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1 DEPTH-BASED OCCLUSION CORRECTION
To get the set of {D𝑝𝑟𝑖𝑜𝑟 } used in Occlusion Correction, we have
the following steps:

(1) Apply depth estimation method (i.e. Depth Anything[6]) on
the original training images to get a set of depth {𝐷}.

(2) As introduced in section 4.1, we align the {𝐷}with the sparse
depth {𝐷𝑐𝑜𝑙 } generated by Colmap to get a set of aligned
depth {𝐷𝑎𝑙𝑖 }.

(3) Utilize LaMa [4] to inpaint {𝐷𝑎𝑙𝑖 }, and finally get a set of
depth prior {D𝑝𝑟𝑖𝑜𝑟 }.

Fig. 1 demonstrates the process to get depth prior. Since the
estimated depth prior is not completely accurate, it can only be
used as a reference. Therefore, we add a fault tolerance factor 𝜖
(as indicated in section 4.2, alg. 1) to loosen the constrain of depth
prior. During projection, a point will be accepted if its depth is less
than the prior or its depth is greater than the prior by a margin
within the range of 𝜖 . A video result illustrating the effectiveness
of our proposed depth-based occlusion correction is shown in the
attached video.

0. Training images 1. Estimated Depth

2. Aligned Depth 3. Inpainted Depth

Figure 1: An illustration of the procedure to get depth prior.

2 ADDITIONAL RESULTS ON RADIANCE
FIELD INPAINTING

Additional Radiance Field inpainting results of different scenes are
shown in Fig. 2. However, we strongly recommend the reviewers
to watch the demo video attached in the supplementary material,
as figures alone do not fully capture the effectiveness of our pro-
posed method. In the experiment, we observed that NeRFiller [5]
(CVPR’24) experienced a ghost effect near the camera in our test
scenes, leading to visually strange results. We followed the instruc-
tions and settings from their official GitHub repository1, yet the
issue persisted. Moreover, a similar ghost effect is noticeable in
1https://github.com/ethanweber/nerfiller

LoFTR[3] Threshold
Methods 0.95 0.9 0.85 0.8 0.75

SPIn-NeRF[1] 154.03 202.58 237.32 265.81 290.74
LaMask 105.79 147.32 177.78 203.0 225.91

ORNeRF[7] 34.48 52.41 67.16 80.50 931.82
NeRFiller[5] 201.34 258.18 295.89 325.77 350.87
Ours-GS 283.52 338.47 374.07 401.86 425.0

Ours-NeRF 319.04 374.29 409.85 437.25 460.34
Table 1: Number of correspondencemeasured by LoFTR, with
different confidence level

the demo video on their official website2, suggesting this might
be an inherent issue (possibily caused by nerfstudio). Despite the
odd appearance caused by the ghost effect, the scene reconstruc-
tion is quite good, so we can still use them to compare with our
approaches. We find that NeRFiller does maintain 3D consistency,
but the quality of the inpainted content is not as good as ours.

3 INPAINTING CONSISTENCY.
In the main paper, we compared various baseline methods and our
approachs with regard to the the number of matchings output by
LoFTR [3] (with confidence level 0.95). Since the 0.95 threshold may
be a little bit high, we decided to loosen the constrain and conduct
the experiment again, additional quantitative results are shown in
Table 1. The visualization of the matching results is also provided
in Fig. 3, with LoFTR confidence level 0.9.

In addition, we demonstrated the matching results output by
SuperGlue[2] in the video attached in the supplementary material.
We followed the default setting to set the threshold for SuperGlue
at 0.2, and made no further adjustments. This decision was based
on the fact that SuperGlue is not as effective as LoFTR. Setting a
higher threshold would result in no keypoint matchings within the
inpainted area of the baseline methods.

4 MULTI-VIEW SEGMENTATION
We provide additional results of our proposed multi-view segmenta-
tion methods in Fig.4. Besides, we showcase a dynamic result of our
segmentation method in the attached video. Thanks to the nature
of our method, it has the capability to incorporate regions lacking
semantic meaning (e.g. shadows), which may further improve the
inpainting quality.
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Figure 3: Additional examples of matching results between rendered image pairs.
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Figure 4: Additional examples of our proposed multi-view segmentation.
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