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Abstract1

Graph neural networks (GNNs) have been increasingly deployed in various ap-2

plications that involve learning on non-Euclidean data. However, recent studies3

show that GNNs are vulnerable to graph adversarial attacks. Although there are4

several defense methods to improve GNN robustness by eliminating adversarial5

components, they may also impair the underlying clean graph structure that con-6

tributes to GNN training. In addition, few of those defense models can scale to7

large graphs due to their high computational complexity and memory usage. In this8

paper, we propose GARNET, a scalable spectral method to boost the adversarial9

robustness of GNN models. GARNET first leverages weighted spectral embedding10

to construct a base graph, which is not only resistant to adversarial attacks but also11

contains critical (clean) graph structure for GNN training. Next, GARNET further12

refines the base graph by pruning additional uncritical edges based on probabilistic13

graphical model. GARNET has been evaluated on various datasets, including a14

large graph with millions of nodes. Our extensive experiment results show that15

GARNET achieves adversarial accuracy improvement and runtime speedup over16

state-of-the-art GNN (defense) models by up to 10.23% and 14.7×, respectively.17

1 Introduction18

Recent years have witnessed a surge of interest in graph neural networks (GNNs), which incorpo-19

rate both graph structure and node attributes to produce low-dimensional embedding vectors that20

maximally preserve graph structural information [1]. GNNs have achieved promising results in21

various real-world applications, such as recommendation systems [2], self-driving car [3], and chip22

placements [4]. However, recent studies have shown that adversarial attacks on graph structure ac-23

complished by inserting, deleting, or rewiring edges in an unnoticeable way, can easily fool the GNN24

models and drastically degrade their accuracy in downstream tasks (e.g., node classification) [5, 6].25

In literature, one of the most effective ways to defend GNNs is to purify the graph by removing26

adversarial graph structures. Entezari et al. [7] observe that adversarial attacks mainly affect high-27

rank graph properties; thus they propose to first construct a low-rank graph by performing truncated28

singular value decomposition (TSVD) on the graph adjacency matrix, which can then be exploited29

for training a robust GNN model. Later, Jin et al. [8] propose Pro-GNN to jointly learn a new graph30

and a robust GNN model with the low-rank constraints imposed by the graph structure. While31

prior methods using low-rank approximation largely eliminate adversarial components in the graph32

spectrum, they involve dense adjacency matrices during GNN training, leading to a much higher33

time/space complexity and prohibiting their applications in large-scale graph learning tasks.34

In addition, due to the high computational cost of TSVD, existing low-rank based methods can only35

preserve top r singular components (e.g., r = 50). Consequently, as shown in Figure 1(a), these36

methods may lose a wide range of clean graph spectrum that corresponds to important structures of37

the clean graph in the spatial domain. This is confirmed in Figure 1(c), where the clean accuracy of the38

TSVD-based method largely increases when preserving more spectral information via increasing the39

graph rank r. In other words, prior low-rank approximation methods eliminate high-rank adversarial40
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Figure 1: “TSVD AdvGraph” and “GARNET AdvGraph” denote adversarial graphs purified by
TSVD and GARNET, respectively. (a) Graph rank comparison on Cora under Metattack with different
perturbation ratio. (b) Singular value comparison of different normalized graph adjacency matrices
on Cora. (c) Accuracy± std. of GCN-TSVD on Cora with different r-rank approximation via TSVD.

components at the cost of inevitably impairing the important (clean) graph structure, which degrades41

the overall quality of the reconstructed graph and therefore limits the performance of GNN training.42

In this work, we propose GARNET, a novel spectral approach to learning the underlying clean graph43

topology of an adversarial graph via combining spectral embedding with probabilistic graphical44

model (PGM), where the learned graph structure encodes the conditional dependence among low-45

dimensional node representations (spectral embedding vectors) [9]. More concretely, given an46

adversarial graph, GARNET first constructs a base graph topology by leveraging weighted spectral47

embeddings that are resistant to adversarial attacks, which is followed by an effective and efficient48

graph refinement scheme for pruning noncritical edges in the base graph by exploiting PGM.49

By recovering the clean graph structure, Figures 1(a) and 1(b) show that the adversarial graph purified50

by GARNET largely restores the rank of the underlying clean graph. Thus, GARNET can be viewed51

as a reduced-rank topology learning approach that slightly reduces the rank of the input adversarial52

graph, which is fundamentally different from the prior low-rank based defense methods (e.g., TSVD53

and ProGNN). Moreover, GARNET scales comfortably to large graphs due to its nearly-linear54

algorithm complexity, and produces a sparse yet high-quality graph that improves GNN robustness55

without involving any dense adjacency matrices during GNN training. As a byproduct, unlike existing56

defense methods (e.g., ProGNN) that assume graphs to be homophilic, i.e, adjacent nodes in a graph57

tend to have similar attributes [10], GARNET does not have such an assumption and thus can protect58

GNNs against adversarial attacks on both homophilic and heterophilic graphs.59

We evaluate GARNET on both homophilic and heterophilic datasets under strong graph adversarial60

attacks such as Nettack [5] and Metattack [6]. Moreover, we further show the nearly-linear scalability61

of our approach on the ogbn-products dataset that consists of millions of nodes [11]. Our experimental62

results indicate that GARNET largely improves both clean and adversarial accuracy over baselines in63

most cases. Our main technical contributions are summarized as follows:64

• To our knowledge, we are the first to exploit spectral graph embedding and probabilistic graphical65

model for improving robustness of GNN models, which is achieved by learning a reduced-rank graph66

topology for recovering the underlying clean graph structure from the input adversarial graph.67

• By recovering the critical edges that contribute to maximum likelihood estimation in PGM while68

ignoring adversarial components, GARNET produces a high-quality graph on which existing GNN69

models can be trained to achieve high accuracy. Our experimental results show that GARNET gains70

up to 10.23% adversarial accuracy improvement over state-of-the-art defense baselines.71

• Our proposed reduced-rank topology learning method has a nearly-linear complexity in time/space72

and produces a sparse graph structure for scalable GNN training. This allows GARNET to run up to73

14.7× faster than prior defense methods on popular data sets such as Cora and Squirrel. In addition,74

GARNET scales comfortably to very large graph data sets with millions of nodes, while prior defense75

methods run out of memory even on a graph with 20k nodes.76

2 Background77

2.1 Undirected Probabilistic Graphical Models78

Consider an n-dimensional random vector x that follows a multivariate Gaussian distribution x ∼79

N(0,Σ), where Σ = E[xx⊤] ≻ 0 represents the covariance matrix, and Θ = Σ−1 represents the80
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precision matrix (inverse covariance matrix). Given a data matrix X ∈ Rn×d that includes d i.i.d81

(independent and identically distributed) samples X = [x1, ..., xd], where xi ∼ N(0,Σ) has an n-82

dimensional Gaussian distribution with zero mean, the goal of probabilistic graphical models (PGM)83

is to learn a precision matrix Θ that corresponds to an undirected graph structure G for encoding the84

conditional dependence between variables of the observations on columns of X [12, 13]. Specifically,85

the classical graphical Lasso method aims at estimating a sparse Θ through maximum likelihood86

estimation (MLE) of f(x) leveraging convex optimization [13]. In this work, we focus on one87

increasingly popular type of Gaussian graphical models, which is also known as attractive Gaussian88

Markov random fields (GMRFs). Attractive GMRFs restrict the precision matrix to be a Laplacian-89

like matrix Θ = L+ I
σ2 , where L = D −A denotes the set of valid graph Laplacian matrices with90

D and A representing the diagonal degree matrix and adjacency matrix of the underlying undirected91

graph, respectively, I denotes the identity matrix, and σ2 is a constant denoting prior data variance.92

Similar to the graphical Lasso method [13], recent methods for estimating attractive GMRFs leverage93

emerging graph signal processing (GSP) techniques to solve the following convex problem [9, 14–17]:94

95

max
Θ

log detΘ− 1

d
tr(XXTΘ)− α∥Θ∥1 (1)

where det(·) and tr(·) denote the determinant and trace operators, respectively, α is a hyperparameter96

to control the regularization term. The first two terms together can be interpreted as log-likelihood97

under a GMRF. The last ℓ1 regularization term is to enforce Θ (and the corresponding graph) to98

be sparse. If X is non-Gaussian, Equation 1 can be regarded as Laplacian estimation based on99

minimizing the Bregman divergence between positive definite matrices induced by the function100

Θ 7→ − log det(Θ) [18].101

2.2 Graph Adversarial Attacks102

Most existing graph adversarial attacks aim at degrading the accuracy of GNN models by insert-103

ing/deleting edges in an unnoticeable way (e.g., maintaining node degree distribution) [19]. The104

most popular graph adversarial attacks fall into the following two categories: (1) targeted attack,105

