
A Proof of Proposition 1

Proof of Proposition 1. First of all, we recall the definition of the two risks from (3) and (4):

Rcal(h; f) = E
[(
f(X)− E [Y | f(X)]

)2]
Rsha(h; f) = E

[(
E [Y | h ◦ f(X)]− E [Y | f(X)]

)2]
.

To keep our notation concise, we use Z = f(X) as a shorthand notation, and also let YZ := E[Y | Z]
and Yh(Z) = E[Y | h(Z)] throughout this proof. We can decompose the recalibration risk from
Definition 5:

R(h) = E[(h(Z)− YZ)
2]

= E[(h(Z)− Yh(Z) + Yh(Z) − YZ)
2]

= E[(h(Z)− Yh(Z))
2] + E[(Yh(Z) − YZ)

2] + 2E[(h(Z)− Yh(Z))(Yh(Z) − YZ)]

= E[(h(Z)− Yh(Z))
2] + E[(Yh(Z) − YZ)

2] + 2E[E[(h(Z)− Yh(Z))(Yh(Z) − YZ) | h(Z)]]
= E[(h(Z)− Yh(Z))

2] + E[(Yh(Z) − YZ)
2] + 2E[(h(Z)− Yh(Z))(Yh(Z) − E[YZ | h(Z)])]

= E[(h(Z)− Yh(Z))
2] + E[(Yh(Z) − YZ)

2] + 2E[(h(Z)− Yh(Z))(Yh(Z) − Yh(Z))]

= E[(h(Z)− Yh(Z))
2]︸ ︷︷ ︸

Rcal(h)

+E[(Yh(Z) − YZ)
2]︸ ︷︷ ︸

Rsha(h)

.

B Proof of Theorem 1

In this section, we present a proof of Theorem 1. Let (Y,Z) ∈ Y × Z be random variables
that admits a joint distribution PY,Z , which we assume to be fixed throughout this section. Let
S = {(yi, zi) ∈ Y ×Z : i ∈ [n]} and let B = {I1, I2, . . . , IB} be the uniform-mass binning scheme
(cf. Definition 6) of size B induced by (zi’s in) S. Note that if S is a random sample from PY,Z , then
the binning scheme B induced by S is also a random variable following a derived distribution. To
facilitate our analysis, we introduce the notion of well-balanced binning.
Definition 8 (Well-balanced binning; [29]). Let B ∈ N, let Z be a random variable that takes value
in [0, 1], and let α ∈ R such that α ≥ 1. A binning scheme B of size B is α-well-balanced with
respect to Z if

1

αB
≤ P [Z ∈ Ib] ≤

α

B
, ∀b ∈ [B].

In addition, we define two (parameterized families of) Boolean-valued functions Φbalance and Φapprox

as follows: for any binning scheme B,

∀α ∈ R, Φbalance(B;α) := 1

{
1

α|B|
≤ P [Z ∈ I] ≤ α

|B|
, ∀I ∈ B

}
, (21)

∀ε ∈ R, Φapprox(B; ε) := 1

{
max
I∈B

|µ̂I − µI | ≤ ε

}
, (22)

where 1(A) = 1 if and only if the predicate A is true, and for each interval I ∈ B,

µ̂I =

∑n
i=1 yi · 1I(zi)∑n
i=1 ·1I(zi)

and µI = E(Y,Z)∼PY,Z
[Y · 1I(Z)] . (23)

Note that if Φbalance(B;α) = 1 for α ≥ 1, then B is α-well-balanced with respect to Z (cf. Definition
8). Also, if Φapprox(B; ε) = 1 for ε ≥ 0, then the conditional empirical mean of Y in each bin I ∈ B
approximates the conditional expectation with error at most ε, uniformly for all bins.

The rest of this section is organized as follows. In Section B.1, we ensure that for an appropriate
choice of α, ε ∈ R, it holds with high probability (with respect to the randomness in B) that
Φbalance(B;α) = Φapprox(B; ε) = 1. In Section B.2, we establish upper bounds on the reliability
risk Rcal and the sharpness risk Rsha under the premise that Φbalance(B;α) = Φapprox(B; ε) = 1.
Finally, in Section B.3, we conclude the proof of Theorem 1 by combining these results together.
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B.1 High-probability certification of the conditions

Well-balanced binning scheme. First of all, we observe that the uniform-bass binning scheme B
induced by an IID random sample from PY,Z is 2-well-balanced with high probability, if the sample
size is sufficiently large. Here we paraphrase a result from [29] in our language.
Lemma 3 ([29, Lemma 4.3]). Let S = {Zi : i ∈ [n]} be an IID sample drawn from PZ and let B be
the uniform-mass binning scheme of size B induced by S. There exists a universal constant c′ > 0
such that for any δ ∈ (0, 1), if n ≥ c′ ·B log(B/δ), then Φbalance(B, 2) = 1 with probability at least
1− δ.

Lemma 3 states that

n ≥ c′ ·B log

(
B

δ

)
=⇒ P [B is 2-well-balanced with respect to PZ ] ≥ 1− δ.

While the value of the universal constant c was not specified in the original reference [29], we remark
that one may set, for example, c′ = 2420, which can be verified by following their proof with c′ kept
explicit.

The proof of Lemma 3 in [29] relies on a discretization argument that considers a fine-grained cover
of Z = [0, 1] consisting of disjoint intervals—namely,

{
I ′j : j ∈ [10B]

}
such that P [Z ∈ I ′j ] =

1
10B

for all j ∈ [10B]—and then approximates each Ib by a subset of the cover. As the authors of [29]
remarked, this argument provides a tighter sample complexity upper bound than naïvely applying
Chernoff bounds or a standard VC dimension argument, which would yield an upper bound of order
O
(
B2 log

(
B
δ

))
. We omit the proof of Lemma 3 and refer interested readers to the referenced paper

[29] for more details.

