNN with the same number of scalar- and vector295

channels. For the SEGNN architecture, we implement a 3-layer GNN with (100, 16, 8) channels for296

the embeddings of type l = (0, 1, 2) that transform according to the irreducible representation of297

that order preserving SO(3) equivariance. The edges in the point clouds are constructed based on a298

radius cutoff of 4.5Å. All graphs are considered as full-atom graphs, i.e., the initial node feature is299

determined by the chemical element.300

The Protein and RNA Structure Ranking tasks (PSR / RSR) in ATOM3D are both regression tasks301

with the objective to predict the quality score in terms of Global Distance Test (GDT_TS) or Root-302

Mean-Square Deviation (RMSD) for generated Protein and RNA models wrt. to its experimentally303

determined ground-truth structure. The ability to reliably rank a biopolymer structure requires a model304

to accurately learn the atomic environments such that discrepancies between a ground truth states305

an its corrupted version can be distinguished. We evaluated our model on the biopolymer ranking306

and obtained good results on the current benchmark, as reported in Table 1 in terms of Spearman307

rank correlation. Our proposed model performs particularly well on the PSR task outperforming the308

GVP-GNN [23] on the Global Rank Spearman correlation on the test set, while our model is more309

parameter efficient (383K vs. 640K). We believe our model could be further improved by additional310

hyperparameter tuning, e.g., by increasing the number of scalar or vector channels, which we did not311

do in our study to compare against the baseline models.312

We noticed that the RSR benchmark was particularly difficult to validate as only a few dozen313

experimentally determined RNA structures are existent to date, and the structural models generated314

in the ATOM3D framework are labeled with the RMSD to its native structure, which is known to be315

sensitive to outlier regions, for exampling by inadequate modelling of loop regions [35], while the316

GDT_TS metric might be a better suited target to predict a ranking for generated RNA structures as317

in the PSR benchmark.318

Another challenging and important task for drug discovery projects is estimating the binding strength319

(affinity) of a candidate drug atomistic’s interaction with a target protein. We use the ligand binding320

affinity (LBA) dataset and found that among the GNN architectures, our proposed model obtains the321

best results, while also being computationally cheap and fast to train. The best performing model322

in the LBA-task is a 3D CNN model which works on the joint protein-ligand representation using323

voxel space and enforcing equivariance through data augmentation. The inferior performance of324

all equivariant GNNs might be caused by the need of larger filters to better capture the locality and325

many-body effects, where 3D CNNs have an advantage when using voxel representations, while326

GNNs commonly capture 2-body effects. Furthermore, as all GNN models jointly represent ligand-327

and protein as one graph by connecting vertices through a distance cutoff of 4.5Å, we believe that328

such union leads to an information loss of distinguishing the atom identity from the ligand and protein.329
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A promising direction to investigate is to incorporate a ligand and protein GNN encoder seperately330

and merge the two embeddings prior the binding affinity prediction, similar to Graph Matching331

Networks [36] and recently realized by Stärk et al. [37] in a slightly different context.332

EQGAT outperforms the current SOTA GVP-GNN model on the Residue and Protein-Protein-333

Interaction benchmarks which are both node classification tasks and require a model to accurately334

capture the local environment of a selected Cα atom to serve as expressive input for a downstream335

(decoder) network to obtain the final prediction.336

Notably, our proposed EQGAT architecture performs on par with the SEGNN that implements337

internal representations of higher order, i.e., of rotation order up to l = 2. We believe that including338

the cross product in our vector message in (9) allows the model to capture more geometric detail339

in a possible protein ligand binding pose for accurately predicting the binding affinity, which is340

investigated in the following ablations.341

5.2 Ablation Studies342

To evaluate the benefits of our designed EQGAT architecture, we perform ablation studies and remove343

architectural components to isolate the effect of each design choice on performance.