(2) non-targeted attack. The targeted attacks attempt to mislead a GNN model to produce a wrong106

prediction on a target sample (e.g., node), while the non-targeted attacks strive to degrade the overall107

accuracy of a GNN model for the whole graph data set. Dai et al. [20] first formulate the targeted108

attack as a combinatorial optimization problem and leverages reinforcement learning to insert/delete109

edges such that the target node is misclassified. Zügner et al. [5] propose another targeted attack110

called Nettack, which produces an adversarial graph by maximizing the training loss of GNNs.111

Zügner and Günnemann [6] further introduce Metattack, a non-targeted attack that treats the graph112

as a hyperparameter and uses meta-gradients to perturb the graph structure. It is worth noting that113

graph adversarial attacks have two different settings: poison (perturb a graph prior to GNN training)114

and evasion (perturb a graph after GNN training). As shown by Zhu et al. [21], the poison setting is115

typically more challenging to defend, as it changes the graph structure that fools GNN training. Thus,116

we aim to improve model robustness against attacks under the poison setting.117

2.3 Graph Adversarial Defenses118

To defend GNN against adversarial attacks, Entezari et al. [7] first observe that Nettack, a strong119

targeted attack, only changes the high-rank information of the adjacency matrix. Thus, they propose120

to construct a low-rank graph by performing truncated SVD to undermine the effects of adversarial121

attacks. Later, Jin et al. [8] propose Pro-GNN that adopts a similar idea yet encourages nodes with122

similar attributes to be connected when jointly learning the low-rank graph and GNN model. Although123

those low-rank approximation based methods achieve state-of-the-art results on several datasets,124

they produce dense adjacency matrices that correspond to complete graphs, which would limit their125

applications for large graphs. Moreover, they only preserve a small region of the graph spectrum126

and thus may lose too much important information corresponding to the clean graph structure in the127

spatial domain, which limits the performance of GNN training. Recently, [22] exploit Laplacian128

eigenpairs to guide GNN training, which produces a robust model with quadratic time complexity129

and is thus not scalable to large graphs. In addition to the aforementioned spectral-based defense130

methods, GCNJaccard [23] and RS-GNN [24] purify the adversarial graph by connecting nodes with131

similar attributes or same labels. However, those defense methods explicitly (or implicitly) assume132

the underlying graph to be homophilic, which results in rather poor performance when defending133

GNN models on heterophilic graphs. In contrast to the prior arts, GARNET achieves highly robust134

yet scalable performance on both homophilic and heterophilic graphs under adversarial attacks by135

leveraging a novel graph purification scheme based on spectral embedding and graphical model.136
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3 The GARNET Approach137
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Figure 2: An overview of the three major phases of GARNET.

Recently, Entezari et al. [7] and Jin et al. [8] have shown that the well-known graph adversarial138

attacks (e.g., Nettack and Metattack) are essentially high-rank attacks, which increase graph rank by139

enlarging the smallest singular values of adjacency matrix when perturbing the graph structure, while140

rest of the graph spectrum remains almost the same. Consequently, a natural way for improving GNN141

robustness is to find the low-rank approximation of the adversarial adjacency matrix.142

Low-rank topology learning (prior work). Given an adversarial adjacency matrix Aadv ∈ Rn×n,143

Entezari et al. [7] propose to reconstruct a low-rank approximated adjacency matrix via performing144

TSVD: Â = UΣV T , where Σ ∈ Rr×r is a diagonal matrix consisting of r largest singular values145

of Aadv. U ∈ Rn×r and V ∈ Rn×r contain the corresponding left and right singular vectors,146

respectively. As the largest singular values are hardly affected by graph adversarial attacks, the147

reconstructed low-rank adjacency matrix Â is resistant to adversarial attacks.148

However, due to the high computational cost of TSVD, Â is typically computed by only using top r149

largest singular values and their corresponding singular vectors, where r is a relatively small number150

(e.g., r = 50). Consequently, the rank of Â is only r = 50, which is two orders of magnitude151

smaller than the rank of the clean graph, as shown in Figure 1(a). Since these low-rank methods are152

overly aggressive in reducing the graph rank, Â may lose too much important spectral information153

corresponding to the clean graph structure. As shown in Figure 1(c), the clean accuracy of the154

TSVD-based method is largely improved by increasing the graph rank r, which indicates the low-rank155

graph obtained with a small r loses the key graph structure contributing to GNN training. Note that156

the adversarial and clean graphs share most of the graph structure, as adversarial attacks perturb the157

clean graph in an unnoticeable way. Consequently, losing those important clean graph structures will158

also limit the performance of GNN on the adversarial graph.159

Reduced-rank topology learning (this work). Given the adversarial graph Gadv and its adjacency160

matrix Aadv, our goal is to learn a reduced-rank graph, which slightly reduces the rank of Gadv to161

mitigate the effects of adversarial attacks, while retaining most of the important graph spectrum162

corresponding to the clean graph structure. As adversarial attacks mainly affect the least dominant163

singular components of Aadv [7], one straightforward way for constructing such a reduced-rank graph164

is to utilize all the singular components except those least dominant ones via TSVD. Nonetheless,165

computing such a large number of singular components is computationally expensive [25], and is166

thus not scalable to large graphs.167

To learn the reduced-rank graph in a scalable way, in this work, we leverage only the top few (e.g.,168

50) dominant singular components of Aadv to restore its important graph spectrum, via recovering169

the corresponding clean graph structure with the aid of PGM. Figure 2 gives an overview of our170

proposed approach, GARNET, which consists of three major phases. The first phase constructs a171

base graph by exploiting spectral embedding and a scalable nearest-neighbor graph algorithm. The172

second phase further refines the base graph by pruning noncritical edges based on PGM. The last173

phase trains existing GNN models on the refined base graph to improve their robustness. Next, we174

will first describe our notion of clean graph recovery via PGM as well as the scalability issue of prior175
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PGM-based work in Section 3.1, which motivates us to develop scalable GARNET kernels described176

in Sections 3.2 and 3.3. We further provide the overall complexity of GARNET in Section 3.4.177

3.1 Graph Recovery via Graphical Model178

A general philosophy behind PGM is that there exists an underlying graph G, whose structure179

determines the joint probability distribution of the observations on the data entities, i.e., columns of a180

data matrix X ∈ Rn×d, where n is the number of data points, d the dimension per data point. To181

recover the underlying graph structure from the data matrix X , one common way is to leverage MLE182

by solving Equation 1 in Section 2.1. As the top few dominant singular components of the adjacency183

matrix capture the corresponding graph structure, we can naturally construct the data matrix X based184

on those dominant singular components, and then adopt PGM to recover an underlying graph via185

MLE. To this end, we define a weighted spectral embedding matrix as follows:186

Definition 3.1. Given the top r smallest eigenvalues λ1, λ2, ..., λr and their corresponding eigen-187

vectors v1, v2, ..., vr of normalized graph Laplacian matrix Lnorm = I − D− 1
2AD− 1

2 , where188

I and A are the identity matrix and graph adjacency matrix, respectively, and D is a diag-189

onal matrix of node degrees, the weighted spectral embedding matrix is defined as V
def
=190 [√

|1− λ1|v1, ...,
√
|1− λr|vr

]
, whose i-th row Vi,: is the weighted spectral embedding of the191

corresponding i-th node in the graph.192

Proposition 3.2. Given a normalized graph adjacency matrix Anorm = D− 1
2AD− 1

2 and weighted193

spectral embedding matrix V of an undirected graph, let Â be the rank-r approximation of Anorm194

via TSVD. If the top r dominant eigenvalues of Anorm are non-negative, then we have Â = V V T .195

Our proof for Proposition 3.2 is available in Appendix A. Proposition 3.2 shows the connection196

between weighted spectral embedding and the low-rank adjacency matrix Â obtained by TSVD.197

Specifically, the weighted spectral embedding matrix V can be viewed as an eigensubspace matrix198

consisting of a few dominant singular components of the corresponding adjacency matrix. Thus,199

we can use V to recover the underlying clean graph via PGM. However, obtaining V requires the200

knowledge of the clean graph structure, which seems to create a chicken and egg problem.201

Fortunately, since the dominant singular components are hardly affected by adversarial attacks [7],202

the weighted spectral embedding is therefore also resistant to adversarial attacks, indicating that the203

underlying clean graph Gclean and its corresponding adversarial graph Gadv share almost the same204

weighted spectral embeddings. As a result, we can exploit the weighted spectral embedding matrix V205

of Gadv to represent that of Gclean. By replacing the data matrix X with V in Equation 1, we have206

the following objective function:207

max
Θ

: F = log detΘ− 1

r
tr(V V TΘ)− α∥Θ∥1 (2)