Uniform concentration of bin-wise means. Next, we argue that for the uniform-mass binning
scheme B induced by an IID sample, the conditional empirical means of each bin concentrates to the
population conditional expectation, uniformly for all bins in B. Here we restate a result from [20].
Lemma 4 ([20, Corollary 1]). Let PZ be an absolutely continuous probability measure on Z = [0, 1],
and S = {Zi : i ∈ [n]} be an IID sample drawn from PZ . Let B ∈ N such that B ≤ n

2 and B be the
uniform-mass binning scheme of size B induced by S. Then for any δ ∈ (0, 1),

P [Φapprox(B; εδ) = 1] ≥ 1−δ where εδ =

√
1

2(⌊n/B⌋ − 1)
log

(
2B

δ

)
+

1

⌊n/B⌋
. (24)

Lemma 4 states that under the mild regularity condition of PZ being absolutely continuous, the
uniform-mass binning accurately approximates all bin-wise conditional means as long as there are at
least two samples per bin in the sense that

n ≥ 2B =⇒ P

[
sup
b∈[B]

|µ̂b − µb| ≤

√
1

2(⌊n/B⌋ − 1)
log

(
2B

δ

)
+

1

⌊n/B⌋

]
≥ 1− δ.

B.2 Conditional upper bounds on reliability risk and sharpness risk

In this section, we establish upper bounds on the reliability risk Rcal and the sharpness risk Rsha

for ĥ under the premise that Φbalance(B;α) = 1 and Φapprox(B; ε) = 1 for appropriate parameters
α, ε ∈ R.

Preparation. To avoid clutter in the lemma statements to follow, here we recall our prob-
lem setting and set several notation that will be used throughout this section. Recall that
P = PX,Y is a joint distribution on X × Y and let f : X → Z is a measurable function.
In addition, we let S̃ = {(xi, yi) ∈ X × Y : i ∈ [n]} be an IID sample drawn from P , and let
S =

{
(z, y) ∈ Z × Y : (x, y) ∈ S̃ and z = f(x)

}
. Let B be the uniform-mass binning scheme

induced by (z’s in) S, and let ĥ = B̂ : Z → Z be the recalibration function derived from B as we
described in Section 4.1; see (9). The dependence among P, f, S̃, S,B, and ĥ are summarized by a
diagram in Figure 4.

Furthermore, we define the index function for a binning scheme to facilitate our analysis.
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P S̃

f

S B ĥ

Figure 4: Stochastic dependence among P, f, S̃, S,B, and ĥ.

Definition 9. Let B be a binning scheme. The index function for B is the function β : Z → [|B|]
such that

β(z) =
∑
I∈B

1(0,sup I](z). (25)

Remark 6. Note that β is a measurable function and defines an index function that identifies which
bin of B the argument z ∈ [0, 1] belongs to. Specifically, suppose that B = {I1, . . . , IB} for some
B ∈ N and there exists u0, u1, . . . , uB ∈ [0, 1] such that (i) 0 = u0 < u1 < · · · < uB = 1 and (ii)
Ib = (ub−1, ub] for all b ∈ [B] \ {1} and I1 = [u0, u1]. Then β(z) = b if and only if z ∈ Ib.

B.2.1 Calibration risk upper bound

We observe that if a binning scheme B produces empirical means µ̂I that approximate the true means
µI with error at most ε, then the calibration risk is upper bounded by ε2.
Lemma 5 (Calibration risk bound). For any ε ≥ 0, if Φapprox(B; ε) = 1, then

Rcal(ĥ; f, P ) ≤ ε2.

Proof of Lemma 5. To begin with, we recall the definition of the calibration risk (Definition 3), and
let Z = f(X). Then we may write

Rcal
(
ĥ; f, P

)
= E

[(
ĥ(Z)− E[Y | ĥ(Z)]

)2]
= E

[
E
[(
ĥ(Z)− E[Y | ĥ(Z)]

)2 ∣∣∣β(Z)]] ∵ the law of total expectation

= E
[(
µ̂Iβ(Z)

− µIβ(Z)

)2]
cf. (23)

≤ max
I∈B

(
µ̂I − µI

)2
.

Note that if Φapprox(B; ε) = 1, then maxI∈B
(
µ̂I − µI

)2 ≤ ε2.

We remark that the proof of Lemma 5 is a simple application of applying Hölder’s inequality. Also,
we note that a similar argument was considered in [20, Proposition 1] to establish the inequalities
between the Lp-counterparts of the calibration risk, which they call the ℓp-expected calibration error
(ECE). In this work, we focus on the case p = 2.

B.2.2 Sharpness risk upper bound

Next, we present an upper bound for the sharpness risk that diminishes as the binning scheme B
becomes more balanced.
Lemma 6 (Sharpness risk bound). Suppose that the optimal post-hoc recalibration function h∗f,P , cf.
(7), is monotonically non-decreasing. Let α ∈ R such that α ≥ 1. If Φbalance(B, α) = 1, then

Rsha(ĥ; f, P ) ≤ α

|B|
.

