
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FEATURE-GUIDED SCORE DIFFUSION FOR SAMPLING
CONDITIONAL DENSITIES

Anonymous authors
Paper under double-blind review

ABSTRACT

Score diffusion methods can learn probability densities from samples. The score
of the noise-corrupted density is estimated using a deep neural network, which is
then used to iteratively transport a Gaussian white noise density to a target density.
Variants for conditional densities have been developed, but correct estimation of
the corresponding scores is difficult. We avoid these difficulties by introducing an
algorithm that guides the diffusion with a projected score. The projection pushes
an image feature vector towards the corresponding centroid of the target class. The
projected score and the feature vectors are represented and learned within the same
network. Specifically, the image feature vector is defined as the spatial averages of
the channels activations in select layers of the network. Optimizing the projected
score for denoising loss encourages image feature vectors of each class to cluster
around their centroids. It also leads to the separations of the centroids. We show
that these centroids provide a low-dimensional Euclidean embedding of the class
conditional densities. We demonstrate that the algorithm can generate high quality
and diverse samples from the conditioning class. Conditional generation can be
performed using feature vectors interpolated between those of the training set,
demonstrating out-of-distribution generalization.

1 INTRODUCTION

Score diffusion is a powerful data generation methodology which operates by transporting white
noise to a target distribution. When trained on samples drawn from different classes, it learns a
mixture density over all the classes. In many applications, one wants to control the diffusion sampling
process to obtain samples from the conditional distribution of a specified class. A brute force solution
is to train a separate model on each class, learning each conditional density independently. This is
computationally expensive: each model requires a large training set to avoid memorization (Somepalli
et al., 2023; Carlini et al., 2023; Kadkhodaie et al., 2024). An alternative strategy is to train a single
model on all classes, with a procedure to guide the transport toward the conditional density of
individual classes. This approach can leverage the shared information between all classes, thus
reducing the required training set size needed to learn the full set of conditional densities.

Learning conditional densities in a diffusion framework has been highly successful when the condi-
tioning arises from a separately-trained text embedding system (e.g., Ramesh et al. (2021); Rombach
et al. (2022); Saharia et al. (2022)) or image classifier network (Song et al., 2020; Dhariwal & Nichol,
2021), or by jointly learning a classifier and the score model Ho & Salimans (2022). Despite the high
quality of generated images, several mathematical and numerical studies Chidambaram et al. (2024);
Wu et al. (2024) show that these guidance algorithms do not sample from appropriate conditional
distributions, even in the case of Gaussian mixtures. This is due to their reliance on estimating the
exact likelihood to obtain the score of the conditional distributions, which is difficult.

In this work, we introduce a modified score diffusion, which does not rely on direct estimation
of the score of conditional densities. Instead, at each step of the trajectory, it modifies the score
according to the distance between the sample and the target conditional distribution in a feature space.
Importantly, the score and the feature vector are represented by the same neural network learned
by minimizing a single denoising loss. The feature vector is defined as spatial averages of selected
layers of the score network. This shared representation provides a Euclidean embedding of all class

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

�

0

•

•

�y

�y0

�(x�)

�(x)x

�

x�

py

py0

guide
0

Figure 1: Illustration of feature-guided score diffusion. Left: Score diffusion of a mixture of densities
computes trajectories (black) that map samples of a Gaussian white noise (blue disk) to samples
of two complex conditional densities (orange or green). Right: The feature space ϕ(x) defines a
Euclidean embedding in which each mixture component is well separated (orange/green ellipses). In
the embedding space, mixture trajectories (black) are similar at high noise variance σ2, and bifurcate,
moving toward different components at lower noise levels (Biroli et al., 2024). In our method,
feature trajectories (orange/green) are forced toward the feature centroids (ϕy or ϕy′ , on right) of the
corresponding conditional density (py or py′ , on left). These feature trajectories are used to guide the
trajectories of xσ in the signal space (orange/green, left) toward the corresponding conditionals.

conditional probabilities. The sampling algorithm relies on this Euclidean embedding to sample from
the conditional density.

Several methods have have been developed to learn representations in conjunction with diffusion
models (Preechakul et al., 2022; Mittal et al., 2023; Wang et al., 2023; Hudson et al., 2024). In
general, these models use a separate network to map images into a form that can be used to control a
diffusion network. Training these models can be difficult, due to mixed-network architectures, and
use of objective functions with combined denoising and other losses. Although they have proven
successful, in terms of image generation quality, or to transfer of the learned representation to other
tasks, the Euclidean metric of the embedded space has not been related to properties of underlying
probability distributions.

In this work we propose an algorithm that samples a class conditional density by guiding the score
diffusion with a feature vector, which is driven towards the class centroid in the feature space.
This is illustrated in Figure 1. It computes a projected score at each step such that the trajectory
samples from the conditional density. We show numerically that the learned features concentrate
in the neighborhood of their centroid within each class. We also verify that the centroids of feature
vectors define a Euclidean embedding of the associated conditional probability, and are thus separated
according to the distance between these conditional distributions. As a result, we find that this
feature-guided sampling procedure can accurately sample from the target conditional probability
density, without degradation of quality or diversity. Both training and synthesis are stable. We show
that for Gaussian mixtures, the method recovers distributions which closely match each Gaussian
component. Finally, we demonstrate that the Euclidean embedding allows sampling of conditional
probabilities over new classes obtained by a linear combination of the feature vectors of two classes.

2 BACKGROUND

Sampling by score diffusion. Sampling using score diffusion (more precisely, reverse diffusion) is
computed by reversing time in an Ornstein-Uhlenbeck equation, initialised with a sample x drawn
from probability density p(x). At each time t the diffusion process computes a noisy xt with a
Gaussian probability density pt = N (e−tx, σ2

t I). At large time T , xT is nearly a Gaussian white
noise. One can recover x from xT by reversing time T to 0 using a damped Langevin equation:

−dxt =
(
xt + 2s(xt)

)
dt+

√
2dwt (1)

where s is a drift term and wt is a Brownian noise. If s(xt) = ∇xt
log pt(xt) is the score of pt

then this score diffusion equation transports Gaussian white noise samples into samples of p. To

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

implement a score diffusion, the main difficulty is to estimate the score ∇xt
log pt. However, there is

a considerable freedom to choose the drift term s(xt) (Albergo M., 2023). We will later leverage this
degree of freedom.