More discussions on Equation 2 are available in Appendix Q. By finding the optimizer Θ∗ , we can208

recover the underlying graph that maximizes the likelihood given the observation on the weighted209

spectral embedding V . However, solving Equation 2 requires at least O(n2) time/space complexity210

per iteration with the most efficient algorithms, which thus cannot scale to large graphs [13, 26, 27].211

As Θ is constrained to be a Laplacian-like matrix, finding the optimizer Θ∗ in Equation 2 is equivalent212

to searching for critical edges from a complete graph, which would involve all possible (i.e., O(n2))213

edges. Here we say an edge is critical (noncritical) if including it to the graph significantly increases214

(decreases) F in Equation 2. Hence we can recover the underlying graph by pruning noncritical edges215

from the complete graph. However, storing a complete graph is still expensive. To have a near-linear216

algorithm for clean graph recovery, instead of searching in the complete graph, we limit our search217

within an initial base graph Gbase that is much sparser but containing sufficient information for218

identifying the candidate edges critical to recover the clean graph. Subsequently, the final graphical219

model (graph Laplacian) can be obtained by further pruning noncritical edges from Gbase.220

3.2 Base Graph Construction221

During the first phase of GARNET (shown in Figure 2), our goal is to build a base graph Gbase, which222

greatly reduces the search space by not constructing a complete graph while preserving the critical223

candidate edges that are key to clean graph recovery. To this end, we give the following theorem:224

Theorem 3.3. Given a graph G = (V, E) and its normalized Laplacian matrix LG , let Vi denote225

the weighted spectral embedding of node i by using top r eigenpairs of LG . Suppose a relatively226
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small r is picked such that λr ≤ 1, where λr is the r-th smallest eigenvalue of LG , then we have227 ∑
(i,j)∈E ∥Vi − Vj∥22 ≤ 0.25r.228

Our proof for Theorem 3.3 is available in Appendix B. Note that r is a small constant, which is229

independent of the graph size. Thus, Theorem 3.3 indicates that, if an edge connects nodes i and j230

in the clean graph, then the Euclidean distance between the weighted spectral embeddings of these231

two nodes will be small, which motivates us to build a k-nearest neighbor (kNN) graph as Gbase to232

incorporate those clean edges. The connection between kNN and TSVD is provided in Appendix R.233

Concretely, we first obtain the weighted spectral embedding matrix V of the input adversarial graph234

Gadv to represent that of the underlying clean graph Gclean, as V consists of dominant singular235

components that are shared by Gadv and Gclean [7]. We then leverage V to construct a kNN graph,236

where each node is connected to its k most similar nodes based on the Euclidean distance between237

their spectral embeddings. In this work, we exploit an approximate kNN algorithm for constructing238

the graph, which has O(|V| log |V|) complexity and thus can scale to very large graphs [28]. By239

choosing a proper k (e.g., k = 50), Gbase is likely to cover edges in the underlying clean graph. Thus,240

Gbase can serve as a reasonable search space for identifying critical edges in the next step.241

3.3 Graph Refinement via Edge Pruning242

For the second phase of GARNET shown in Figure 2, we refine Gbase by aggressively pruning243

noncritical edges from Gbase, such that the refined graph only preserves the most important edges244

that contribute most to the log-likelihood F in Equation 2.245

To identify critical (noncritical) edges that can most effectively increase (decrease) F , we exploit246

the update of Θ based on gradient ascent: Θ← Θ+ η ∂F
∂Θ , where η is the step size. As mentioned in247

Section 2.1, Θ is constrained to be L+ I
σ2 , which means the off-diagonal elements in Θ correspond248

to negative of edge weights in the underlying graph, i.e., Θi,j = −wi,j . Thus, the update of Θi,j249

during gradient ascent can be viewed as:250

Θi,j ← Θi,j + η(
∂F

∂Θ
)i,j = Θi,j − η

∂F

∂wi,j
(3)

Equation 3 means that, if ∂F
∂wi,j

is large and positive, Θi,j will become more negative, which251

corresponds to increasing the edge weight in the underlying graph. Similarly, if ∂F
∂wi,j

is small and252

negative, Θi,j will be less negative, corresponding to decreasing the edge weight. In other words,253

the edge weight wi,j with a large (small) ∂F
∂wi,j

should be increased (decreased) to maximize the254

log-likelihood F , meaning the corresponding edge is critical (noncritical). Thus, we can identify the255

critical edges once we know ∂F
∂wi,j

. By setting α = 0 in Equation 2 (as GARNET naturally produces256

a sparse graph) and taking the partial derivative with respect to an edge weight wi,j , we have:257

∂F

∂wi,j
=

n∑
k=1

1

λk + 1/σ2

∂λk

∂wi,j
− ∥V

T ei,j∥22
r

(4)

where λk,∀k = 1, 2, ..., n are the Laplacian eigenvalues of Gbase (the initial graph for edge pruning),258

ei,j = ei − ej , and ei denotes the vector with all zero entries except for the i-th entry being 1.259

Theorem 3.4 (Feng [17]). Let λk and uk be the k-th eigenvalue and the corresponding eigenvector260

of the Laplacian matrix, respectively. The spectral perturbation δλk due to the increase of an edge261

weight wi,j can be estimated by δλk = δwi,j(u
T
k ei,j)

2.262

The proof for Theorem 3.4 is available in Feng [17]. According to Theorem 3.4 and Equation 4, we263

can estimate ∂F
∂wi,j

≈ ∥UT ei,j∥22 − 1
r∥V

T ei,j∥22, where U = [ u1√
λ1+1/σ2

, ..., ur√
λr+1/σ2

], λi is the264

i-th smallest Laplacian eigenvalue of Gbase, and ui is the corresponding eigenvector. Consequently,265

an edge (i, j) is critical if ∥UT ei,j∥22 ≫ 1
r∥V

T ei,j∥22. As V and U are the spectral embeddings266

on the input adversarial graph and the base graph, respectively, we define the spectral embedding267

distortion si,j =
∥UT ei,j∥2

2

∥V T ei,j∥2
2

to measure the edge importance. Consequently, we prune edges in268

the base graph Gbase that have small spectral embedding distortion, i.e., si,j < γ, where γ is a269

hyperparameter to control the sparsity of the refined graph. Hence, the refined base graph G′base270

largely recovers the underlying clean graph structure from the input adversarial graph. Since G′base271

is constructed by only leveraging the top few dominant singular components of Gadv, it ignores the272

high-rank adversarial components and thus robust to adversarial attacks. As a result, we can train a273

given GNN model on G′base to improve its robustness, which is the last phase of GARNET.274
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3.4 Complexity of GARNET275

The first phase of GARNET requires O(r|E|) time for computing top r Laplacian eigenpairs [25],276

and O(|V| log |V|) time for kNN graph construction [28]. The second phase involves O(rk|V|) time277

for computing spectral embeddings and edge pruning on the kNN graph. Thus, the overall time278

complexity for graph purification is O(r(|E| + k|V|) + |V| log |V|), where |V| (|E|) denotes the279

number of nodes (edges) in the adversarial graph, and k is the averaged node degree in the kNN280

graph. Our systematic approach of choosing r and the space complexity analysis are in Appendix F.281

4 Experiments282

We have conducted comparative evaluation of GARNET against state-of-the-art defense GNN models283

under targeted attack (Nettack) [5] and non-targeted attack (Metattack) [6] on both homophilic284

and heterophilic datasets. Besides, we also evaluate GARNET robustness against adaptive attacks.285

In addition, we further show the scalability of GARNET by comparing its run time with prior286

defense methods and evaluating GARNET on ogbn-products, which consists of more than 2 million287

nodes [11]. Finally, we conduct ablation studies to understand the effectiveness of GARNET kernels.288

Experimental Setup. The details of datasets used in our experiments are available in Appendix C.289

We choose as baselines two state-of-the-art defense methods based on graph purification: TSVD [7]290

and Pro-GNN [8]. Besides, we evaluate training based defense methods GCN-LFR [22] and GN-291