Proof of Lemma 6. Letting Z = f(X), we can write the sharpness risk of ĥ over f with repsect to
P as

Rsha(ĥ; f, P ) := E
[(
E
[
Y | ĥ(Z)

]
− E [Y | Z]

)2]
.
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We recall the definition of the index function β for B (Definition 9) and observe that

E
[(
E
[
Y | ĥ(Z)

]
− E [Y | Z]

)2]
≤ E

[∣∣E [Y | ĥ(Z)
]
− E [Y | Z]

∣∣] ∵
∣∣E [Y | ĥ(Z)

]
− E [Y | Z]

∣∣ ≤ 1

=
∑
I∈B

E
[∣∣E[Y | ĥ(Z)]− E [Y | Z]

∣∣ · 1I(Z)
]

=
∑
I∈B

E
[
E
[∣∣E[Y | ĥ(Z)]− E [Y | Z]

∣∣ · 1I(Z)
∣∣∣β(Z)]] ∵ the law of total expectation

=
∑
I∈B

P [Z ∈ I] · E
[
E
[∣∣E[Y | ĥ(Z)]− E [Y | Z]

∣∣ ∣∣∣Z ∈ I
]]

∵ Remark 6

≤
∑
I∈B

P [Z ∈ I] ·
(
sup
z∈I

h∗f,P (z)− inf
z∈I

h∗f,P (z)

)
∵ by definition of h∗f,P ; cf. (7)

≤
∑
I∈B

α

|B|
·
(
sup
z∈I

h∗f,P (z)− inf
z∈I

h∗f,P (z)

)
∵ Φbalance(B, α) = 1

≤ α

|B|
.

The inequality in the last line follows from the facts that (i) I ∈ B are mutually exclusive and (ii)
h∗f,P (z) ∈ [0, 1] and h∗f,P is monotone non-decreasing.

Our proof of Lemma 6 relies on similar techniques that are used in [29, Lemmas D.5 and D.6].
However, we note that we obtain an improved constant — 1 as opposed to 2 in [29, Lemma D.6] —
with a more refined analysis.

An improved rate with additional assumptions. It is possible to improve the rate of the sharpness
risk upper bound from O(|B|−1) to O(|B|−2) with an additional regularity assumption on h∗f,P .

Recall that we assumed in (A3) that there exists K > 0 such that if z1 ≤ z2, then h∗f,P (z2) −
h∗f,P (z1) ≤ K ·

(
FZ(z2)− FZ(z1)

)
, that is, h∗f,P is K-smooth with respect to FZ . This posits that

the conditional probability P [Y = 1|Z = z] of the target variable Y given a forecast variable Z
cannot vary too much in regions where the density of Z is low, or where the forecast is rarely issued.
This is a reasonable assumption because if P [Y = 1|Z] changes too rapidly with respect to Z, then
it suggests that we need additional information about Y beyond what Z can provide in order to
improve the quality of forecasts. We remark that (A3) is indeed a fairly mild assumption to impose
on, however, is not a trivial one.
Remark 7 (Mildness of (A3)). Suppose that Z = f(X) has a density pZ that is uniformly lower
bounded by ϵ on the support of Z. If h∗f,P is L-Lipschitz, then h∗f,P is (L/ϵ)-smooth with respect to
FZ . This also provides a sufficient condition to verify (A3) in practice.
Remark 8 (Non-triviality of (A3)). Notice that even if FZ is absolutely continuous and h∗f,P is con-
tinuous, the smoothness constant K could become large if the prediction Z is heavily miscalibrated.
For instance, in Figure 6, h∗f,P (z) is changing fast in the interval [0.5, 0.75] where pZ(z) is small,
which results in a larger value of K that can even diverge if pZ(z) → 0.

Here we define the notion of ψ-smoothness to formalize Assumption (A3), and then present an
improved upper bound for the sharpness risk.
Definition 10 (ψ-smoothness). Let K ∈ R+ and ψ : [0, 1] → [0, 1] be a monotone non-decreasing
function. A function ϕ : [0, 1] → [0, 1] is K-smooth with respect to ψ if for any z1, z2 ∈ [0, 1] such
that z1 ≤ z2, ∣∣ϕ(z2)− ϕ(z1)

∣∣ ≤ K ·
(
ψ(z2)− ψ(z1)

)
. (26)

Lemma 7 (Improved sharpness risk bound). Suppose that the function h∗f,P (z) defined in (7) is
monotonically non-decreasing and K-smooth with respect to FZ for some K ≥ 0, where FZ is the
cumulative distribution function of Z = f(X). If Φbalance(B, α) = 1, then

Rsha ≤ K2α3

B2
.
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Proof of Lemma 7. Let Z = f(X) and B = |B|. For each b ∈ [B], we let zb,max := sup Ib and
zb,min := inf Ib. Then we have

Rsha(ĥ; f, P )

= E
[(
E
[
Y | ĥ(Z)

]
− E [Y | Z]

)2]
= E

[
E
[(
E
[
Y | ĥ(Z)

]
− E [Y | Z]

)2 ∣∣∣β(Z)]]
=

B∑
b=1

P [Z ∈ Ib] · E
[(
E
[
Y | ĥ(Z)

]
− E [Y | Z]

)2 ∣∣∣β(Z) = b
]

≤
B∑

b=1

P [Z ∈ Ib] ·
(
h∗f,P (zb,max)− h∗f,P (zb,min)

)2
∵ h∗f,P is non-decreasing

≤
B∑

b=1

P [Z ∈ Ib] ·
(
K ·

(
FZ(zb,max)− FZ(zb,min)

))2
∵ h∗f,P is K-smooth w.r.t. FZ

=

B∑
b=1

K2 · P [Z ∈ Ib]
3

≤ K2
B∑

b=1

( α
B

)3
∵ Φbalance(B, α) = 1

=
K2α3

B2
.