Table 2: Results of the ablation studies.
LBA [RMSE ↓] PSR [Mean | Global RS ↑]

No-Cross-Product 1.458 (0.011) 0.477 (0.012) | 0.827 (0.010)
No-Feature-Attention 1.466 (0.040) 0.492 (0.007) | 0.820 (0.002)

Full Model 1.440 (0.027) 0.491 (0.008) | 0.847 (0.006)
344

Ablation study 1 (termed No-Cross-Product) removes the contribution of vector cross product345

(denoted as vji,2 in Eq. (9)). This leads to the effect that the vector message is solely constructed346

based on scaled versions of normalized relative positions (vji,0) and linear combinations of existing347

vector features (vji,1).348

Ablation study 2 (termed No-Feature-Attention) replaces the feature attention coefficient αji ∈349

(0, 1)Fs through a single coefficient αji ∈ (0, 1).350

We observe that the full EQGAT architecture obtains the best performance among the two datasets351

compared to the ablated models although we note that the improved performance of the full model in352

RMSE on the LBA benchmark and Global RS in the PSR benchmark is difficult to attribute to the353

inclusion of architectural components due to the (larger) variance obtained through the 3 runs for354

each experiment.355

6 Conclusion, Limitations and Future Work356

In this work, we introduced a novel attention-based equivariant graph neural network for the prediction357

of properties of large biomolecules that achieves superior performance on the ATOM3D benchmark.358

Our proposed architecture makes use of rotationally equivariant features in their intermediate layers to359

faithfully represent the geometry of the data, while being computationally efficient, as all equivariant360

functions are directly implemented in the original Cartesian space without changing the representation361

through the spherical harmonics basis as commonly done in Tensorfield networks. As our proposed362

model operates on Cartesian tensors and we restrict the representation to be of rank 1 only, a general363

promising future direction of investigation is the implementation of Cartesian equivariant GNNs that364

leverage higher-rank tensors in their layers, that are specifically implemented for learning purposes365

involving large biomolecules. As it is up to date not clear, how much improvement higher-order366

Cartesian tensors benefit for learning tasks that involve large biomolecular systems, we hope that367

our work and open-source code will be useful for the graph learning and computational biology368

community.369

Code Availability370

We provide the implementation of our model and experiments on https://anonymous.4open.371

science/r/eqgat-3A3C/README.md. We use PyTorch [38] as Deep Learning framework and372

PyTorch Geometric [39] to implement our GNNs.373
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A Appendix545

Full Model Details and Hyperparameters546

All EQGAT models in this paper were trained on a single Nvidia Tesla V100 GPU.547

Table 3: Description of architectural parameters on the ATOM3D benchmarks.
Parameter LBA PSR RSR
Learning rate (lr.) 10−4 10−4 10−4

Maximum epochs 20 30 30
Lr. patience 10 10 10
Lr. decay factor 0.75 0.75 0.75
Batch size 16 16 16
Num. layers 3 5 5
Num. RBFs 32 32 32
Cutoff [Å] 4.5 4.5 4.5
Scalar channels Fs 100 100 100
Vector channels Fv 16 16 16

Num. parameters 238k 383k 383k

548

We used the ADAM optimizer [40] apart from the defined learning rate all other standard hyperpa-549

rameter setting from the PyTorch library.550

B Model Efficiency551

Table 4: Comparison on model efficiency when passing
a batch of 10 macromolecular structures.

Dataset Model (# Param.) Inference Time [ms]

LBA EQGAT (238K) 11.94
SchNet (240K) 8.25
PaiNN (379K) 10.66
SEGNN (238K) 89.53

PSR EQGAT (383K) 49.96
SchNet (240K) 18.36
PaiNN (379K) 18.58
SEGNN (238K) 255.44

RSR EQGAT (383K) 75.45
SchNet (240K) 27.27
PaiNN (379K) 26.98
SEGNN (238K) 390.69