The score is typically estimated by minimizing a mean squared error denoising loss. To specify
the denoising problem, we renormalise xt and define xσ = etxt, whose probabilty density pσ is
parametrised by σ = e2t − 1. The denoising solution provides a direct constraint on the score,
∇xσ

log pσ(xσ), thanks to a remarkable formula derived by Tweedie (as reported in Robbins (1956))
and Miyasawa (1961):

x̂(xσ) = E[x|xσ] = xσ + σ2∇xσ log pσ(xσ) (2)

The score can be estimated with a neural network that computes a function sθ(xσ) whose parameters
are chosen to minimize a denoising loss (Song & Ermon, 2019; Ho et al., 2020):

ℓ(θ) = E∥sθ(xσ)− σz∥2 = E∥x− x̂(xσ)∥2. (3)

Conditional sampling. Suppose that we have a dataset of independent samples {xi, yi}i≤n where
xi is an image and yi is a label which may correspond to a discrete class or a continous attribute. These
are samples of a probability density that is a mixture of conditional densities: p(x) =

∫
py(x) p(y)dy,

where py(x) = p(x|y) is the conditional probability of x given y, and hence of the samples of class
y. Let py,σ(xσ) = pσ(xσ|y) be the probability density of noisy samples at a certain noise level
xσ = x+ σz over all x in class y and z ∼ N (0, Id). Samples of py can be generated using a score
diffusion algorithm if one has estimates of the scores∇xσ

log py,σ(xσ) for all σ. Bayes’ rule gives

∇xσ
log pσ(xσ|y) = ∇xσ

log pσ(y|xσ) +∇xσ
log pσ(xσ). (4)

It is thus tempting to use this equation to compute the conditional score by augmenting the uncondi-
tioned score (second term on right) with an estimate of the gradient of the log-likelihood (first term).
This approach relies on estimating the likelihood from data at all noise levels. In practice, one might
employ neural network classifiers trained on clean data to estimate the likelihood. This however intro-
duces an error because the likelihood function depends on noise level, and thus pσ(y|xσ) ̸= p(y|xσ).
As a result, the correct likelihood of y for noisy data cannot be computed by evaluating the likelihood
function p(y|.) on noisy data. This problem has been addressed by training classifiers on noisy data.
However, in practice, obtaining a good estimation of the likelihood at all noise levels has been chal-
lenging. In particular, samples drawn using this algorithm are low in quality and often do not belong
to the correct class Dhariwal & Nichol (2021). This problem persists with classifier-free guidance Ho
& Salimans (2022), where the likelihood gradient is computed with the score network, and a weight
ω > 0 is chosen to emphasize the log-likelihood term (1 + ω)∇xσ

log p(y|xσ) +∇xσ
log pσ(xσ).

Such algorithms generate high quality images Dhariwal & Nichol (2021); Ho & Salimans (2022)
but they do not correctly sample the conditional distribution, drawing instead from a desnity of
reduced diversity. Even in the simplified case of Gaussian mixtures, the conditional density errors
are significant, as proven and demonstrated numerically in Chidambaram et al. (2024); Bradley &
Nakkiran (2024).

3 FEATURE-GUIDED SCORE DIFFUSION

We present a method for learning and sampling from conditional distributions without direct likelihood
estimation. Instead, we augment the score of the mixture distribution with a projection term that
operates over learned feature vectors, that serves to push diffusion trajectories toward the density of
the desired conditional distribution.

Trajectory dynamics for a Gaussian mixture. The dynamics of score diffusion for mixture of
densities has been studied in Biroli et al. (2024). When the underlying p(x) is simply a mixture of
Gaussians with low rank covariance, the score diffusion of this mixture can be described in roughly
three phases as illustrated in Figure 1. Initially, σ is large and xσ is dominated by the Gaussian white
noise, so its probability distribution is nearly Gaussian and trajectories are nearly identical for all
classes y. At some noise variance, which is dependent on the distance between the means of the
mixture components, the density becomes multi-modal and the trajectories separate. Once trajectories
are separated, they fall into the basin of attraction of a single component density py and converge to

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

samples of py. In the third stage, when the noise is sufficiently small, ∇xσ
log pσ ≈ ∇xσ

log pσ,y,
because the other components have a negligible effect on∇xσ

log pσ .

To sample conditional densities, we must control the trajectory so that it is pushed toward the basin
of attraction of py at all noise levels. This can be done by adding a forcing term to the mixture
score ∇xσ

log pσ. Consider the simple case of a Gaussian mixture p(x) ∝ (e−(x−m1)
2/(2λ2) +

e−(x−m2)
2/(2λ2)) with means m2 = −m1, with λ2 ≪ |m1|2. To approximately sample py, an

adjusted score may be defined with a forcing term proportional to my − xσ:

s(xσ,my − xσ) = ∇xσ log pσ(xσ) +Kσ (my − xσ).

This is the gradient of the log of pσ(xσ) e
−Kσ(xσ−my)

2/2, which drives the transport toward the
mean my . To sample from the component with mean my , Kσ must be sufficiently large at high noise
variance σ2 to drive the dynamics to my. It must then converge to zero for small σ2, so that the
modified score diffusion samples a distribution which is nearly a Gaussian with variance λ2.

Feature concentration and separation. The Gaussian mixture example provides inspiration for
sampling from mixtures of complex distributions py . In the Gaussian case, the linear forcing term can
be defined in terms of the class means my = Epy

[x], because the component distributions for each
y are sufficiently concentrated around their means to be well-separated. For mixtures of complex
distributions, to apply a similar strategy we must find a feature map ϕ(x) such that the mapped
conditional distributions for each y concentrate around their corresponding means ϕy = Epy

[ϕ(x)].
Moreover, all ϕy must be sufficiently separated. This is obtained by insuring that ϕy − ϕ(x) for x in
class y has relatively small projections in the directions of all ϕy − ϕy′ :

∀y, y′ , Epy [⟨ϕy − ϕy′ , ϕy − ϕ(x)⟩2]≪ ∥ϕy − ϕy′∥2. (5)

The separation of ϕy in the embedding space should be governed by the separation of the probability
distributions py in the pixel space. This is captured by a Euclidean embedding property, which
ensures that the separation of ϕy is related to a distance between the probability distributions py , and
hence that there exists 0 < A ≤ B with B/A not too large, such that