Remark 9 (Tightness of the rate O(B−2)). The asymptotic rate Rsha = O(B−2) is tight and cannot
be further improved without additional assumptions. For instance, let’s consider a uniform-mass
binning of size B on Z ∼ Uniform[0, 1]. In the population limit, each bin has width 1/B and within-
bin variance 1/(12B2). Thus, the sharpness risk, obtained by taking expectation of the conditional
variance (per each bin), is 1/(12B2), attaining the rate B−2.

B.3 Completing the proof of Theorem 1

Proof of Theorem 1. For given δ ∈ (0, 1), let δ1 = δ2 = δ/2. Then we observe that

n ≥ c′ · |B| log
(
|B|
δ1

)
=⇒ P [Φbalance(B, 2) = 1] ≥ 1− δ1 by Lemma 3

n ≥ 2|B| =⇒ P [Φapprox(B, εδ2) = 1] ≥ 1− δ2 by Lemma 4

where c′ > 0 is the universal constant that appears in Lemma 3 and

εδ2 =

√
1

2(⌊n/|B|⌋ − 1)
log

(
2|B|
δ2

)
+

1

⌊n/|B|⌋
.

Observe that δ1 = δ
2 <

1
2 and |B| ≥ 1, and thus, log

(
|B|
δ1

)
≥ log 2. Letting c := max{c′, 2

log 2} and
applying the union bound, we have

n ≥ c · |B| log
(
2|B|
δ

)
=⇒ P

[
Φbalance(B, 2) = 1 and Φapprox(B, εδ/2) = 1

]
≥ 1−δ.

Next, we observe that if Φbalance(B, 2) = 1 and Φapprox(B, εδ2) = 1, then

Rcal(ĥ; f ;P ) ≤ (εδ2)
2 by Lemma 5,

Rsha(ĥ; f, P ) ≤ 2

|B|
, by Lemma 6.
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Additionally, if the Assumption (A3) also holds, then we obtain a stronger upper bound on
Rsha(ĥ; f, P ) by Lemma 7:

Rsha(ĥ; f, P ) ≤ 8K2

|B|2
.

C Proof of Theorem 2

This section contains a proof of Theorem 2. Prior to the proof, in Section C.1, we provide several
lemmas that will be useful in our proof. Thereafter, we present a proof of Theorem 2 in its entirety in
Section C.2.

C.1 Useful lemmas

C.1.1 Concentration of ŵk to w∗
k

First of all, we recall the binomial Chernoff bound, which is a classical result about the concentration
of measures that can be found in standard textbooks on probability theory.

Lemma 8 (Binomial Chernoff bound). Let Xi be IID Bernoulli random variables with parameters
p ∈ (0, 1), and let Sn := 1

n

∑n
i=1Xi. Then for any δ ∈ R such that 0 < ε < 1,

P [Sn ≥ (1 + ε)p] ≤ exp

(
−ε

2p

3
n

)
,

P [Sn ≤ (1− ε)p] ≤ exp

(
−ε

2p

2
n

)
.

It follows from Lemma 8 that for any ε, δ ∈ (0, 1),

n ≥ 3

ε2p
log

(
2

δ

)
=⇒ P

(
|Sn − p|

p
> ε

)
≤ δ. (27)

Let P,Q be two distributions on Y = {0, 1}, and let DP ∼ P , DQ ∼ Q denote IID samples of size
nP , nQ, respectively. Recall from (13) and (16) that for each k ∈ {0, 1}, we define

w∗
k =

PQ[Y = k]

PP [Y = k]
, and ŵk =

PDQ
[Y = k]

PDP
[Y = k]

.

Then, we let

ρ0 :=
ŵ0

w∗
0

and ρ1 :=
ŵ1

w∗
1

. (28)

Now we define another parameterized family of Boolean-valued functions Φratio(DP ,DQ;β) as
follows. Given DP ∼ P , DQ ∼ Q, and β ∈ R such that 1 < β ≤ 2,

Φratio(DP ,DQ;β) := 1

{
1

β
≤ ρk ≤ β, ∀k ∈ {0, 1}

}
. (29)

Corollary 9. Let P,Q be two distributions on Y = {0, 1}, and let DP ∼ P , DQ ∼ Q denote IID
samples of size nP , nQ, respectively. For each k ∈ {0, 1}, let pk := PP [Y = k] and qk := PQ[Y =
k]. Likewise, we let p̂k = 1

nP

∑
yi∈DP

1{yi = k} and q̂k = 1
nQ

∑
yi∈DQ

1{yi = k}. For any
δ ∈ (0, 1) and any β ∈ (1, 2], if

nP ≥ 27

(β − 1)2 min{p0, p1}
log

(
8

δ

)
and nQ ≥ 27

(β − 1)2 min{q0, q1}
log

(
8

δ

)
,

then
P (Φratio(DP ,DQ;β) = 1) ≥ 1− δ.
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Proof of Corollary 9. Let ε = β−1
3 . Since 1+x

1−x ≤ 1 + 3x for all x ∈ [0, 1/3], we have 1
β ≤ 1−ε

1+ε <
1+ε
1−ε ≤ β. Then it follows from (27) that for each k ∈ {0, 1},

nP ≥ 3

ε2pk
log

(
8

δ

)
=⇒ P

(
|p̂k − pk|

pk
> ε

)
≤ δ

4
,

nQ ≥ 3

ε2qk
log

(
8

δ

)
=⇒ P

(
|q̂k − qk|

qk
> ε

)
≤ δ

4
.