Model Efficiency. We assess the model552

efficiency of EQGAT in terms of compu-553

tation time as well as trainable parameters554

and compare against SchNet, PaiNN and555

SEGNN on the LBA, PSR and RSR bench-556

marks. These datasets have on average 408,557

1624, and 2390 nodes per graph with 9180,558

26756 and 44233 directed edges, respec-559

tively for the training set of LBA, PSR and560

RSR.561

As these datasets consist of graphs with562

up to thousands of atoms, computationally-563

and memory efficient models are preferred564

such that batches of graphs can be stored565

on GPU memory and processed fast during566

training. We measure the inference time567

of a random batch comprising 10 macro-568

molecular structures on an NVIDIA V100569

GPU. As shown in Table 4, SchNet and570

PaiNN are both parameter efficient and both achieve the fastest inference time on a forward pass,571

while our proposed EQGAT is slower mainly due to the softmax attention normalization in the572

denominator in Eq. (4) which could be improved when the softmax attention with its normalization is573

replaced by a sigmoid activation function, to obtain soft-attention weights. This step however, results574

into a edge-filter αji that does not sum up to 1 when iterating over all neighbours j. The SEGNN575

model has the longest runtime on the forward pass across the 3 datasets. This is mostly attributed576

to the Clebsch-Cordan tensor products which can be very expensive in learning tasks that involve577

proteins, as the CG product is always performed on edges.578
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C Proof Equivariance579

We prove the rotation equivariance in Eq. (9) which consists of the sum of three vector components,580

and displayed here again581

m
(l+1)
i,v =

1

|N (i)|
∑

j∈N (i)

(v
(l+1)
ji,0 + v

(l+1)
ji,1 + v

(l+1)
ji,2 ).

As the sum is a linear function, we require to show that each summand (vji,0, vji,1, vji,2) is equivari-582

ant. For brevity, we omit all top indices. The first term is computed as tensor product of an l = 1583

representation and l = 0 representation through584

vji,0 = pji,n ⊗ bji,0 = pji,nb
⊤
ji,0 ∈ R3×Fv ,

where bji,0 ∈ RFv is an SO(3)-invariant representation, i.e. a scalar representation with Fv channels,585

and pji,n ∈ S2 ⊂ R3 a normalized relative vector, which lies on the 2-dimensional sphere.586

If the point cloud is rotated, as defined in Eq. (2), (relative) position as well as vector features change587

to588

p
R−→ Rp ,

v
R−→ Rv ,

while the cross product between two vector features v0, v1 is invariant to rotation, resulting to the589

property590

(Rv0 ×Rv1) = R(v0 × v1) .

In case a rotation is acting on the system, from Eq. (2) we know how vector and scalar quantities591

transform, resulting into:592

R.vji,0 −→ Rpji,n ⊗ bji,0 = R(pji,n ⊗ bji,0) = Rvji,0.

due to the linearity of the tensor product which proves SO(3) equivariance for the first term.593

For the second term, we calculate594

vji,1 = bji,1 ⊙ (vi × vj),

where bji,1 ∈ RFv is an SO(3)-invariant representation and the output of the cross product is a vector595

representation ∈ R3×Fv . To be precise, the elementwise multiplication from the left with the bji,1596

has to be rewritten, to match the shape, i.e. unsqueeze a new dimension to scale each of the Fv vector597

by the scalar value, resulting into:598

vji,1 = (1⊗ bji,1)⊙ (vi × vj),

where 1 is the one-vector in 3 dimensions. For a rotation acting on the system, we conclude that599

R.vji,1 −→ (1⊗ bji,1)⊙ (Rvi ×Rvj)

= (1⊗ bji,1)⊙R(vi × vj) = R(1⊗ bji,1)⊙ (vi × vj)

= Rvji,1,

which proves SO(3) equivariance for the second term.600

The third term is obtained through601

vji,2 = (1⊗ bji,2)⊙ (vjWn),

where bji,2 ∈ RFv is a scalar representation with Fv channels and Wn a linear transformation of602

shape (Fv × Fv). Due to linearity, we can see that603

RvjWn = (Rvj)Wn = R(vjWn)

is SO(3) equivariant. As we elementwise multiply with a unsqueezed/expanded scalar representation,604

we conclude for the last term SO(3) equivariance605

R.vji,2 −→ (1⊗ bji,1)⊙ (Rvj)Wn

= (1⊗ bji,1)⊙R(vjWn) = R(1⊗ bji,1)⊙ (vjWn)