∀y, y′ , A∥ϕy − ϕy′∥2 ≤ d2(py, py′) ≤ B∥ϕy − ϕy′∥2. (6)

Since ϕy − ϕ(xσ) must control∇xσ
log py,σ at all noise levels, we establish a distance between two

conditional densities as

d2(py, py′) =

∫ ∞

0

(
Epσ,y

[∥∇xσ
log pσ,y(xσ)−∇xσ

log pσ,y′(xσ)∥2]

+ Epσ,y′ [∥∇xσ log pσ,y(xσ)−∇xσ log pσ,y′(xσ)∥2]
)
σ dσ. (7)

This distance is based on the difference in the expected score assigned to xσ by py vs. py′ , integrated
across all noise levels. It provide a distance by symmetrizing the Kullback-Leibler divergence
KL(py∥py′) between two distributions py, py′ proved in (Song et al., 2020):

KL(p∥p′) =
∫ ∞

0

Epσ [∥∇xσ log pσ(xσ)−∇xσ log p′σ(xσ)∥2]σdσ.

The feature concentration and separation properties can also be reinterpreted as an optimization of a
nearest mean classifier

ŷ(x) = argmin
y
∥ϕ(x)− ϕy∥2.

In that sense, the control of the score by ϕy − ϕ(xσ) is related to classifier-guided score diffusion
(Dhariwal & Nichol, 2021).

Projected score. In the Gaussian mixture case, we described an augmentation of the score with a
forcing term that is linear in the deviation my−xσ . For mixtures of complex probability distributions,
we choose to adjust the score with an analogous forcing term that operates in the embedding space:
e = ϕy − ϕ(xσ). We define ϕ using the activations within the same neural network that computes
the score, which allows us to make use of nonlinear representational properties of the score network
(Xiang et al., 2023), and to jointly optimise s and ϕ. This shared parameterization is crucial to

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

ensure that the embedding arises from the same features that represent the score of the conditional
distribution, which in turn renders the embedding space Euclidean in relation to the probability space.
Specifically, for images, the components of ϕ(xσ) are defined as spatial averages of activations
of a selected subset of layers of the deep neural network that computes s(xσ) (see Appendix A
for architecture diagram). Activation layer averages are close to the first principal component of
the network channels whose values are all positive, thus capturing a significant fraction of their
variance. This feature vector is translation-invariant (apart from boundary handling), and has far
fewer dimensions than the image. It can thus be considered a bottleneck. The fact that the same
network is used to compute s and ϕ is a critical aspect of our algorithm which sets it apart from
previous approaches for score-based representation learning.

We define s(xσ, ϕy − ϕ(xσ)) by multiplying each component of ϕy − ϕ(xσ) with a learned factor
and adding it to the corresponding activation layers of s(xσ, 0). For multiplicative factors smaller
than 2, the selected activation layers of s(xσ, ϕy − ϕ(xσ)) have an average closer to ϕy. Learned
factors are often close to 1, which sets averages to ϕy. In this case, the operation can be interpreted
as a projection in the embedding space, and thus we refer to s(xσ, ϕy − ϕ(xσ)) as the projected
score. This procedure, of matching the means of channels to those associated with a target density, is
inspired by methods used for texture modeling and synthesis (Portilla & Simoncelli, 2000).

At high noise levels this projection or contraction drives the dynamics toward the class y, as shown
in Figure 1. In this regime, ϕ(xσ) has significant fluctuations which carry little information about
x. Projecting it to ϕy reduces these fluctuation and uses the conditioning information to push the
transport toward py . At the final steps of the dynamics, when the noise level is small, we have xσ ≈ x.
The concentration property of ϕ(x) implies that deviation e = ϕy − ϕ(xσ) is small. At small noise
levels, the dynamics conditioned by y should follow nearly the same dynamics as the mixture, and
thus s(xσ, 0) ≈ ∇xσ

log pσ(xσ). A first order approximation of s(xσ, e) relative to e gives

s
(
xσ, ϕy − ϕ(xσ)

)
≈ ∇xσ log pσ(xσ) +

(
ϕy − ϕ(xσ)

)T∇es(xσ, e)|e=0. (8)

At small noise levels, the projected score is thus approximated by the unconditioned mixture score
with a forcing term that is linear in the feature deviation ϕy −ϕ(xσ). This projected score is the basis
for our feature-guided score diffusion algorithm, which is implemented using Stochastic Iterative
Score Ascent (SISA) (Kadkhodaie & Simoncelli, 2021) (see Appendix C and Algorithm 1).

4 JOINT LEARNING OF FEATURES AND PROJECTED SCORE

Learning s(xσ, ϕy − ϕ(xσ)) by minimizing a denoising loss over all y and x does not ensure that
ϕ(x) concentrates within class y, because this property is not explicitly imposed. It can however be
encouraged by replacing ϕy with ϕ(x′) in the learning phase, where x′ is a randomly chosen sample
from the same class y as x. The learning algorithm thus optimizes the parameter θ of a single network
sθ(xσ, ϕθ(x

′)− ϕθ(xσ)) for randomly chosen x′, by minimizing the denoising loss

ℓ(θ) = Ex,x′,σ∥z − sθ
(
xσ, ϕθ(x

′)− ϕθ(xσ)
)
∥2,

where the expected value is taken over the distribution of all x in the mixture, over all x′ in the same
class as x, and over all noise variances σ2. Note that both the projected score, s, and the feature
vector, ϕ, are dependent on the network parameters θ, and are thus simultaneously optimized. See
Algorithm 2 of Appendix C for more details.

Qualitative analysis of denoising optimization. We provide an intuition for how minimizing
denoising loss interacts with ϕθ(x

′)− ϕθ(xσ) inside sθ to learn the desired projected score. Specif-
ically, we give a qualitative explanation for why minimization of the denoising loss encourages a
feature vector ϕ that concentrates in each class and has separated class means ϕy . Concentration is a
consequence of optimization at small noise and separation is due to optimization at high noise levels.

At sufficiently small noise, when xσ ≈ x, and xσ is in the basin of attraction of py, the projected
score should converge to the score of the mixture model

sθ(xσ, ϕθ(x
′)− ϕθ(xσ)) ≈ ∇xσ

log pσ(xσ).