Applying the union bound, we obtain the following implication:

nP ≥ 3

ε2 min{p0, p1}
log

(
8

δ

)
and nQ ≥ 3

ε2 min{q0, q1}
log

(
8

δ

)
=⇒ P

(
max

k∈{0,1}

|p̂k − pk|
pk

> ε or max
k∈{0,1}

|q̂k − qk|
qk

> ε

)
≤ δ

=⇒ P

(
max

k∈{0,1}
ρk >

1 + ε

1− ε
or min

k∈{0,1}
ρk <

1− ε

1 + ε

)
≤ δ

=⇒ P

(
max

k∈{0,1}
ρk > β or min

k∈{0,1}
ρk <

1

β

)
≤ δ.

C.1.2 Regularity of the Shift Correction Function

Lemma 10. Let w = (w0, w1) ∈ R2 such that w0, w1 > 0 and w0 + w1 = 1. The function

gw : [0, 1] → [0, 1] such that gw(z) = w1z
w1z+w0(1−z) is L-Lipschitz where L = max

{
w1

w0
, w0

w1

}
.

Proof of Lemma 10. First of all, consider the first-order derivative of gw:
d

dz
gw(z) =

w1 ·
[
w1z + w0(1− z)

]
− w1z · (w1 − w0)[

w1z + w0(1− z)
]2 =

w1w0[
w1z + w0(1− z)

]2 .
We observe that gw is monotone increasing as d

dz gw(z) > 0 for all z ∈ [0, 1]. Next, we consider the
second-order derivative of gw:

d2

dz2
gw(z) =

2w0w1 · (w0 − w1)[
w1z + w0(1− z)

]3

> 0, ∀z ∈ [0, 1] if w0 > w1,

= 0, ∀z ∈ [0, 1] if w0 = w1,

< 0, ∀z ∈ [0, 1] if w0 < w1.

Therefore,

sup
z∈[0,1]

d

dz
gw(z) =


d
dz gw(z)

∣∣∣
z=1

= w0

w1
if w0 > w1,

d
dz gw(z)

∣∣∣
z=0

= w1

w0
if w0 ≤ w1.

Lemma 11. Let P,Q be joint distributions of (X,Y ) ∈ X × {0, 1}, and let wk = P [Y=k]
Q[Y=k] for

k ∈ {0, 1}. If P,Q satisfy the label shift assumption (Definition 7), i.e., if Assumptions (B1) and
(B2) hold, then for any measurable function f : X → R, the following two-sided inequality holds:

min
k∈{0,1}

wk ≤ EQ[f(X)]

EP [f(X)]
≤ max

k∈{0,1}
wk. (30)

Proof of Lemma 11. First of all, we observe that
EQ [f(X)] = EQ

[
EQ

[
f(X) | Y

]]
by the law of total expectation

=

1∑
k=0

PQ[Y = k] · EQ

[
f(X) | Y

]
=

1∑
k=0

(
wk · PP [Y = k]

)
· EP

[
f(X) | Y

]
. by definition of wk & the label shift assumption

Thus, it follows that mink wk · EP [f(X)] ≤ EQ[f(X)] ≤ maxk wk · EP [f(X)].
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C.2 Completing the proof of Theorem 2

Proof of Theorem 2. This proof is presented in four steps. In Step 1, we establish a simple upper
bound for the risk RQ(ĥQ; f) that consists of two error terms: the first term quantifies the error
introduced by the estimated label shift correction, ĝ, while the second term quantifies the error due to
the estimated recalibration function, ĥP . In Steps 2 and 3, we derive separate upper bounds for these
two error terms. Finally, in Step 4, we combine the results from Steps 1-3 to obtain a comprehensive
upper bound for RQ, which concludes the proof.

Step 1. Decomposition of RQ. Recalling the definition of the risk RQ, cf. (5), we obtain the
following inequality:

RQ(ĥQ; f) = EQ

[(
ĥQ ◦ f(X)− EQ[Y |f(X)]

)2]
= EQ

[(
ĝ ◦ ĥP ◦ f(X)− g∗ ◦ ĥP ◦ f(X) + g∗ ◦ ĥP ◦ f(X)− EQ[Y |f(X)]

)2]
(a)

≤ 2 ·

{
EQ

[(
ĝ ◦ ĥP ◦ f(X)− g∗ ◦ ĥP ◦ f(X)

)2 ]
︸ ︷︷ ︸

=:T1

(31)

+ EQ

[(
g∗ ◦ ĥP ◦ f(X)− EQ[Y |f(X)]

)2 ]
︸ ︷︷ ︸

=:T2

}
, (32)

where (a) follows from the simple inequality (a+ b)2 ≤ 2(a2 + b2) for all a, b ∈ R.

In Step 2 and Step 3 of this proof, we establish separate upper bounds for the two terms, T1, T2.

Step 2. An upper bound for T1. Recall from (13) and (16) that

g∗(z) =
w∗

1z

w∗
1z + w∗

0(1− z)
where w∗

k =
Q[Y = k]

P [Y = k]
, ∀k ∈ {0, 1},

ĝ(z) =
ŵ1z

ŵ1z + ŵ0(1− z)
where ŵk =

Q̂[Y = k]

P̂ [Y = k]
, ∀k ∈ {0, 1}.