= Rvji,2.
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Since all three components in the sum are SO(3) equivariant, we conclude that the final sum is also606

SO(3) equivariant.607

608

As the reader might have noticed, we build equivariant features based on linear functions and609

weighting l = 1 representations through l = 0 representations. This typical scaling is achieved610

through the tensor product ⊗. Our architecure however, also performs a multiplication between two611

l = 1 representations, through the cross product, which has the pleasant SO(3) invariance property612

that we can exploit to prove SO(3) equivariance, when scaling the output with an l = 0 representation.613

A Note on Translation Equivariance. Our proposed model is translation invariant, as all vector614

features are initially created by means of a tensor product of (normalized) relative position pji,n.615

To see that, for any translation vector t ∈ R3 for relative positions, we can see that the calculation of616

such vectors3 pji = pj − pi, are inherently translation invariant due to617

t.pji −→ (pj + t)− (pi + t) = pj − pi + t− t = pj − pi = pji.

Since we do not model absolute Cartesian coordinates, e.g., by updating the spatial coordinates618

through our layers, our model is not SE(3)-equivariant, i.e. next to rotation equivariance, also619

translation equivariant. We note that translation equivariance, however can be achieved through a620

simple operation such as the addition of an SE(3) representation with an SO(3) representation, e.g.621

pi = pi + pji,n ⊗ s,

where s ∈ R and reminiscent in the E(n)-GNN architecture, albeit the authors are not using the622

notation of the tensor product.623

D Synthetic Dataset624

We adopt the synthetic dataset from GVP [18] with slight modifications to make it a more challenging625

task. We create 50,000 ‘structures’ where each ‘structure’ consists of n = 100 random points in626

R3, distributed uniformly in the ball of radius r = 10 with the constraint that no two points are less627

than distance d = 2 apart. Three points are randomly chosen and are labelled as ‘special’ which will628

define the vertices of a triangle. The learning task is a multitask regression of 3 targets, where the629

first target is to predict the distance between the center of mass (COM) of the entire structure and the630

COM of the triangles spanned by the three special points. The second and third task is the prediction631

of the perimeter and surface area of the triangle. The choice of the 3 targets refers to a structural632

learning task, where the model requires to learn about the global shape of the structure, while the633

second and third targets are relational. An example structure is depicted in Figure 3. The evaluation634

metric is the MSE of the three tasks. We split the dataset into 80% training, 10% validation and 10%635

test sets.636

Table 5: Evaluation of our proposed EQGAT architecture on Triangle benchmark.
Model Triangle [MSE ↓] No. Params [103]

SchNet 37.545 (1.838) 16.8
PaiNN 10.259 (0.949) 27.1

SEGNN 3.875 (0.879) 60.9
GVP 10.115 (1.210) 61.6

EQGAT-Full 6.003 (0.432) 27.4

EQGAT-No-Cross-Product 6.835 (1.066) 27.4

EQGAT-No-Feature-Attention 6.808 (0.326) 27.4

For the synthetic task of multitask regression we notice that the SEGNN architecture equipped with637

higher-order equivariant features up to rotation order 2, obtains the best performance, followed by638

our proposed EQGAT model that only incorporates rank 1 (vector) features. For the synthetic dataset,639

we did not perform any hyperparameter tuning and set the number of layers to 3 with Fs = 32 scalar640

3We omit the normalization to unit vectors for brevity.
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Figure 3: An example structure of the synthetic dataset. Three random points in the structure
determine the vertices of a triangle, which is colored in red.

and Fv = 8 vector channels and train for 50 epochs. The number of trainable parameters for SchNet,641

PaiNN, SEGNN and EQGAT on the synthetic Triangle dataset are listed in the last column of Table642

5.643
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