So deviation from the score of the mixture model is tantamount to an increase in loss. Thus,
to minimize the loss, the parameters of the network are learned such that at small noise levels
ϕθ(x

′)− ϕθ(xσ) becomes very small for all pairs in the class, hence convergence of ϕ(x).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

The convergence of feature vectors within classes does not guarantee separations of their centroids.
This is a major challenge in representation learning known as "collapse". This pathological case is
avoided thanks to loss minimization at high noise levels. This is a regime where conditioning can
reduce the loss below the mixture model loss. The high level of noise obfuscates image features
such that xσ becomes high probability under classes other than y. So, if loss minimization results
in θ such that ϕ(x′) approximates ϕy, projected score leads to a better estimate of x, hence a lower
denoising loss. Therefore, at high noise we expect improved performance relative to the mixture
distribution, whereas at small noise we expect to achieve similar performance. This requires that the
ϕy of different classes have a separation of the order of the separation of conditional densities. The
separation of the ϕy thus depends on the separations of the py . It leads the optimization to define ϕy

providing a Euclidean embedding of the py.

5 EXPERIMENTAL RESULTS

We trained a UNet on cropped 80 × 80 patches from a dataset of 1700 texture images following
Algorithm 2 (see Appendix A for details of architecture and dataset). The feature vector consists
of spatially averaged responses of layers at the end of each block, at all levels of the U-Net, which
correspond to different scales. The full feature vector has 1344 components. Patches from each image
are assumed to represent samples of the same class. Each training example consists of one noise-
corrupted patch, xσ , and another patch that is used to compute an embedding vector for conditioning,
ϕ(x′). The UNet implementation has receptive field (RF) of size 84 × 84 at the last layer of the
middle block, ensuring that ϕ can represent global features of the patches. We also used Algorithm 4
to train a UNet of identical architecture to denoise patches, representing the full mixture density
without conditioning. We refer to this as the "mixture denoiser".

5.1 PROJECTED SCORE IMPROVES DENOISING

Figure 2: Feature guided denoising results at two noise levels (left: σ = 1, right: σ = 0.5). Leftmost
column of each panel shows noisy images, drawn from 4 classes. Top row (green boxes) shows
example conditioning images, from the same 4 classes. Columns under each show corresponding
denoising results. Diagonal entries (red boxes) indicate images denoised with correct conditioning
(conditioning image from same class as noisy image), whereas off-diagonal entries are incorrectly
conditioned. Rightmost column of each panel shows denoising results using the (unconditioned)
mixture denoiser (orange boxes). At high noise levels, conditioning on the correct class improves
results significantly compared to the mixture model. Conditioning on the wrong class degrades
performance, introducing features from the conditioning class. At smaller noise levels, feature guided
and mixture denoisers produce similar outputs, but the effect of incorrect conditioning is still visible.

We first evaluated denoising performance of the feature guided denoiser, to verify the analyses and
predictions of Section 3. Example denoising results for four different image classes, and two different
noise levels are shown in Figure 2. In all cases, feature guidance has a visually striking effect, pushing
the denoised images toward the conditioning class. These effects are more substantial at the higher
noise level, as predicted from the analyses of Section 3. Moreover, performance is substantially
worsened by incorrect conditioning (i.e., denoising an image drawn from p(x|yi), while conditioning
on feature vector ϕyj

, with i ̸= j). In these cases, deformations and artifacts in the denoised images
resemble prominent features of the (incorrect) conditioning class. A quantitative comparison of

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

denoising performance is shown in Figure 3(left), and further supports the predictions of Section 3.
At all noise levels, conditioning improves performance. However, as predicted by Equation (8), this
improvement decreases monotonically with noise level, because the projected score converges to the
original mixture score. At the smallest noise level, the two models have nearly identical performance.

In Figure 3(right) we compare performance to a denoiser optimized for a single class. This model
uses a UNet with identical architecture, and is trained on 125000 crops from one texture class y0
using Algorithm 2 (see Appendix A for details of dataset). This model provides an empirical upper
bound on the denoising performance, and hence the conditional score, p(x|y0), for class y0. The
results indicate that the feature guided denoiser gets close to but falls short of exactly achieving the
best empirically possible conditional score for this architecture, as anticipated in Section 4. On the
other hand, the feature guided model is better than the single-class denoiser when conditioned on the
wrong class. Despite this suboptimality in approximating the true conditional score, we show in the
Section 5.3 that the feature guided denoiser can nevertheless be used to draw diverse high-quality
samples from class-conditioned densities.

1.0 0.75 0.51 0.26 0.010.30

0.25

0.20

0.15

0.10

0.05

0.00

feature guided denoiser
mixture denoiser

1.0 0.75 0.51 0.26 0.01

4

3

2

1

0

ideal conditional
feature guided
feature guided (wrong condition)
ideal conditional (wrong condition)

Figure 3: Left: Improvement in peak signal to noise ratio (PSNR) at different noise levels, of the
conditional model (discs) relative to the unconditioned mixture model (stars), averaged over samples
from all classes. Right: Comparison of conditional model (discs) with a denoiser optimized for a
single class y0 (stars). Upper points correspond to denoising of images from class y0, with correct
conditioning. Lower points correspond to denoising of images from other classes, y ̸= y0, with
incorrect conditioning.

5.2 PROPERTIES OF LEARNED EMBEDDING

We verify the concentration, separation and Euclidean embedding properties of feature vectors which
are needed to guide the score diffusion. Figure 4 shows the squared Euclidean distance between
feature vectors of images drawn from the same class, and for the mean feature vectors from different
classes. The top row is computed for the (unconditioned) mixture network. Note that the feature
vectors are highly concentrated, and there is some moderate separation between classes, consistent
with Xiang et al. (2023). The bottom row shows the same results for feature guided model. The
histogram of variances of feature vectors within classes is more concentrated, and overlaps less with
the Euclidean distances between class feature vectors, in comparison with the mixture model. Thus,
the feature guided model exhibits stronger concentration and separation in the embedding space. We
also examined these properties over different stages of the UNet. The middle column of Figure 4
shows that the separation between the class centroids is most significant in the middle layer of the
network. In this block, the network receptive field size is as large as the input image, enabling it to
capture global features that are most useful for separating classes. This effect is shown for one pair of
classes in the right column.