Let
ρ0 :=

ŵ0

w∗
0

and ρ1 :=
ŵ1

w∗
1

. (33)

Then we observe that for any z ∈ (0, 1),

|ĝ(z)− g∗(z)| =
∣∣∣∣ ŵ1z

ŵ1z + ŵ0(1− z)
− w∗

1z

w∗
1z + w∗

0(1− z)

∣∣∣∣
=

∣∣∣∣∣
(
ŵ1w

∗
0 − w∗

1ŵ0

)
· z(1− z)[

ŵ1z + ŵ0(1− z)
]
·
[
w∗

1z + w∗
0(1− z)

] ∣∣∣∣∣
≤

∣∣∣∣∣
(
ŵ1w

∗
0 − w∗

1ŵ0

)
· z(1− z)(

ŵ1w∗
0 + w∗

1ŵ0

)
· z(1− z)

∣∣∣∣∣
=

∣∣∣∣ ŵ1w
∗
0 − w∗

1ŵ0

ŵ1w∗
0 + w∗

1ŵ0

∣∣∣∣
=

∣∣ρ0 − ρ1
∣∣

ρ0 + ρ1
.

Moreover, ĝ(0) = g∗(0) = 0 and ĝ(1) = g∗(1) = 1. Letting Zĥ := ĥP ◦ f(X), we obtain

T1 = EQ

[(
ĝ(Zĥ)− g∗(Zĥ)

)2]
≤
(
ρ0 − ρ1
ρ0 + ρ1

)2

. (34)

It remains to establish probabilistic tail bounds for ρ0, ρ1, which we will accomplish in Step 4 of this
proof.

22



Step 3. An upper bound for T2. We observe that

T2 = EQ

[(
g∗ ◦ ĥP ◦ f(X)− EQ[Y | f(X)]

)2 ]
= EQ

[(
g∗ ◦ ĥP ◦ f(X)− g∗

(
EP [Y | f(X)]

))2 ]
∵ Label shift assumption, cf. (14)

≤
(
w∗

max

w∗
min

)2

· EQ

[(
ĥP ◦ f(X)− EP [Y | f(X)]

)2 ]
∵ g∗ is

w∗
max

w∗
min

-Lipschitz, cf. Lemma 10

≤
(
w∗

max

w∗
min

)2

· w∗
max · EP

[(
ĥP ◦ f(X)− EP [Y | f(X)]

)2 ]
∵ by Lemma 11

=
w∗

max
3

w∗
min

2 ·RP

(
ĥP ; f

)
.

Step 4. Concluding the proof. For given δ ∈ (0, 1), let2 δ1 = δ2 = δ/4 and δ3 = δ/2. We observe
that

nP ≥ c′ · |B| log
(
|B|
δ1

)
=⇒ P [Φbalance(B, 2) = 1] ≥ 1− δ1 by Lemma 3

nP ≥ 2|B| =⇒ P [Φapprox(B, εδ2) = 1] ≥ 1− δ2 by Lemma 4

where c′ > 0 is the universal constant that appears in Lemma 3 and

εδ2 =

√
1

2(⌊n/|B|⌋ − 1)
log

(
2|B|
δ2

)
+

1

⌊n/|B|⌋
.

Furthermore, assuming

nP ≥ 27

min{p0, p1}
log

(
8

δ3

)
and nQ ≥ 27

min{q0, q1}
log

(
8

δ3

)
,

we may define βδ3 as a function of nP , nQ and δ3 such that

βδ3 = βδ3(nP , nQ) := 1 +

√
max

{
1

nP ·min{p0, p1}
,

1

nQ ·min{q0, q1}

}
· 27 log

(
8

δ3

)
. (35)

Then it follows from Corollary 9 that

P (Φratio(DP ,DQ;β0) = 1) ≥ 1− δ3.

Observe that δ1 = δ
4 <

1
4 and |B| ≥ 4, and thus, log

(
|B|
δ1

)
≥ log 16 ≥ 2. Let c = c′. Since c′ ≥ 1

and log
(

|B|
δ1

)
≥ log

(
16
δ

)
= log

(
8
δ3

)
, we notice that

nP ≥ max

{
c,

27

min{p0, p1}

}
· |B| log

(
4|B|
δ

)
=⇒ nP ≥ max

{
c′ · |B| log

(
|B|
δ1

)
, 2|B|, 27

min{p0, p1}
log

(
8

δ3

)}
.

In summary, we obtain that for any given δ ∈ (0, 1),

nP ≥ max

{
c,

27

min{p0, p1}

}
· |B| log

(
4|B|
δ

)
and nQ ≥ 27

min{q0, q1}
log

(
16

δ

)
=⇒ P

[
Φbalance(B, 2) = 1 & Φapprox(B, εδ/4) = 1 & Φratio(DP ,DQ;βδ/2) = 1

]
≥ 1− δ.
(36)

2We remark that our decomposition of δ into δ1, δ2, δ3 is arbitrary, and is intended to simplify the subsequent
analysis.
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Conditioned on the event Φbalance(B, 2) = 1 & Φapprox(B, εδ/4) = 1 & Φratio(DP ,DQ;βδ/2) = 1,

T1 ≤

(∣∣ρ0 − ρ1
∣∣

ρ0 + ρ1

)2

≤

(
βδ/2 − 1

βδ/2

βδ/2 +
1

βδ/2

)2

≤
(
βδ/2 − 1

)2
, ∵ (34); also, see (29)

T2 ≤ w∗
max

3

w∗
min

2 ·RP

(
ĥP ; f

)
≤ w∗

max
3

w∗
min

2 ·
(
ε2δ/4 +

2

|B|

)
. ∵ proof of Theorem 1; Lemmas 5 & 6

Note that if Assumption (A3) holds, then we additionally have

T2 ≤ w∗
max

3

w∗
min

2 ·
(
ε2δ/4 +

8K2

|B|2

)
.

Inserting these upper bounds for T1 and T2 into (31), (32) and recalling the expression for β in (35),
we complete the proof.