NGuard [29] on homophilic and heterophilic graphs, respectively. Moreover, we use GCN [30]292

and GPRGNN [31] as the backbone GNN models for defense on homophilic datasets (i.e., Cora293

and Pubmed). As GCN performs poorly on heterophilic datasets [10, 32], we choose GPRGNN294

as the backbone model (as well as the surrogate model for attacking) on Chameleon and Squirrel295

datasets. Due to the space limit, we provide defense results with H2GCN [10] as the backbone model296

in Appendix J. For all baselines, we tune their hyperparameters against adversarial attacks with a297

small perturbation, and keep the same hyperparameters for larger adversarial perturbations. Detailed298

hyperparameter settings of baselines and GARNET are available in Appendix D. Our hardware299

information is provided in Appendix E.300

4.1 Robustness of GARNET301

Defense on homophilic graphs. We first evaluate the model robustness on homophilic graphs against302

the targeted attack (Nettack) and the non-targeted attack (Metattack). Specifically, Nettack aims to303

fool a GNN model to misclassify some target nodes with a few structure (edge) perturbations. The304

goal of Metattack is to drop the overall accuracy of the whole test set with a given perturbation ratio305

budget (i.e., the number of adversarial edges over the number of total edges). Due to the space limit,306

we only show defense results under Nettack and Metattack with 5 perturbed edges per target node307

and 20% perturbation ratio, respectively. Results with other perturbation budgets are in Appendix I.308

Table 1 reports the average accuracy over 10 runs on Cora and Pubmed. It shows that GARNET,309

with either a backbone GNN model (GCN or GPRGNN), outperforms defense baselines in terms of310

both clean and adversarial accuracy in most cases. We attribute the large accuracy improvement to311

GARNET’s strengths in recovering key structures of the clean graph while ignoring the high-rank312

adversarial components during graph purification. Moreover, as both TSVD and ProGNN involve313

dense matrices during GNN training, they run out of GPU memory even on Pubmed, a graph with314

only 20k nodes. In contrast, GARNET is not only robust to adversarial attacks, but also scalable to315

large graphs, as empirically shown in Section 4.2.316

317 Defense on heterophilic graphs. We report the averaged accuracy over 10 runs on heterophilic318

graphs in Table 2, which shows that all defense baselines fail to defend GPRGNN on heterophilic319

graphs and even degrade the accuracy of the vanilla GPRGNN by a large margin. The reason why320

ProGNN performs poorly is that it follows the graph homophily assumption for improving GNN321

robustness, which contradicts the property of heterophilic graphs. For the TSVD-based defense322

method, the low-rank graph generated by TSVD contains negative edge weights, which degrade the323

performance of GPRGNN for adapting its graph filter on heterophilic graphs [31]. Although [29]324

have shown GNNGuard can improve model robustness on synthetic heterophillic graphs, our results325

indicate that it fails to defend GNN models on realistic heterohilic graphs. We attribute it to that the326

quality of graphlet degree vectors used in GNNGuard is degraded by structural perturbations induced327

via adversarial attacks. In contrast, GARNET largely recovers the clean graph structure based on328

Theorem 3.3 without the assumption on whether adjacent nodes have similar attributes. In other329

words, GARNET will produce a heterophilic graph if the underlying clean graph is heterophilic,330
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Table 1: Averaged node classification accuracy (%) ± std under targeted attack (Nettack) and
non-targeted attack (Metattack) on homophilic graphs — We bold and underline the first and second
highest accuracy of each backbone GNN model, respectively. OOM means out of memory.

Cora (Nettack) Cora (Metattack) Pubmed (Nettack) Pubmed (Metattack)

Model Clean Adversarial Clean Adversarial Clean Adversarial Clean Adversarial

GCN-Vanilla 80.96± 0.95 55.66± 1.95 81.35± 0.66 56.28± 1.19 87.26± 0.51 66.67± 1.34 87.16± 0.09 77.20± 0.27
GCN-TSVD 72.65± 2.29 60.30± 2.25 73.86± 0.53 62.44± 1.16 87.03± 0.48 79.56± 0.48 84.53± 0.08 84.30± 0.08
GCN-ProGNN 80.54± 1.21 65.38± 1.65 78.56± 0.36 72.28± 1.67 88.14± 1.44 71.89± 1.56 84.62± 0.11 83.89± 0.32
GCN-LFR 80.07± 0.95 53.73± 2.17 77.23± 2.61 65.38± 3.71 87.20± 1.24 68.49± 2.44 81.91± 0.26 78.32± 0.69
GCN-GARNET 81.08± 2.05 67.04± 2.05 79.64± 0.75 73.89± 0.91 87.96± 0.58 86.12± 0.86 85.37± 0.20 85.14± 0.23

GPR-Vanilla 83.04± 2.05 62.89± 1.95 83.05± 0.42 74.27± 2.11 90.05± 0.73 76.99± 1.16 87.35± 0.13 84.18± 0.15
GPR-TSVD 81.68± 1.78 63.52± 3.27 81.61± 0.54 78.50± 1.20 OOM OOM OOM OOM
GPR-ProGNN 82.04± 1.33 63.74± 2.57 82.04± 0.90 76.29± 1.46 OOM OOM OOM OOM
GPR-GARNET 82.77± 1.89 71.45± 2.73 82.67± 1.89 81.34± 0.79 90.99± 0.52 89.52± 0.45 86.86± 0.57 85.69± 0.26

Table 2: Averaged node classification accuracy (%) ± std on heterophilic graphs — We bold and
underline the first and second highest accuracy, respectively. The backbone GNN model is GPRGNN.

Chameleon (Nettack) Chameleon (Metattack) Squirrel (Nettack) Squirrel (Metattack)

Model Clean Adversarial Clean Adversarial Clean Adversarial Clean Adversarial

Vanilla 71.46± 1.92 66.26± 1.71 61.36± 1.00 53.20± 0.88 41.36± 2.87 39.45± 2.36 39.51± 1.64 35.22± 1.20
TSVD 62.12± 3.04 60.37± 2.86 47.29± 1.63 45.12± 1.34 32.98± 2.36 31.20± 1.84 31.36± 1.87 23.91± 1.40
ProGNN 58.80± 1.72 57.07± 1.82 48.39± 0.68 46.69± 0.61 31.81± 1.72 27.27± 1.87 31.64± 2.87 29.36± 3.61
GNNGuard 64.87± 2.62 62.21± 1.94 58.01± 1.57 49.89± 1.34 34.17± 2.33 33.41± 1.82 37.46± 0.56 32.69± 0.59
GARNET 72.89± 2.65 71.83± 2.11 61.11± 2.46 59.96± 0.84 44.91± 1.53 43.64± 1.53 43.43± 1.14 41.97± 1.02

which is further confirmed in Appendix O. Consequently, GARNET improves accuracy over defense331

baselines by up to 10.23% (i.e., 43.64%− 33.41% on Squirrel under Nettack) on heterophilic graphs.332

Defense against adaptive attacks. As GARNET is non-differentiable during kNN graph construction,333

it is difficult to optimize a specific loss function for adaptive attack. Instead, we adopt an attack334

called LowBlow from [7], which deliberately perturbs low-rank singular components in the graph335

spectrum, yet violates the unnoticeable condition (i.e., preserving node degree distribution after336

attacking). Since LowBlow has cubic complexity for computing the full set of adjacency eigenpairs,337

we only show results on the small graph Cora in Table 3, which indicates GARNET still achieves338

the highest adversarial accuracy under LowBlow, while all low-rank defense baselines perform even339

worse than vanilla GPRGNN model. The reason lies in that the kNN graph (with a relatively large k)340

in GARNET is less vulnerable to the perturbations of weighted spectral embeddings (i.e., low-rank341

components of the clean graph) [33], compared to prior low-rank defense methods.342

4.2 Scalability of GARNET343

To demonstrate the scalability of GARNET, we first compare the run time of GARNET with prior344

low-rank defense methods with GPRGNN as the backbone GNN model. As shown in Figure 3, the345

TSVD defense method is slower than GARNET since it produces a dense adjacency matrix that346

slows down the GNN training. Moreover, ProGNN is extremely slow as it jointly learns the low-rank347

graph structure and the robust GNN model, which requires performing TSVD for every epoch. In348

contrast, GARNET can efficiently produce a sparse graph for downstream GNN training, leading to349

end-to-end runtime speedup over prior methods by up to 14.7×. In addition, we further evaluate the350

robustness of GARNET on two large datasets: ogbn-arxiv and ogbn-products, under powerful and351

scalable attacks proposed by [34]. As we run out of GPU memory when performing the PR-BCD352

attack, we choose the more scalable version GR-BCD that has less memory usage. We use GCN as353

the backbone model since it outperforms GPRGNN on large graphs. As TSVD and ProGNN run354

Table 3: Averaged accuracy (%) ± std on Cora
under Metattack and LowBlow with 20% pertur-
bation ratio. We use GPRGNN as the backbone
GNN model.