We can also verify that the learned class feature vectors provide a Euclidean embedding of the condi-
tional probabilities. Figure 5 shows a scatterplot of the density distance d2(py, py′) (Equation (7))
as a function of the Euclidean distance, ∥ϕy − ϕy′∥2, over pairs of different classes {y, y′} in the
embedding space. The data are well-approximated by a line, satisfying the conditions of Equation (6)
for reasonable A,B.

5.3 CONDITIONAL GENERATION

Finally, we evaluate the numerical performance of feature guided score diffusion to sample conditional
probabilities of Gaussian mixtures and mixtures of image classes.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

||
y 1

y 2
||

Mixture model
ratio=1
ratio=2
ratio=4

Ex|y1[(x) y1, d 2] + Ex|y2[(x) y2, d 2]

||
y 1

y 2
||

Conditional model

0

5

10

15

20

25
|| y1 y2||

Ex|y1[(x) y1, d 2] + Ex|y2[(x) y2, d 2]

Mixture model

en
c1

en
c2

en
c3 mid

de
c3

de
c2

0

5

10

15

20

25
Conditional model

Figure 4: Concentration of image feature vectors ϕ(x) within class, and separation of centroids ϕy

between classes. Top row shows results for the unconditioned mixture model and the bottom row
shows results for the conditional model. Left column: scatter plot of Euclidean distances between
pairs of class feature vectors ϕy1 and ϕy2 versus the average variability of feature vectors within
classes. d̂ is the unit vector in the direction of ϕy1 − ϕy2 (i.e., the prototype classifier). Separability
of classes corresponds to the ratio of the two coordinates (lines provide reference for three specific
examples). Middle column: Separability of class feature vectors (ratio of distances between class
feature vectors to average variability within the classes) computed for portions of the feature vectors
corresponding to different layers of the UNet architecture. The conditional model separates classes
significantly, especially in the middle layer. Right column: scatter plot of components of ϕ for two
different classes, y1 and y2, in the middle layer. Example images from y1 and y2 are shown along
the axes. The image embeddings in the conditional model are separated, while there is very little
separation in the mixture model.

Figure 5: Verification of Euclidean embedding (Equation (6)). Density distance (Equation (7)), which
bounds the symmetrized KL divergence between the two conditional densities, is well-correlated with
the squared Euclidean distance between the corresponding mean feature vectors in the embedding
space. Image pairs on the left are drawn from the closest three class pairs (red points), and those on
the right are drawn from the most distant (blue points).

Gaussian mixtures. Guided diffusion models (Ho & Salimans, 2022) have been highly successful
in generating text-conditioned images, but recent results demonstrate that they do not sample from
the conditional density on which they are trained. This is proved for mixtures of two Gaussians
(Chidambaram et al., 2024), which captures important properties of the problem. We trained our
model on samples from such a two-Gaussian mixture, having different means m1 and m2 and a rank 1
covariance whose principal component is (m2−m1)/∥m2−m1∥. Figure 6 shows the distribution of

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

True density
samples

Figure 6: Conditional sampling for a mixture of two Gaussians. Network is trained on samples from
the mixture, and the two panels show histograms (yellow) of samples drawn conditioned on each of
the classes.

Figure 7: Conditional sampling. Top row shows example images from different conditioning classes
y. Leftmost column shows initial (seed) noise images. Second column (3 small images only) shows
samples from the (unconditioned) mixture denoiser, trained on all classes. Remaining columns
show 3 images sampled using the conditional model, conditioned on the feature vector ϕy for the
corresponding class. Here the class feature vector is obtained from a single image from a class
(i.e., setting ny = 1 in Algorithm 1). Bottom row shows larger synthesized images, each sampled
conditionally from the class corresponding to the leftmost of the two columns above it, and initialized
by the noise image on the left.
conditional samples generated by Algorithm 1. Our feature guided score diffusion generates typical
samples from each Gaussian conditional density.

Natural images. We trained a network on pairs of 80×80 patches selected randomly from a dataset
of 1700 grayscale texture images (i.e. 1700 classes). We generated samples by using the trained
model in Algorithm 1. Figure 7 shows three samples generated for each of 10 different classes, as
specified by their corresponding feature vectors ϕy . Samples are visually diverse, of high quality, and
appropriate for the corresponding conditioning class. The bottom row shows samples drawn at twice
the resolution, using 5 of the same conditioning classes. Figure 10 and Figure 11 in Appendix D
show more examples of conditional sampling. Additionally, Figure 12 and Figure 13 show the effect
on conditioning at different noise level on sampling.

Figure 8 demonstrates that interpolation within the embedding space is well-behaved. Each row
shows samples using a conditioning vector in the embedding space that is interpolated between those
of two classes, {y1, y2}. The rows are ordered by the Euclidean distance between the class feature
vectors, ∥ϕy1 − ϕy2∥. In all cases, the generated samples are generally of high visual quality, and
represent a qualitatively sensible progression.

6 DISCUSSION

We presented a feature guided score diffusion method for learning a family of conditional densities
from samples. A projected score guides the diffusion in a feature space where the conditional densities
are concentrated and separated. Both the projected score and the feature vectors are computed on
internal responses of a deep neural network that is trained to minimize a single denoising loss.
When conditioned on the feature vector associated with a target class, a reverse diffusion sampling

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 8: Interpolation in embedding space. Each row shows high-resolution samples drawn from
p(x|αϕy1

+ (1 − α)ϕy2
) for different class pairs {y1, y2}, with representative samples from the

training set shown on left and right sides. Rows from top to bottom correspond to pairs of classes
with increasing Euclidean embedding distance.
algorithm based on the projected score transports a Gaussian white noise density to the target
conditional probability following a trajectory that differs from that of the true conditional score.
We demonstrate this numerically by showing that denoising performance remains below that of
the optimal conditional denoiser. Nevertheless, a diffusion algorithm based on the projected score
provides an accurate sampling of conditional probabilities, which is demonstrated for Gaussian
mixtures and by testing the quality and diversity of synthesized images. We also verify that the feature
map provides a Euclidean embedding of corresponding conditional probabilities, which allows us to
interpolate linearly between classes in the feature space.