D Proof sketch of the argument in Remark 5

Recall our composite recalibration function,

ĥQ = ĝ ◦ ĥP , (37)

does not use the features in DQ. Specifically, ĝ is parameterized by ŵ = (ŵ0, ŵ1), which can be
estimated using only labels in DP and DQ, cf. (16). According to Theorem 2, RQ(ĥQ) = O(n−1

Q )
with high probability for sufficiently large nP .

Now suppose we are given an unlabeled target sample with unknown label shift. We can estimate
w using the target features via a maximum likelihood label shift estimation approach [14], yielding
ŵML = (ŵML

0 , ŵML
1 ). and the calibrated classifier ĥ ◦ f . This results in a different composite

recalibration function than Equation (37),

ĥML
Q = ĝML ◦ ĥP , (38)

where ĝML : [0, 1] → [0, 1] is defined as ĝML(z) = ŵML
1 z/(ŵML

1 z + ŵML
0 (1 − z)). We claim in

Remark 5 that, for sufficiently large nP , the composite recalibration function in Equation (38)
achieves RQ(ĥ

ML
Q ) = O(n−1

Q ) with high probability, enjoying the same convergence rate as ĥQ
(Equation 37). Here we give a proof sketch.

Proof sketch. Suppose we use the maximum likelihood approach in [14] to estimate w. We want
to show RQ(ĥ

ML
Q ) = O(n−1

Q ) with high probability for sufficiently large nP . Recall RQ(ĥQ) ≤
2(T1 + T2) according to Equation (31) and (32), and label shift estimation error only affects T1, so it
is sufficient to show T1 = O(n−1

Q ) with high probability.

For sufficiently large nP , ĥP ◦ f is sufficient calibrated, so ∥ŵ − w∥22 = O(n−1
Q ) by Theorem 3 in

[14]. Since

∥ŵ − w∥22 =
∑

k∈{0,1}

(ρk − 1)2w2
k ≥ w∗

min
2
∑

k∈{0,1}

(ρk − 1)2 ≥ w∗
min

2 max
k∈{0,1}

(ρk − 1)2, (39)

we have ρk ∈ [1−α, 1+α] for k ∈ {0, 1}, where α = ∥ŵ−w∥2

w∗
min

> 0. For sufficiently small ∥ŵ−w∥22,
we can control α < 0.5, which bounds T1 in (34):

T1 ≤
(
ρ0 − ρ1
ρ0 + ρ1

)2

≤ 2α

2− 2α
≤ 2α = 2

∥ŵ − w∥2
w∗

min

= O(n−1
Q ). (40)

The rest of the proof are the same with Appendix C.2.
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E Details on the experiments

In Section E.1 and E.3, we consider a family of joint distributions D(π) of X and Y , where
Y ∼ Bernoulli(π), X | Y = 0 ∼ N(−2, 1), and X | Y = 1 ∼ N(2, 1). Suppose we are given
f(x) = σ(x) := 1/(1 + e−x), for x ∈ R, as a probabilistic classifier. The optimal recalibration
function can be derived as

h∗f,P (z) = P [Y = 1 | f(X) = z] = σ(4σ−1(z)). (41)

In Section E.2, we consider a parametric family of recalibration functions called beta calibration [28]:
Hbeta = {hbeta(·; a, b, c) : a ≥ 0, b ≥ 0, c ∈ R}, where hbeta(·; a, b, c) : [0, 1] → [0, 1] is defined as

hbeta(z; a, b, c) =
1

1 + 1/
(
ec za

(1−z)b

) . (42)

In addition, consider a subfamily Hlogit-normal ⊂ Hbeta defined as Hlogit-normal = {hlogit-normal(·; a, c) :=
hbeta(·; a, a, c) = σ(aσ−1(·) + c) : a ≥ 0, c ∈ R}3. Apparently, the optimal recalibration function in
Equation (41), h∗f,P ∈ Hlogit-normal.

E.1 Verifying results for UMB

First, we recalibrate f on data distributed as D(0.5) using UMB.

Verifying the risk convergence in Theorem 1 We vary n ∈ [102, 107] and B ∈ [6, 103] in the
log scale. For each combination of (n,B), we use UMB to recalibrate f on data generated from
D(0.5), and compute quadrature estimates of population Rcal(ĥ), Rsha(ĥ), and R(ĥ), as well as
their high probability bounds based on Theorem 1. The constant K in Assumption (A3) is selected
by numerical maximization as

K = max
0≤z1<z2≤1

h∗(z2)− h∗(z1)

P [Z ∈ [z1, z2]]
.

Figure 1 shows the bounds follow the same trends as their associated population quantities, providing
valid upper bounds in all cases.

Verifying the optimal choice of the number of bins. We find empirically optimal B∗experiment that
achieves the minimal risk for each choice of n. We compute the theoretically optimal choice of the
number of bins, B∗theory, by minimizing the finite-sample upper bounds. Figure 2 shows B∗experiment

follows the same trend with B∗theory, both scales in O(n1/3).

E.2 Comparing recalibration methods

To highlight the benefits and drawbacks of UMB’s nonparametric nature, we compare UMB with
(semi-)parametric recalibration methods in scenarios where the parametric assumption is correct and
where it is misspecified. We compare the method under study, uniform-mass binning (UMB), with 3
other recalibration methods: uniform-width binning (UWB) [18], Platt scaling [40]4, and a hybrid
parametric-binning method [29]. Note that Platt scaling and the hybrid method adopt the parametric
assumption h∗ ∈ Hlogit-normal.