Model Metattack LowBlow

Vanilla 74.27± 2.11 74.77± 0.71
TSVD 78.50± 1.20 26.03± 2.76

ProGNN 76.29± 1.46 69.88± 1.61
GARNET 81.34± 0.79 77.71± 0.95

179.7x

5.1x

0.8x 1x
1x 1x0.9x 0.9x

4.0x

14.7x

168.0x

1616.1x

Figure 3: End-to-end runtime comparison of
GARNET and baseline methods.
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Table 4: Averaged accuracy (%) ± std under GR-BCD attack.
ogbn-arxiv ogbn-products

Model Clean 25% Ptb. 50% Ptb. Clean 25% Ptb. 50% Ptb.

GCN 70.74± 0.26 45.18± 0.25 39.12± 0.27 75.68± 0.20 64.70± 0.43 62.71± 0.44
GNNGuard 68.78± 0.32 47.46± 0.11 41.18± 0.12 74.82± 0.11 66.76± 0.23 63.22± 0.26
GCNJaccard 67.77± 0.18 46.27± 0.11 40.84± 0.19 72.95± 0.08 60.90± 0.18 58.84± 0.20
Soft Median GDC 69.75± 0.03 45.31± 0.06 40.11± 0.06 66.31± 0.03 60.59± 0.05 59.73± 0.05
GARNET 69.91± 0.29 61.32± 0.20 60.88± 0.13 76.05± 0.19 75.03± 0.14 74.97± 0.24

0 1 2 3 4 5
Perturbation per Targeted Node

77.5

80.0

82.5

85.0

87.5

90.0

Ac
cu

ra
cy

Nettack on Pubmed (Backbone: GPRGNN)

Vanilla
GARNET (Base)
GARNET (Base+Refine)

0 1 2 3 4 5
Perturbation per Targeted Node

40

41

42

43

44

45

Ac
cu

ra
cy

Nettack on Squirrel (Backbone: GPRGNN)

Vanilla
GARNET (Base)
GARNET (Base+Refine)

Figure 4: Ablation study of GARNET on graph refinement.

out of memory on these two datasets, we choose GNNGuard, GCNJaccard [23], and Soft Median355

GDC [34] as baselines. Table 4 shows GARNET achieves comparable clean accuracy compared to356

GCN, and drastically improves the adversarial accuracy over defense baselines by up to 16.13%.357

4.3 Ablation Analysis of GARNET358

Figure 4 shows the comparison of GARNET results with and without graph refinement. When only359

constructing the base graph, GARNET achieves better adversarial accuracy than the vanilla GNN360

model, which confirms our Theorem 3.3 that the base graph construction can successfully recover361

clean graph edges. The graph refinement step further improves GARNET accuracy (∼2% increase)362

since some noncritical or even harmful edges are removed based on PGM. Due to the space limitation,363

the ablation studies of GARNET on the kNN graph and edge pruning are available in Appendix G.364

4.4 Visualization365

(a) (b) (c)

Figure 5: Visualizations on the same target node (marked in blue) as well as its 1-hop and 2-hop
neighbors. Neighbor nodes are marked in green if they have the same label as the target node, and
red otherwise. (a) clean graph. (b) adversarial graph. (c) adversarial graph purified by GARNET.
We visualize the local structure (within 2-hop neighbors) of a target node (randomly picked) on Cora366

in Figure 5. By comparing Figures 5(b) and 5(c), it is clear that GARNET effectively removes most367

of the adversarial edges induced by Nettack that connect nodes with different labels [8]. As a result, it368

is trivial for the backbone GNN model to correctly predict the target node since the surrounding nodes369

share the same label as the target node in GARNET graph. This explains why GARNET substantially370

improves the adversarial accuracy of GNN models. More visualizations are available in Appendix N.371

5 Conclusions372

This work introduces GARNET, a spectral approach to robust and scalable graph neural networks by373

combining spectral embedding and the probabilistic graphical model. GARNET first uses weighted374

spectral embedding to construct a base graph, which is then refined by pruning uncritical edges based375

on the graphical model. Results show that GARNET not only outperforms state-of-the-art defense376

models, but also scales to large graphs with millions of nodes. An interesting direction for future377

work is to incorporate the node feature information to further boost model robustness.378
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A Proof for Proposition 3.2494

Proof. As the graph is undirected, we can perform eigendecomposition on both Anorm and Lnorm495

to obtain their real eigenvalues and the corresponding eigenvectors. Let λi, λ̂i, and σi, i = 1, 2, ..., r496

denote the r smallest eigenvalues of Lnorm, r largest eigenvalues of Anorm, and r largest singular497

values of Anorm, respectively. Since Anorm = I − Lnorm, Anorm and Lnorm share the same set of498

eigenvectors while their eigenvalues satisfy: λ̂i = 1− λi, i = 1, 2, ..., r. Moreover, since we assume499

that the r largest magnitude eigenvalues of Anorm are non-negative, we have σi =
∣∣∣λ̂i

∣∣∣ = λ̂i, i =500

1, 2, ..., r. Thus, we have:501

V V T = [v1, ..., vr]

|1− λ1|
. . .

|1− λr|

 [v1, ..., vr]
T

= [v1, ..., vr]


∣∣∣λ̂1

∣∣∣
. . . ∣∣∣λ̂r

∣∣∣

 [v1, ..., vr]
T

= [v1, ..., vr]

σ1

. . .
σr

 [v1, ..., vr]
T

= Â

502

B Proof for Theorem 3.3503

Proof. Since the weighted embedding matrix V is defined as V def
=

[√
|1− λ1|v1, ...,

√
|1− λr|vr

]
,504

where λ1, λ2, ..., λr and v1, v2, ..., vr are the top r smallest eigenvalues and the corresponding505

eigenvectors of normalized graph Laplacian matrix Lnorm = I −D− 1
2AD− 1

2 , we have:506

∑
(i,j)∈E

∥Vi − Vj∥22 =

r∑
k=1

∑
(i,j)∈E

|1− λk| (vk,i − vk,j)
2

=

r∑
k=1

|1− λk|
∑

(i,j)∈E

(vk,i − vk,j)
2

=

r∑
k=1

|1− λk| vTk Lnormvk

=

r∑
k=1

(1− λk)λk

≤
r∑

k=1

0.25

= 0.25r

507

The fourth equation above is based on Courant-Fischer Theorem [35] with the assumption that λr ≤ 1508

and the Laplacian eigenvectors are normalized (i.e., ∥vk∥2 = 1,∀k = 1, ..., r). The inequality is509

derived by arithmetic mean-geometric mean (AM-GM) inequality.510
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Table 5: Statistics of datasets used in our experiments.

Dataset Type Homophily Score Nodes Edges Classes Features
Cora Homophily 0.80 2, 485 5, 069 7 1, 433
Pubmed Homophily 0.80 19, 717 44, 324 3 500
Chameleon Heterophily 0.23 2, 277 62, 792 5 2, 325
Squirrel Heterophily 0.22 5, 201 396, 846 5 2, 089
ogbn-arxiv Homophily 0.66 169, 343 1, 166, 243 40 128
ogbn-products Homophily 0.81 2, 449, 029 61, 859, 140 47 100

C Dataset Details511

Table 5 shows the statistics of the datasets used in our experiments. We follow Zhu et al. [10] to512

compute the homophily score per dataset (lower score means more heterophilic). As in Jin et al. [8],513

we extract the largest connected components of the original Cora and Pubmed datasets [36] for the514

adversarial evaluation, with the same train/validation/test split. For Chameleon and Squirrel [37], we515

keep the same split setting as Chien et al. [31]. Finally, we follow the split setting of Open Graph516

Benchmark (OGB) [11] on ogbn-arxiv and ogbn-products. Note that all data used in our experiments517

do not contain personally identifiable information or offensive content.518

In addition, we follow Jin et al. [8] for the selection of target nodes on Cora and Pubmed under519

Nettack. For the Chameleon and Squirrel datasets under Nettack, we choose target nodes that have520

degrees within the range of [20, 50] and [20, 140], respectively. In regard to non-targeted attacks (i.e.,521

Metattack), we choose nodes in the test set as target nodes for all datasets. We implement all the522

adversarial attacks based on the DeepRobust library [38].523

D Hyperparameters Settings524

D.1 Backbone GNN Models525

GCN. We choose the GCN hyperparameters based on the DeepRobust library [38].526

GPRGNN. We follow the hyperparameter settings provided at github.com/jianhao2016/GPRGNN527

with slightly different dropout rates (chosen from 0.3, 0.5, 0.7) and learning rates (chosen from528