Our method is novel, but bears some similarity to several others in recent literature, each of which
aim to learn a density (or at least, a diffusion sampler) conditioned on an exemplar from a class. Most
of these are significantly more complex to train than our network, relying on multiple interacting
networks, often with multiple-term objectives. Ho & Salimans (2022) introduced classifier-free
guidance, in which the score estimates of a conditional diffusion model are mixed with those of an
unconditioned diffusion model. They were able to obtain high-quality samples, but the likelihood
term in the conditional model over-biased the conditional sampling, resulting in a mismatch to the
conditional density. Our method avoids this problem, as seen in the Gaussian example of Section 5.3.
The Diffusion-based Representation Learning method (Mittal et al., 2023) uses a separate labeling
network whose output is used to guide a denoiser. The two networks are jointly trained to minimize
a combination of denoising error and the KL divergence of the label distribution with a standard
Normal (similar to objectives for variational AutoEncoders). Trained networks showed success in
recognition, but properties of the learned conditional density were not examined. Subsequent work
(Wang et al., 2023) augmented the DRL objective with an additional mutual information term. And
finally, (Hudson et al., 2024) the SODA combines three networks: an image encoder, a denoiser, and
a bridge network that maps the encoding into gains and offsets that are used to drive the conditioning
of the denoiser. The entire model is trained on a single denoising loss, and generates images of
reasonable quality, but the properties of the learned density and embedding space were not analyzed.

Guiding score diffusion with projected scores raises many questions. The embedding space of our
current model relies on feature vectors constructed from channel averages. This is a natural choice of
summary statistic, especially for images drawn from stationary sources. However, Figure 4 shows that
many of these channels, in the first and last layers, are not providing much benefit in differentiating
classes. This suggests that they could be eliminated, further reducing the dimensionality. The
construction of the feature vector from alternative linear projections of channel responses may
also provide a useful generalization for capturing spatially varying properties of image classes.
Finally, an outstanding mathematical question is to understand the accuracy of stochastic interpolants
(Albergo M., 2023) obtained with projected scores, and how it relates to feature space properties.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Vanden-Eijnden Albergo M., Boffi N. Stochastic interpolants: A unifying framework for flows and
diffusions, 2023.

Giulio Biroli, Tony Bonnaire, Valentin De Bortoli, and Marc Mézard. Dynamical regimes of diffusion
models. arXiv preprint arXiv:2402.18491, 2024.

Arwen Bradley and Preetum Nakkiran. Classifier-free guidance is a predictor-corrector. arXiv
preprint arXiv:2408.09000, 2024.

Nicolas Carlini, Jamie Hayes, Milad Nasr, Matthew Jagielski, Vikash Sehwag, Florian Tramer, Borja
Balle, Daphne Ippolito, and Eric Wallace. Extracting training data from diffusion models. In 32nd
USENIX Security Symposium (USENIX Security 23), pp. 5253–5270, 2023.

Muthu Chidambaram, Khashayar Gatmiry, Sitan Chen, Holden Lee, and Jianfeng Lu. What does
guidance do? a fine-grained analysis in a simple setting. arXiv preprint arXiv:2409.13074, 2024.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598,
2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Drew A Hudson, Daniel Zoran, Mateusz Malinowski, Andrew K Lampinen, Andrew Jaegle, James L
McClelland, Loic Matthey, Felix Hill, and Alexander Lerchner. Soda: Bottleneck diffusion models
for representation learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 23115–23127, 2024.

Zahra Kadkhodaie and Eero P Simoncelli. Solving linear inverse problems using the prior implicit in
a denoiser. arXiv preprint arXiv:2007.13640, 2020.

Zahra Kadkhodaie and Eero P Simoncelli. Stochastic solutions for linear inverse problems using the
prior implicit in a denoiser. Advances in Neural Information Processing Systems, 34:13242–13254,
2021.

Zahra Kadkhodaie, Florentin Guth, Eero P Simoncelli, and Stéphane Mallat. Generalization in diffu-
sion models arises from geometry-adaptive harmonic representations. In The Twelfth International
Conference on Learning Representations, Vienna, Austria, 2024.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
Proceedings of International Conference on Computer Vision (ICCV), December 2015.

Sarthak Mittal, Korbinian Abstreiter, Stefan Bauer, Bernhard Schölkopf, and Arash Mehrjou. Dif-
fusion based representation learning. In International Conference on Machine Learning, pp.
24963–24982. PMLR, 2023.

K Miyasawa. An empirical Bayes estimator of the mean of a normal population. Bull. Inst. Internat.
Statist., 38:181–188, 1961.

Javier Portilla and Eero P Simoncelli. A parametric texture model based on joint statistics of complex
wavelet coefficients. International journal of computer vision, 40:49–70, 2000.

Konpat Preechakul, Nattanat Chatthee, Suttisak Wizadwongsa, and Supasorn Suwajanakorn. Dif-
fusion autoencoders: Toward a meaningful and decodable representation. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 10619–10629, 2022.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation. In International conference on machine
learning, pp. 8821–8831. Pmlr, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

H Robbins. An empirical bayes approach to statistics. In Proc Third Berkeley Symposium on
Mathematical Statistics and Probability, volume I, pp. 157–163. University of CA Press, 1956.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

O Ronneberger, P Fischer, and T Brox. U-net: Convolutional networks for biomedical image
segmentation. In Int’l Conf Medical Image Computing and Computer-assisted Intervention, pp.
234–241. Springer, 2015.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
text-to-image diffusion models with deep language understanding. Advances in neural information
processing systems, 35:36479–36494, 2022.

Gowthami Somepalli, Vasu Singla, Micah Goldblum, Jonas Geiping, and Tom Goldstein. Diffusion
art or digital forgery? investigating data replication in diffusion models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6048–6058, 2023.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

Yingheng Wang, Yair Schiff, Aaron Gokaslan, Weishen Pan, Fei Wang, Christopher De Sa, and
Volodymyr Kuleshov. Infodiffusion: Representation learning using information maximizing
diffusion models, 2023. URL https://arxiv.org/abs/2306.08757.

Yuchen Wu, Minshuo Chen, Zihao Li, Mengdi Wang, and Yuting Wei. Theoretical insights for
diffusion guidance: A case study for gaussian mixture models. arXiv preprint arXiv:2403.01639,
2024.