For the first setting, we construct optimal recalibration function h∗ ∈ Hlogit-normal so that the parametric
assumption of Platt scaling and the hybrid method holds. In particular, we consider the distribution
Z ∈ Uniform[0, 1] and Y | Z ∼ Bernoulli(hlogit-normal(Z; a, c)) with a = 4 and c = 0. For the
second setting, we construct h∗ ∈ Hbeta but h∗ /∈ Hlogit-normal so that the parametric assumption fails.
In particular, we consider the distribution Z ∼ Uniform[0, 1] and Y | Z ∼ Bernoulli(hbeta(z; a, b, c))
with a = 0.1, b = 4, and c = 0. For each setting, we fix calibration sample size to be n = 5000.

3We say Z ∼ Logit-Normal(µ, τ2) if σ−1(Z) ∼ N(µ, τ2) [2]. Similar to beta calibration [28], we
adopt the name “logit-normal calibration" after a simple example: if Y = Bernoulli(0.5), Z | Y = i ∼
Logit-Normal(µi, τ

2
i ) for i ∈ {0, 1}, then the optimal recalibration function E[Y | Z = z] = hlogit-normal(z; a, c)

for some a, c depending on µi’s and τi’s.
4The original Platt scaling operates on outputs of real-valued SVM outputs [40]. For probabilistic classifiers,

we follow [38, 29, 22] and implement Platt scaling by first transforming probabilities onto the real line via the
logit transform σ−1.

25



10 2 5 100 2 5 1000 2

5
100μ

2
5

0.001
2
5

0.01
2
5

1μ

100μ

5
100μ

2
5

0.001
2
5

0.01
2
5

Platt Hybrid
UWB UMB

B

R
R sh

a  
R ca

l  

(a) Correct parametric assumption

10 2 5 100 2 5 1000 2
2

5
0.001

2

5
0.01

2

5

1μ

10μ

100μ

0.001

100μ

0.001

0.01

0.1

Platt Hybrid
UWB UMB

B
R

R sh
a  

R ca
l  

(b) Misspecified parametric assumption

Figure 5: Risks vs. number of bins B.

Risks as functions of the number of bins B We traverse the number of bins B ∈ [10, 2000] in the
log scale and compare how each method behaves as B changes. When the parametric assumption is
correct, the hybrid method achives significantly lower Rcal and overall R than UMB and UWB for
sufficiently large number of bins (Figure 5a), an advantage highlighted in [29]. In contrast, when the
parametric assumption fails, the binning methods UMB and UWB has better performance with the
optimal number of bins (Figure 5b). This is because Platt scaling and hybrid methods are intrinsicly
biased when h∗ /∈ Hlogit-normal, as noted in Section 4.2.

Quantitative results of risks under optimal B For each setting, we fix B that achieves low
recalibration risk for UWB and UMB in Figure 5. Specifically, we choose B = 2

⌊
n1/3

⌋
= 34 for

the correct parametric assumption setting, and B =
⌊
n1/3

⌋
= 17 for the misspecified parametric

assumption setting. Then, for each setting, we compare the 90% quantiles of risks of each recalibration
method fitted on 100 random replicates of calibration datasets of size n = 5000.

Table 1 quantititively verifies that Platt and the Hybrid method achieves lower Rcal and overall R if
the parametric assumption is correct, and UWB and UMB achieves lower Rcal and overall R when
the parametric assumption fails.

Visualization of calibration curves We fix the calibration dataset and visualize the calibration
curves for all methods under the two settings. Figure 3 shows that the binning methods (UWB and
UMB) closely track the optimal recalibration function h∗ in both settings. In contrast, the hybrid
approach follows the Platt scaling estimates, leading to an inherent bias from h∗ when the parametric
assumption is invalid (Figure 3b).

E.3 Comparing recalibration schemes under label shift

We consider the label shift with source distribution D(0.5) and target distribution D(πQ), where
πQ varies in {0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5}. The results where πQ > 0.5 can be inferred by
symmetry and hence not experimented. We vary nP in {10, 103, 105, 107} and nQ in {10, 103, 105}.
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Figure 6: Left: calibration curves of for COMPOSITE ĥQ, SOURCE ĥP , TARGET ĥtarget
Q , and LABEL-

SHIFT ĝ. Right: the marginal density of Z = f(X) under Q.

Aside from our proposed recalibration function ĥQ = ĝ ◦ ĥP (17), referred to as COMPOSITE, we
consider three other calibration approaches as baselines: (1) SOURCE, denoted as ĥP , which is only
calibrated on the source data, (2) LABEL-SHIFT, denoted as ĝ, which performs label shift correction
without calibration, and (3) TARGET, denoted as ĝtarget

Q , which is only calibrated on the target data.

The number of bins B are chosen to be n1/3P for COMPOSITE and SOURCE, and n1/3Q for TARGET.

Table 2 shows the risks for different approaches with πQ = 0.1, nP = 103, and nQ = 102. In
terms of Rcal, COMPOSITE performs the best, as it is calibrated to the target distribution by taking
advantage of the abundant source data. In terms of Rsha, LABEL-SHIFT achieves Rsha = 0 due to
the strictly increasing ĝ, but it suffers from high Rcal. COMPOSITE and SOURCE achieve smaller
Rsha than TARGET, as a result of using more bins on a larger sample. Considering the combined
impact of calibration and sharpness, our approach COMPOSITE attains the lowest overall recalibration
risk R as well as MSE.

Figure 6 shows the optimal recalibration function h∗ and the recalibration functions for the four
approaches. It can be seen that COMPOSITE best estimates h∗ with the highest resolution.
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