0.01, 0.05, 0.1). Specifically, we provide the complete choices of dropout rates and learning rates529

across all datasets and attack settings below:530

• Cora-Nettack: dropout of 0.5 and learning rate of 0.01.531

• Cora-Metattack: dropout of 0.5 and learning rate of 0.01.532

• Pubmed-Nettack: dropout of 0.5 and learning rate of 0.01.533

• Pubmed-Metattack: dropout of 0.5 and learning rate of 0.01.534

• Chameleon-Nettack: dropout of 0.5 and learning rate of 0.05.535

• Chameleon-Metattack: dropout of 0.3 and learning rate of 0.05.536

• Squirrel-Nettack: dropout of 0.5 and learning rate of 0.1.537

• Squirrel-Metattack: dropout of 0.5 and learning rate of 0.1.538

H2GCN. We train a three-layer model in full batch, with a learning rate of 0.01, dropout of 0.5,539

hidden dimension of 64, and 300 epochs for both Chameleon and Squirrel datasets.540

D.2 Defense Baselines541

TSVD. We use the same r eigenvectors in TSVD as those used in GARNET, which is shown in542

Table 6.543

GCNJaccard. We choose the GCNJaccard hyperparameters based on the DeepRobust library [38].544

GNNGuard. We set edge pruning threshold (the only hyperparameter in GNNGuard) to be P0 = 0.1.545

Soft Median GDC. We strictly follow the hyperparameter setting suggested by Geisler et al. [34]. In546

particular, we choose temperature T of 5.0 for soft median, α of 0.1 (0.15) and k of 64 (32) for GDC547

on ogbn-arxiv (ogbn-products).548
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ProGNN. We find out its performance is very sensitive to hyperparameters. Thus we strictly follow the549

tuned hyperparameters available at github.com/ChandlerBang/Pro-GNN/scripts. As GCN-ProGNN550

training is very slow on Pubmed (estimated time is 30 days for 10 runs), we follow the suggestion551

from ProGNN authors to replace “svd” with “truncated svd” in the ProGNN implementation.552

D.3 GARNET553

Table 6: Summary of hyperparameters in GARNET— We denote the number of eigenpairs for
spectral embedding, the number of nearest neighbors for base graph construction, and the threshold
for edge pruning by r, k, and γ, respectively.

Dataset r k γ

Cora-Nettack 50 30 0.003
Cora-Metattack 50 30 0.003
Pubmed-Nettack 50 50 0.003
Pubmed-Metattack 50 50 0.003
Chameleon-Nettack 50 50 0.003
Chameleon-Metattack 50 50 0.003
Squirrel-Nettack 50 50 0.003
Squirrel-Metattack 50 50 0.003
ogbn-arxiv-GRBCD 500 50 0.003
ogbn-products-GRBCD 500 50 0.003

We show the hyperparameters of GARNET on different datasets under Nettack (1 perturbation per554

node), Metattack (10% perturbation ratio), and GR-BCD (25% perturbation ratio) in Table 6. Note555

that we provide our strategy of choosing r in Appendix F, which avoids conducting hyperparameter556

tuning on r per dataset. Besides, we set the prior data variance σ2 to be 1000 for all graphs. In557

addition, we run all GNN training with a full batch way.558

E Hardware Information559

We conduct all experiments on a Linux machine with an Intel Xeon Gold 5218 CPU (8 cores @560

2.30GHz) CPU, 8 NVIDIA RTX 2080 Ti GPU (11 GB memory per GPU), and 1 RTX A6000 GPU561

(48 GB memory).562

F Complexity Analysis of GARNET563

F.1 Time Complexity – Choice of r564

We choose r based on the number of classes per dataset, which depends on the downstream task565

rather than number of nodes in the graph. Specifically, suppose λr is the r-th largest eigenvalue, an566

appropriate r is chosen if there is a large gap between λr and λr+1 (i.e., a large eigengap) in the567

graph spectrum. According to [39], the eigengap is highly related to the number of clusters in the568

graph. In this work, we approximate r by r ≈ 10c to cover the large eigengap, where c denotes569

the number of classes/clusters. As shown in Tables 5 and 6, the number of classes in small (large)570

graphs is around 5 (50), so we use r = 50 (r = 500) in experiments. As a result, GARNET has the571

near-linear time complexity O(r(|E|+ k|V |) + |V |log|V |) = O(c(|E|+ k|V |) + |V |log|V |).572

F.2 Space Complexity573

GARNET involves forming a sparse kNN graph by building hierarchical navigable small world574

(HNSW) graphs [28] that contain O(|V | log |V |) nodes in total and each node connects to a fixed575

number of neighbors. Thus, the space complexity of storing the HNSW graphs is O(|V | log |V |). In576

addition, GARNET also needs to store the input adversarial graph and the produced kNN graph. As577

a result, the total space complexity of GARNET is O(|V | (log |V | + k) + |E|), where |V| and |E|578

denote the number of nodes and edges in the adversarial graph, respectively, and k is the averaged579

node degree in the kNN graph.580

Apart from the complexity analysis, we further provide the algorithms of GARNET and TSVD below581

for comparison.582
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Algorithm 1: GARNET based adversarial defense (this work)
Input: Adversarial graph Gadv; node feature matrix X ∈ Rn×d; prior data

variance σ2; truncated svd rank r; kNN graph k; threshold for edge
pruning γ; a GNN model for defense.

Output: Node embedding matrix Z ∈ Rn×c

1 M,S = eigs(Gadv, r);
2 V = M

√
|I − S|;

3 Gbase = kNN_graph(V, k);
4 M ′, S ′ = eigs(Gbase, r);
5 U = M ′/

√
S ′ + I/σ2;

6 for ei,j ∈ Gbase do
7 if ∥Ui−Uj∥22

∥Vi−Vj∥22
< γ then

8 Prune ei,j from Gbase;
9 end

10 end
11 Z = GNN(G ′base, X);

583

Algorithm 2: Truncated SVD based adversarial defense (prior work)
Input: Adversarial graph Gadv; node feature matrix X ∈ Rn×d; truncated svd

rank r; a GNN model for defense.
Output: Node embedding matrix Z ∈ Rn×c

12 U, S, V = TSV D(Gadv, r);
13 AGtsvd

= USV T ;
14 Z = GNN(Gtsvd, X);

584

G Ablation Study585

G.1 Choice of k for kNN Graph Construction586
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Figure 6: Ablation study of GARNET on k for kNN graph construction.

To evaluate the sensitivity of GARNET to k nearest-neighbor (kNN) graph construction, we evaluate587

the adversarial accuracy of GARNET with different k values for constructing kNN graphs. Figure588
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6 shows that the accuracy of GARNET does not change too much when varying k value within589

the range of [10, 100], indicating a relatively large k (e.g., k ≥ 10) can enable the kNN graph to590

incorporate most of edges in the underlying clean graph. Consequently, the performance of GARNET591

is relatively robust to the choice of k for kNN graph construction. As the peak performance is592

typically achieved in [30, 80], we recommend choosing k = 30 ∼ 80 for building the kNN graph in593

practice.594

G.2 Choice of γ for edge pruning595
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Figure 7: Ablation study of GARNET on threshold γ for edge pruning.

Apart from the choice of k for kNN graph construction, another critical hyperparameter of GARNET596

is the threshold γ that determines whether an edge should be pruned in the base graph. Thus, we597

further evaluate the effect of γ on the performance of GARNET. Specifically, we pick γ in the set598

of {0.001, 0.005, 0.01, 0.05, 0.1} and evaluate the corresponding adversarial accuracy of GARNET599

under Nettack with 1 perturbation per target node. As shown in Figure 7, the improper choice600

of γ may degrade the adversarial accuracy of GARNET by 3%. However, picking γ around 0.01601

can always achieve a reasonable adversarial accuracy on different datasets with different backbone602

GNN models. As a result, we recommend choosing γ in the range of [0.005, 0.05] in practice. In603

addition, Figure 7 also shows that GPRGNN-GARNET is more robust to the changes of γ than604

GCN-GARNET, which is due to the reason that the adaptive graph filter in GPRGNN can adapt to605

the graph structure after edge pruning.606

H Backbone GNN Models for Defense607

As GARNET can be integrated with any existing GNN models to improve their adversarial accu-608

racy, we choose two popular GNN models as the backbone model in our experiments: GCN and609

GPRGNN [30, 31]. As the GCN model implicitly assumes the underlying graph is homophilic, it610

performs poorly on heterophilic graphs [10]. In contrast, GPRGNN can work on both homophilic611

and heterophilic datasets, due to its learned graph filter that can adapt to the homophily/heterophily612

property of the underlying graph. Thus, we choose GPRGNN as the backbone model for evaluation613

on heterophilic datasets. In addition, we also show the defense results with the H2GCN [10] as614

backbone model in Appendix J.615

I Defense Results with Various Perturbation Budgets616

We provide additional defense results under Nettack and Metattack with various perturbations in617

Tables 7 and 8 respectively. The results indicate that GARNET outperforms prior defense methods in618

most cases.619

J Defense on H2GCN620

We provide the results of combining GARNET with H2GCN [10] on heterophilic graphs in Table 9,621

which shows that GARNET achieves the highest accuracy in most cases and improves the accuracy622

on all perturbed graphs by a large margin compared to the vanilla H2GCN as well as H2GCN-TSVD.623
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Table 7: Averaged node classification accuracy (%) ± std under targeted attack (Nettack) with
different perturbation ratio — We denote the evaluated dataset by its name with the number of
perturbations (e.g., Cora-0 means the clean Cora graph and Cora-1 denotes there is 1 adversarial edge
perturbation per target node). As GCN is not designed for heterophilic graphs, we only show results
of defense methods with GPRGNN as the backbone model on Chameleon and Squirrel. We bold and
underline the first and second highest accuracy of each backbone GNN model, respectively. OOM
means out of memory.