Weilai Xiang, Hongyu Yang, Di Huang, and Yunhong Wang. Denoising diffusion autoencoders are
unified self-supervised learners. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 15802–15812, 2023.

12

https://arxiv.org/abs/2306.08757

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A ARCHITECTURE, DATASETS AND TRAINING

Architectures. We use UNet architecture Ronneberger et al. (2015) that contain 3 decoder blocks,
one mid-level block, and 3 decoder blocks. Each block in the encoder consists of 2 convolutional
layers followed by layer normalization and a ReLU non-linearity. Each encoder block is followed by
a 2× 2 spatial down-sampling and a 2 fold increase in the number of channels. Each decoder block
consists of 4 convolutional layers followed by layer normalization and a ReLU non-linearity. Each
decoder block is followed by a 2× 2 spatial upsampling and a 2 fold reduction of channels. The total
number of parameters is 11 million.

The same architecture is used for the feature guided models (conditionals) as shown in Figure 9. To
compute ϕ(x), spatial averages of the last layer’s activations are computed per channel for each block.
The total number of channels used in ϕ computation is 1344, so ϕ ∈ R1344. A matching method
is added to the code to subtract ϕ(xσ) and add ϕ(x′). The only change in this UNet compared to
the vanilla architecture is a multiplicative gain parameter, g, which is optimized during training. In
sampling, it is multiplied with (ϕy − ϕ(xσ)). Note that the addition of multiplicative gain parameter
only resulted in minor improvements in performance, so the feature guided model can be implemented
without them.

r̄6,128(x′)

r̄3,1(x′)
r̄3,256(x′)

r̄1,1(x′)
r̄1,64(x′)

r̄2,1(x′)
r̄2,128(x′)

r̄4,1(x′)
r̄4,512(x′)

r̄5,1(x′)
r̄5,256(x′)

r̄6,1(x′)

ϕ(x′) =

x′

xσ

rl,c(x′)

−

rl,c(xσ)

+

r̄l,c(xσ)r̄l,c(x′)

Figure 9: Conditional UNet architecture, implementing our feature-guided score sθ(xσ, x
′). The

same network is used to compute conditioning features (green), and the denoiser (brown). Spatial
averages of indicated channels (dashed red boxes) are measured from conditioning image x′, and
imposed on the denoiser acting on xσ (blown up dashed red box).

Datasets. The dataset contains 1700 images of 1024× 1024 resolution. Each image is partitioned
into non-overlapping patches of size 80× 80, resulting in 144 patch per texture image or class. In
each class, 140 crops are assigned to the training set and 4 crops are assigned to the test set. The
total number image patches in the training set is 234, 000. The patch size was chosen intentionally to
match the receptive field size of the network at the last layer of the middle block. This is to enable
the network to capture global structure of the patch.

For experiment shown in Figure 3, we collected a dataset of 160 images of a single class by taking
photographs of a single wood texture. The images are high resolution (3548× 5322) and are cropped
to non-overlapping 80 × 80 patches. The total number of patches in the dataset is 125, 000. This
large number of patches in the training set is required to ensure that the learned model is in the
generalization regime (Kadkhodaie et al., 2024).

Training. Training procedures are carried out following Algorithm 4 or Algorithm 2 by minimizing
the mean squared error in denoising images corrupted by i.i.d. Gaussian noise with standard deviations
drawn from the range [0, 1] (relative to image intensity range [0, 1]). Training is carried out on batches

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

of size 512, for 1000 epochs. Note that all denoisers are universal and blind: they are trained to
handle a range of noise, and the noise level is not provided as input. These properties are exploited
by the sampling algorithms (3 and 1), which can operate without manual specification of the step size
schedule.

B ALGORITHMS FOR LEARNING AND SAMPLING: FEATURE-GUIDED MODEL

Feature-guided score diffusion is implemented using the Stochastic Iterative Score Ascent (SISA)
algorithm (see Appendix C).

In the main text, we use the notation s(xσ, ϕ(x
′)− ϕ(xσ)) to refer to the score network. However,

note that s and ϕ are implemented by the same network parameterized by θ, so in practice ϕ(xσ)
is not an input argument to s, but is computed by s from xσ and then used in (xσ, ϕ(x

′)− ϕ(xσ))
within the layers of the same network. We chose the notation to make it explicit that dependency of
projected score on the feature vector is only through the deviation between the feature vectors. In
practice, however, the network sθ first computes ϕ(x′) from an image or a batch of images and then
operates on xσ while adding ϕ(x′) and subtracting ϕ(xσ). So to make the notation in the algorithms
consistent with implementation, we write s(xσ, x

′). Algorithm 1 describes all the steps of sampling
using feature guided diffusion model. The core of the algorithm is to compute the projected score,
take a partial step in that direction and add noise:

xσk
= xσk−1

+ hs(xσk−1
, {xi}i≤n)) + γkzk

To compute the projected score, ϕ(x) and ϕ(xσ) are computed in the same s network. At each stage,
ϕ(x) is added to and ϕ(xσ) is subtracted from the activations. This amount to a forward pass for x
and a forward pass for xσ to compute the projected score. For more efficiency in sampling, the ϕy of
the conditioning density can be stored and reused to avoid redundant computation. Note that n can
be set to 1 for efficiency without hurting the performance.

Algorithm 1 Sampling using feature guided score diffusion

Require: data from conditioning class {xi}i≤n ∈ y, projected score network s(xσ, {xi}i≤n), step
size h, injected noise control β, initial noise σ0, final σ∞, mixture distribution mean m

1: k = 0
2: Draw xσ0 ∼ N (m,σ2

0Id)
3: while σk ≥ σ∞ do
4: k ← k + 1 ▷ Compute the projected score
5: σ2

k = ∥s(xσk−1
, {xi}i≤n))∥2/d ▷ Compute the current noise level

6: γ2 =
(
(1− βh)2 − (1− h)2

)
σ2
k

7: Draw zk ∼ N (0, I)
8: xσk

= xσk−1
+ hs(xσk−1

, {xi}i≤n)) + γkzk ▷ Update line with projected score
9: end while

10: return x

Algorithm 2 describes all the steps for training a projected score model. The network s(xσ, x
′) takes

a pair of images. ϕ(x′) and ϕ(xσ) are computed using the same sθ(xσ, x
′) network in the forward

pass and added to and subtracted from the activations respectively.