GCN GPRGNN

Dataset Vanilla TSVD ProGNN GARNET Vanilla TSVD ProGNN GARNET

Cora-0 80.96± 0.95 72.65± 2.29 80.54± 1.21 81.08± 2.05 83.04± 2.05 81.68± 1.78 82.04± 1.33 82.77± 1.89
Cora-1 70.06± 0.81 71.36± 1.63 81.65± 0.59 79.75± 2.35 81.68± 2.18 79.36± 2.23 80.56± 1.71 82.17± 1.95
Cora-2 68.60± 1.81 70.66± 2.76 79.83± 1.10 79.69± 1.50 74.34± 2.41 76.26± 2.34 76.12± 2.43 78.55± 2.11
Cora-3 65.04± 3.31 68.20± 1.93 72.08± 1.20 74.42± 2.06 70.96± 2.00 70.90± 3.89 73.74± 2.73 79.40± 1.35
Cora-4 61.69± 1.48 65.34± 3.46 67.83± 1.87 69.60± 2.67 65.90± 1.61 65.51± 3.27 68.94± 3.25 72.77± 2.16
Cora-5 55.66± 1.95 60.30± 2.25 65.38± 1.65 67.04± 2.05 62.89± 1.95 63.52± 3.27 63.74± 2.57 71.45± 2.73

Pubmed-0 87.26± 0.51 87.03± 0.48 88.14± 1.44 87.96± 0.58 90.05± 0.73 OOM OOM 90.99± 0.52
Pubmed-1 84.29± 0.68 86.46± 0.28 85.75± 1.23 87.03± 0.68 89.30± 0.54 OOM OOM 90.91± 0.47
Pubmed-2 82.17± 0.67 83.68± 0.46 81.23± 1.21 86.92± 0.45 87.42± 0.28 OOM OOM 90.75± 0.55
Pubmed-3 81.13± 0.53 81.34± 0.68 80.65± 1.39 86.50± 0.45 84.46± 0.53 OOM OOM 90.70± 0.37
Pubmed-4 75.48± 0.52 82.41± 0.54 78.46± 1.11 86.44± 0.64 81.72± 0.72 OOM OOM 90.11± 0.57
Pubmed-5 66.67± 1.34 79.56± 0.48 71.89± 1.56 86.12± 0.86 76.99± 1.16 OOM OOM 89.52± 0.45

Chameleon-0 71.46± 1.92 62.12± 3.04 58.80± 1.72 72.89± 2.65
Chameleon-1 71.02± 1.57 61.34± 2.93 58.05± 1.90 72.68± 1.89
Chameleon-2 70.71± 1.12 61.09± 2.80 57.44± 1.67 72.20± 2.31
Chameleon-3 70.30± 1.28 60.98± 2.82 57.19± 1.83 72.17± 2.07
Chameleon-4 69.87± 1.29 60.85± 3.31 57.44± 1.63 72.06± 2.94
Chameleon-5 66.26± 1.71 60.37± 2.86 57.07± 1.82 71.83± 2.11

Squirrel-0 41.36± 2.87 32.98± 2.36 31.81± 1.72 44.91± 1.53
Squirrel-1 41.27± 3.16 32.63± 0.87 30.54± 2.45 43.55± 1.79
Squirrel-2 41.09± 2.14 32.05± 1.05 30.73± 2.13 44.09± 2.35
Squirrel-3 40.98± 2.72 32.00± 1.66 30.25± 1.98 44.18± 2.26
Squirrel-4 40.25± 2.82 31.45± 1.38 29.09± 2.33 43.73± 1.62
Squirrel-5 39.45± 2.36 31.20± 1.84 27.27± 1.87 43.64± 1.53

Table 8: Averaged node classification accuracy (%) ± std under non-targeted attack (Metattack) with
different perturbation ratio — We denote the evaluated dataset by its name with the perturbation
ratio (e.g., Cora-0 means the clean Cora graph and Cora-10 denotes there are 10% adversarial edges).
As GCN is not designed for heterophilic graphs, we only show results of defense methods with
GPRGNN as the backbone model on Chameleon and Squirrel. We bold and underline the first and
second highest accuracy of each backbone GNN model, respectively. OOM means out of memory.

GCN GPRGNN

Dataset Vanilla TSVD ProGNN GARNET Vanilla TSVD ProGNN GARNET

Cora-0 81.35± 0.66 73.86± 0.53 78.56± 0.36 79.64± 0.75 83.05± 0.42 81.61± 0.54 82.04± 0.90 82.67± 1.89
Cora-10 69.50± 1.46 69.45± 0.69 77.90± 0.69 77.78± 0.53 80.37± 0.65 81.08± 0.52 80.31± 1.23 82.17± 0.69
Cora-20 56.28± 1.19 62.44± 1.16 72.28± 1.67 73.89± 0.91 74.27± 2.11 78.50± 1.20 76.29± 1.46 81.34± 0.79

Pubmed-0 87.16± 0.09 84.53± 0.08 84.62± 0.11 85.37± 0.20 87.35± 0.13 OOM OOM 86.86± 0.57
Pubmed-10 81.16± 0.13 84.56± 0.10 84.09± 0.12 85.22± 0.13 85.52± 0.14 OOM OOM 86.24± 0.20
Pubmed-20 77.20± 0.27 84.30± 0.08 83.89± 0.32 85.14± 0.23 84.18± 0.15 OOM OOM 85.69± 0.26

Chameleon-0 61.36± 1.00 47.29± 1.63 48.39± 0.68 61.11± 2.46
Chameleon-10 57.55± 1.26 47.07± 1.21 47.80± 0.91 60.96± 1.22
Chameleon-20 53.20± 0.88 45.12± 1.34 46.69± 0.61 59.96± 0.84

Squirrel-0 39.51± 1.64 31.36± 1.87 31.64± 2.87 43.43± 1.14
Squirrel-10 38.27± 0.83 28.25± 1.66 30.33± 3.29 42.62± 1.09
Squirrel-20 35.22± 1.20 23.91± 1.40 29.36± 3.61 41.97± 1.02

Table 9: Averaged node classification accuracy (%) ± std on heterophilic graphs — We bold and
underline the first and second highest accuracy, respectively. The backbone GNN model is H2GCN.

Chameleon (Nettack) Chameleon (Metattack) Squirrel (Nettack) Squirrel (Metattack)

Model Clean Adversarial Clean Adversarial Clean Adversarial Clean Adversarial

Vanilla 78.43± 2.09 62.20± 1.99 68.45± 0.57 52.73± 1.72 55.36± 2.91 29.55± 3.09 61.23± 0.71 44.84± 0.89
TSVD 67.07± 1.15 63.17± 1.61 61.75± 1.09 54.06± 1.66 32.45± 1.87 31.64± 2.09 46.66± 1.71 40.56± 1.41
GARNET 78.78± 1.84 76.10± 1.92 66.63± 1.05 61.12± 0.59 54.09± 1.73 53.27± 1.50 59.67± 0.83 50.08± 1.92

The results further confirm that GARNET is able to improve robustness of different backbone GNN624

models.625
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K Broader Impact626

Zügner et al. [5] have shown that graph adversarial attacks can drastically degrade the performance627

of GNN models for downstream applications. For instance, an attacker can attack a GNN-based628

recommender system on Facebook social network or Amazon co-purchasing network, via creating a629

fake account and make some connections to other users or items. Those connections can be viewed630

as adversarial edges in the graph. As a result, the attacker can deliberately enforce a GNN model to631

recommend some irrelevant or even harmful contents to other users. Thus, improving adversarial632

robustness of GNN models has the potential for positive societal benefit.633

We hope that this paper provides insight on the robustness and scalablity limitations of prior defense634

methods. Moreover, we believe that the proposed GARNET can largely overcome these two limi-635

tations and produce a robust GNN model against adversarial attacks on large-scale graph datasets.636

Nevertheless, we have to admit that GARNET may potentially provide the attacker with some hints637

about developing a even more powerful and scalable adversarial attack than all existing attacks, which638

is a possible negative consequence.639

L Discussion on Node Features640

L.1 Graph Construction from Node Features641

Table 10: Averaged node classification accuracy (%) ± std under targeted attack (Nettack) and
non-targeted attack (Metattack) on Cora and Pubmed — We bold and underline the first and second
highest accuracy, respectively. “NodeFeat” denotes the graph constructed from node features is used
for GNN training.