Algorithm 2 Learning a projected score network

Require: data partitioned to different classes {xi, yi}i≤n, UNet architecture sθ(x, x
′)

1: while Not converged do
2: Draw x, x′ of label y from training set
3: Draw σ ∼ Uniform[0,1]
4: Draw z ∼ N (0, Id)
5: xσ = x+ σz
6: ∇θ∥σz − sθ(xσ, x

′)∥2 ▷ Take a gradient step
7: end while
8: return s = sθ

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

C ALGORITHMS FOR LEARNING AND SAMPLING: MIXTURE MODEL

Stochatsic Iterative Score Ascent algorithm (SISA) was introduced by Kadkhodaie & Simoncelli
(2020). It is an adaptive diffusion algorithm, where the time schedule is set by the model automatically
using the estimated noise level at each time step. Here, for completion, we include these algorithms.
For experiments which involved a mixtures model, the training and sampling were done using
Algorithm 4 and Algorithm 3. We set the parameters to h = .01 and β = .05.

Algorithm 3 Sampling with Stochastic Iterative Score Ascent (SISA)

Require: weighted score network sσ(x), step size h, injected noise control β, initial σ0, final σ∞,
distribution mean m

1: t = 0
2: Draw x0 ∼ N (m,σ2

0Id)
3: while σt ≥ σ∞ do
4: t← t+ 1
5: σ̂2 = ||s(xt−1)||2/d ▷ Approximate an upper bound on current noise level
6: γ2

t =
(
(1− βh)2 − (1− h)2

)
σ̂2

7: Draw z ∼ N (0, I)
8: xt = xt−1 + hs(xt−1) + γtz ▷ Perform a partial denoiser step and add noise
9: end while

10: return xt

Algorithm 4 Learning a score network

Require: UNet architecture sθ(x) computing a score parameterized by weights θ and weighted by
σ2. Clean images x.

1: while Not converged do
2: Draw x from training set
3: Draw σ ∼ Uniform[0,1]
4: Draw z ∼ N (0, Id)
5: xσ = x+ σz
6: ∇θ∥σz − sθ(xσ)∥2 ▷ Take a gradient step
7: end while
8: return s = sθ

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

D ADDITIONAL EMPIRICAL RESULTS

Figure 10: More examples of conditional sampling. Top row shows example images from different
conditioning classes y. Leftmost column shows 4 initial (seed) noise images. Remaining columns
show 4 images sampled using the conditional model, conditioned on the feature vector ϕy for the
corresponding class. Here the class feature vector is obtained from a single image from a class (i.e.,
setting ny = 1 in Algorithm 1). Hyperparameters in sampling algorithm are set to h = 0.05, β = 0.01

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 11: More examples of conditional sampling from a model trained on color texture images.
Top row shows example images from different conditioning classes y. See caption of Figure 10.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 12: Effect of conditioning depends on the noise level σ. Rightmost column: Conditioning
image from a class. Top row: different levels of Gaussian noise is added to a face image from the
CelebA dataset Liu et al. (2015). All the other rows show conditional samples drawn starting from
the initial image shown on the first row. The feature guided sampling algorithm is applied to the noisy
image with conditioning on different classes. The effect of conditioning changes as a function of
noise level. At smaller noise levels the effect of the conditioner is to add fine features (details) to the
initial image. When the noise level is higher on the initial image, the conditioning introduces larger
more global features to the final sample.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Cond traj, SDE

sample
 joint:SDE

Cond traj, SDE

sample
 joint:SDE

Cond traj, SDE

sample
 joint:SDE

Cond traj, SDE

sample
 joint:SDE

Figure 13: Effect of conditioning at different noise levels on sampling. In each of the 4 sub-figures,
the top row shows a sampling trajectory using feature guided score diffusion (Algorithm 1), starting
from the same sample of noise and generating an image from the conditioning class. The second row
shows final samples generated without conditioning (Algorithm 4) starting from the intermediate
point of the trajectory shown above it. This is akin to turning off the conditioning at an intermediate
noise level. After the trajectory is within the basin of attraction of a class, shutting down conditioning
does not change the sample outcome as predicted in Section 3. The exact noise level at which the
trajectory becomes independent of conditioning depends on the conditioning class (and probably its
distance from other classes).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 14: Uncurated samples generated from a model trained on a mixture of six common datasets
down sampled to 80× 80: CelebaHQ (30k), a subset of LSUN bedroom class (30k), AFHQ (16k),
Flowers102(8k), Stanford cars(16k), and a subset of North American Birds (30k). Total number of
images in the entire set is 130, 000. We use the same architecture described in Appendix A. In each
row the leftmost image is an example image from the training set from the class. To obtain samples
from a class, we condition on ϕy for the class computed from a batch of images. The algorithm
parameters are h = 0.01 and β = 0.01

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0.00

0.05

0.10

0.15

0.20

0.25

0.30

||
y 1

y 2
||

Mixture model
ratio=1
ratio=2
ratio=4

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Ex|y1[(x) y1, d 2] + Ex|y2[(x) y2, d 2]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

||
y 1

y 2
||

Conditional model

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
|| y1 y2||

Ex|y1[(x) y1, d 2] + Ex|y2[(x) y2, d 2]

Mixture model

en
c1

en
c2

en
c3 mid

de
c3

de
c2

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
Conditional model

Figure 15: Concentration of image feature vectors ϕ(x) within class, and separation of centroids ϕy

between classes for multi-class dataset. Top row shows results for the unconditioned mixture model
and the bottom row shows results for the conditional model. See caption of Figure 4 for details.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Plane

Car

Bird

Cat

Deer

Dog

Frog

Horse

Ship

Truck

Figure 16: Uncurated samples generated from a model trained on CIFAR10 dataset. In each row the
leftmost image is an example image from the training set from the class. To obtain samples from a
class, we condition on ϕy for the class computed from a batch of images. The algorithm parameters
are h = 0.05 and β = 0.01.

21

	Introduction
	Background
	Feature-Guided Score Diffusion
	Joint learning of features and projected score
	Experimental results
	Projected score improves denoising
	Properties of learned embedding
	Conditional generation

	Discussion
	Architecture, datasets and training
	Algorithms for Learning and sampling: feature-guided model
	Algorithms for Learning and sampling: Mixture model
	Additional empirical results