Cora (Nettack) Cora (Metattack) Pubmed (Nettack) Pubmed (Metattack)

Model Clean Adversarial Clean Adversarial Clean Adversarial Clean Adversarial

GCN-Vanilla 80.96± 0.95 55.66± 1.95 81.35± 0.66 56.28± 1.19 87.26± 0.51 66.67± 1.34 87.16± 0.09 77.20± 0.27
GCN-NodeFeat 52.65± 2.69 52.65± 2.69 56.44± 1.04 56.44± 1.04 83.01± 0.99 83.01± 0.99 78.66± 0.15 78.66± 0.15
GCN-GARNET 81.08± 2.05 67.04± 2.05 79.64± 0.75 73.89± 0.91 87.96± 0.58 86.12± 0.86 85.37± 0.20 85.14± 0.23

As GARNET purifies the adversarial graph by building a kNN graph based on dominant singular642

components, a natural question is whether the kNN graph constructed from node features can also643

achieve similar performance. We answer this question by comparing the results of GARNET graph644

and the node feature graph in Table 10. Note that the clean and adversarial accuracy are the same on645

the graph constructed from node features, since node features are unchanged after graph adversarial646

attack. Besides, we only show results on homophilic graphs as the kNN graph constructed from node647

features naturally falls into this category. Table 10 shows that the node feature graph performs much648

worse than GARNET graph. This further confirms that the method proposed in this work is critical to649

improve the robustness of GNN models.650

L.2 Defense Against Node Feature Attack651

GARNET can be extended to handle node feature attack, although this paper mainly focuses on652

defending against graph structure attack, which we believe is more challenging than defending node653

feature attack due to the discrete nature. Specifically, we can perform TSVD to obtain the low-rank654

approximation of the node feature matrix, which can remove high-rank adversarial components655

in node features [7]. The low-rank feature matrix is then concatenated to the weighted spectral656

embeddings to produce the kNN base graph. In this way, the downstream GNN model will be able to657

aggregate neighbors whose features are less perturbed during message passing.658

M Run Time on OGB Graphs659

Apart from the runtime comparison of GARNET and defense baselines on small graphs in Figure 3,660

we further evaluate the run time of GARNET on large (OGB) graphs. Concretely, the end-to-end run661

time of GARNET is 18 mins and 2 hours on ogbn-arxiv and ogbn-products, respectively, which is662

3× faster than the most competitive baseline GNNGuard that takes more than 1 hour on ogbn-arxiv663

and 8 hours on ogbn-products. One way to further accelerate GARNET is to leverage prior work on664

accelerating spectral embedding [40, 41]. We leave this to our future work.665
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N Additional Visualization Results666

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 8: Cora visualizations on a target node (marked in blue) as well as its 1-hop and 2-hop
neighbors. Neighbor nodes are marked in green if they have the same label as the target node, and red
otherwise. Note that the three graphs in the same row share the same target node (randomly picked),
while graphs in different rows focus on different target nodes. Left: clean graph. Middle: adversarial
graph. Right: adversarial graph purified by GARNET.

We visualize more target nodes and their local strcutures in Figure 8, which reveals that GARNET667

consistently improves the quality of adversarial graph by removing adversarial edges that connect668

nodes with different labels. As a result, the adversarial accuracy of backbone GNN models can be669

largely improved once they are trained on the GARNET graph.670
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O Homophily Score of GARNET Graph671

Table 11: Graph homophily score.

Homophilic graphs Heterophilic graphs

Dataset Cora Pubmed Chameleon Squirrel

Clean graph 0.80 0.80 0.23 0.22
GARNET graph 0.75 0.72 0.25 0.26

We follow Zhu et al. [10] to compute the homophily score per dataset (lower score means more672

heterophilic). As shown in Table 11, the GARNET graph is homophilic (heterophilic) if the cor-673

responding clean graph is homophilic (heterophilic), which further confirms Theorem 3.3 that our674

approach can effectively recover the clean graph structure. As a result, GARNET supports both675

homophilic and heterophilic graphs.676

P Accuracy of Clean Graph Recovery677

Table 12: Averaged recall and precision of clean structure recovery over 5 (randomly picked) nodes.

Recall Precision

Cora (homophilic graph) 0.94 0.65
Chameleon (heterophilic graph) 0.87 0.59

Apart from visualizing GARNET graph in Figures 5 and 8, we further quantify how well GARNET
recovers the clean graph structure. Concretely, given a target node, we first extract nodes within its
2-hop neighbors in the clean graph and GARNET graph (under Metattack with 20% perturbation
ratio), respectively. By denoting the extracted nodes by Nclean for clean graph and Ngarnet for
GARNET graph, we define the recall score and precision score as follows:

Recall =
|Nclean ∩Ngarnet|

|Nclean|

Precision =
|Nclean ∩Ngarnet|
|Ngarnet|

Table 12 shows the averaged recall and precision over 5 nodes on Cora and Chameleon graphs. The678

results show that the recall scores are very high for both graphs, which indicates GARNET is able to679

accurately recover clean graph structure. The relatively low precision scores indicate that GARNET680

also introduces new edges to the graph (i.e., |Ngarnet| > |Nclean|). We argue that those new edges681

are likely to connect spectrally similar nodes that are far away in the original clean graph, which682

enables GARNET to also incorporate global structural information. This explains why GARNET can683

sometimes outperform vanilla GNN models on clean heterophilic graphs (shown in Table 2), where684

global structural information is very critical for node prediction.685

Q Further Discussion on Graph Recovery with PGM686

Intuitively, if we use more (clean) Laplacian eigenpairs (i.e., a larger r) for constructing the embedding687

matrix V based on Definition 3.1, the optimal solution for Equation 2 (i.e., Θ∗) will be closer to688

the actual clean graph. In this section, we confirm this intuition based on graph resistance distances689

between node pairs. Specifically, consider the following expression for calculating effective-resistance690

distances between nodes p and q using all Laplacian eigenvalues/eigenvectors except λ1 = 0:691

|V |∑
i=2

(uT
i ep,q)

2

λi
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Feng [17] has shown that the effective-resistance distance between any node pair on the learned graph692

Θ∗ (when σ approaches infinity) will fully match the Euclidean distance between the corresponding693

data samples (i.e., rows in weighted spectral embedding matrix V in our case). Moreover, it can be694

shown that the Euclidean distance between the data samples in our case will match the effective-695

resistance distance on the original graph when r = |V| (with proper normalization on Laplacian696

eigenvectors). As a result, the resistance distances on the learned graph Θ∗ will be the same as697

the ones on the original graph when r = |V|. Moreover, using a larger r value will lead to a more698

accurate estimation of the learned (clean) graph.699

In practice, if r satisfies that λr ≪ λr+1, dropping the terms with much larger eigenvalues (i.e., λr+1,700

λr+2, ..., λ|V|) will not significantly impact the approximation accuracy. A proper r can be effectively701

determined based on the strategy proposed in Appendix F. We leave the theoretical guarantee of other702

metrics for graph comparison to our future work.703

R Connection between kNN Graph and TSVD Graph704

Apart from the motivation of constructing a kNN graph as Gbase based on Theorem 3.3, we further705

motivate the kNN graph construction from the perspective of improving the scalability of TSVD-706

based defense methods. Concretely, as previous TSVD-based methods produce a dense (low-rank)707

adjacency matrix Â, they involve dense matrices during GNN training, which has quadratic time/space708

complexity and thus cannot scale to large graphs. A potential solution is to sparsify Â by preserving709

the top k largest elements per row. However, naïvely selecting the largest elements of each row710

in Â requires forming/storing Â first, which still has quadratic time/space complexity. In contrast,711

we leverage the (approximate) kNN algorithm to construct the sparsified Â by taking as input the712

weighted spectral embedding V (note that Â = V V T based on Proposition 3.2). Consequently, our713

kNN graph construction step can also be viewed as a scalable way of sparsifying the dense adjacency714

matrix Â generated by TSVD. Moreover, Theorem 3.3 theoretically guarantees that the sparsified715

graph serves as a reasonable Gbase for edge pruning.716
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